
USN

Internal Assessment Test 2 – July 2024
Sub: ANALYSIS & DESIGN OF ALGORITHMS Sub Code: BCS401 Branch: AIML/CSEAIML

Date: Duration: 90 min Max Marks: 50 Sem/Sec: IV -A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a)
What is Dynamic Programming? What are the various problems that can be

solved using dynamic programming? 5 CO3 L1

b) Mention the differences between Divide & Conquer and Dynamic Programming. 5 CO3 L1

2

Explain the following with examples:

a) Complete Graph b) Directed Acyclic Graph c) Connected Graph

Write the adjacency matrix & the cost adjacency matrix of the following graph:

10 CO3 L2

3

What is Transitive Closure? Apply Warshall’s algorithm to compute transitive
closure of the digraph defined by the following adjacency matrix:

0 1 0 0

0 0 0 1

0 0 0 0

1 0 1 0

10 CO3 L3

4 Write a C program to implement Floyd’s algorithm. 10 CO3 L2

5

Write four spanning trees for the following graph. What is the cost of a Minimum
Spanning Tree and obtain using Prim’s algorithm?

10 CO4 L3

6 Write a C program to implement Dijkstra’s Algorithm to obtain single source
shortest paths to all other vertices. 10 CO4 L2

CI CCI HOD
--All the Best--

USN

Internal Assessment Test 2 – July 2024

Sub: ANALYSIS & DESIGN OF ALGORITHMS Sub Code: BCS401 Branch: AIML/CSEAIML

Date: 11/07/24 Duration: 90 min Max Marks: 50 Sem/Sec: IV -A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a)

What is Dynamic Programming? What are the various problems that can be

solved using dynamic programming?

Ans: Dynamic programming is a method of solving the problem with overlapping

subproblems. The method works by dividing the problem into subproblems and

finding the solution for the same. The solution of the subproblems are used to

obtain the solution for the problem. Once the sub-problem is solved, the answer is

stored in a table and is never recalculated. When an instance of the sub-problem

occurs, the answer is retrieved from the table, saving time.

The various problems that uses dynamic programming are:

- Fibonacci series

- Computing binomial coefficient

- Warshal’s algorithm

- Knapsack problem

5 CO3 L1

b)

Mention the differences between Divide & Conquer and Dynamic Programming.

Ans:

DIVIDE & CONQUER DYNAMIC PROGRAMMING

Applicable when subproblems are
independent.

Applicable when subproblems are not
independent.

Subproblems are solved separately and
combined to get the solution of the
original problem.

The original problem is solved by
using the results of previous
subproblems.

Every instance of the subproblem is
recalculated.

Only one instance of the subproblem is
computed and stored.

Uses Top-Down approach. Uses Bottom-Up approach.

5 CO3 L1

Not efficient. More efficient.

2

Explain the following with examples:

a) Complete Graph b) Directed Acyclic Graph c) Connected Graph

Write the adjacency matrix & the cost adjacency matrix of the following graph:

Ans:

a) Complete Graph

A complete graph is a graph in which each vertex is connected to every other

vertex. That is, a complete graph is an undirected graph where every pair of

distinct vertices is connected by a unique edge.

b) Directed Acyclic Graph

A DAG is a Directed Acyclic Graph, a type of graph whose nodes are

directionally related to each other and don’t form a directional closed loop.

c) Connected Graph

A graph is a connected graph if, for each pair of vertices, there exists at least one

single path which joins them.

10 CO3 L2

3

What is Transitive Closure? Apply Warshall’s algorithm to compute transitive
closure of the digraph defined by the following adjacency matrix:

0 1 0 0

0 0 0 1

0 0 0 0

1 0 1 0

Ans:
The transitive closure G* of a directed graph G is a graph that has an edge (u, v)
whenever G has a directed path from u to v.
Let G = (V, E) be a simple graph where V is the set of vertices and E is the set of
edges. Let N be the no. of vertices in graph G. The matrix P whose elements are
given by

𝑃[𝑖, 𝑗] = 1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑗
𝑃[𝑖, 𝑗] = 0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

is called path matrix or Transitive closure.

10 CO3 L3

4

Write a C program to implement Floyd’s algorithm.

Ans:
// C Program for Floyd Warshall Algorithm
#include <stdio.h>

// Number of vertices in the graph
#define V 4

/* Define Infinite as a large enough
value. This value will be used
for vertices not connected to each other */
#define INF 99999

// A function to print the solution matrix
void printSolution(int dist[][V]);

// Solves the all-pairs shortest path
// problem using Floyd Warshall algorithm

10 CO3 L2

void floydWarshall(int dist[][V])
{
int i, j, k;

/* Add all vertices one by one to
the set of intermediate vertices.
---> Before start of an iteration, we
have shortest distances between all
pairs of vertices such that the shortest
distances consider only the
vertices in set {0, 1, 2, .. k-1} as
intermediate vertices.
----> After the end of an iteration,
vertex no. k is added to the set of
intermediate vertices and the set
becomes {0, 1, 2, .. k} */
for (k = 0; k < V; k++) {
// Pick all vertices as source one by one
for (i = 0; i < V; i++) {
// Pick all vertices as destination for the
// above picked source
for (j = 0; j < V; j++) {
// If vertex k is on the shortest path from
// i to j, then update the value of
// dist[i][j]
if (dist[i][k] + dist[k][j] < dist[i][j])
dist[i][j] = dist[i][k] + dist[k][j];

}
}

}

// Print the shortest distance matrix
printSolution(dist);

}

/* A utility function to print solution */
void printSolution(int dist[][V])
{
printf(
"The following matrix shows the shortest distances"
" between every pair of vertices \n");

for (int i = 0; i < V; i++) {
for (int j = 0; j < V; j++) {
if (dist[i][j] == INF)
printf("%7s", "INF");

else
printf("%7d", dist[i][j]);

}
printf("\n");

}
}

// driver's code
int main()
{

/* Let us create the following weighted graph
10

(0)------->(3)
| /|\
5 | |
| | 1
\|/ |
(1)------->(2)

3 */
int graph[V][V] = { { 0, 5, INF, 10 },

{ INF, 0, 3, INF },
{ INF, INF, 0, 1 },
{ INF, INF, INF, 0 } };

// Function call
floydWarshall(graph);
return 0;

}

5

Write four spanning trees for the following graph. What is the cost of a Minimum
Spanning Tree and obtain using Prim’s algorithm?

Ans:

10 CO4 L3

6

Write a C program to implement Dijkstra’s Algorithm to obtain single source
shortest paths to all other vertices.

Ans:
#include<stdio.h>
#include<stdlib.h>

void dijkstra(int n, int cost[n][n], int source, int parent[], int visited[], int dist[])
{
int min, u, v;
for(int i=0;i<n;i++){
if(i!=source){
min = 99;
u = -1;
for(int j=0;j<n;j++){
if(visited[j]==0){
if(dist[j]<min){
min = dist[j];
u = j;

}
}

}
if(u == -1)
return;

visited[u] = 1;
for(v=0;v<n;v++){
if(visited[v]==0){

10 CO4 L2

if((dist[u]+cost[u][v]<dist[v]) && (cost[u][v]!=0)){
dist[v] = dist[u]+cost[u][v];
parent[v] = u;

}
}

}
}

}
for(int i=0;i<n;i++){
printf("\n%d -> %d with parent[%d] = %d\n", source, i, parent[i], dist[i]);

}
}

void main(){
int n;
printf("Enter the no. of nodes: ");
scanf("%d", &n);
int cost[n][n];
int dist[n];
int parent[n];
int visited[n];
int source;
printf("\nEnter the cost adjacency matrix:\n");
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d", &cost[i][j]);

printf("\nSelect Source man: ");
scanf("%d", &source);
for(int i=0;i<n;i++)
{
visited[i] = 0;
parent[i] = source;
dist[i] = cost[source][i];

}
visited[source] = 1;
dijkstra(n, cost, source, parent, visited, dist);

}

CI CCI HOD
--All the Best--

