USN

Internal Assessment Test 2 — July 2024

Sub: | ANALYSIS & DESIGN OF ALGORITHMS Sub Code: | BCS401 |Branch: | AIML/CSEAIML
Date: Duration: | 90 min Max Marks: | 50 Sem/Sec: IV-A,B,C OBE
Answer any FIVE FULL Questions MARKS | CO | RBT
What is Dynamic Programming? What are the various problems that can be
1]a) . . . 5 CO3| LI
solved using dynamic programming?
b) Mention the differences between Divide & Conquer and Dynamic Programming. 5 co3| L1
Explain the following with examples:
a) Complete Graph b) Directed Acyclic Graph ¢) Connected Graph
Write the adjacency matrix & the cost adjacency matrix of the following graph:
2 10 CO3| L2
What is Transitive Closure? Apply Warshall’s algorithm to compute transitive
closure of the digraph defined by the following adjacency matrix:
0 1 0 0
O | I B I 10 |Co3| L3
0 0 0 0
1 0 1 0
4 |Write a C program to implement Floyd’s algorithm. 10 CO3| L2
Write four spanning trees for the following graph. What is the cost of a Minimum
Spanning Tree and obtain using Prim’s algorithm?
5 10 CO4| L3
6 Write a C program to implement Dijkstra’s Algorithm to obtain single source 10 coa| 12
shortest paths to all other vertices.

CI CCI HOD
All the Best

USN

Internal Assessment Test 2 — July 2024

CMR INSTITUTE OF TECHNOLOGY, BENGALURIL.
ASCREDITED WITH A++ GRADE EY NAAC

Sub: | ANALYSIS & DESIGN OF ALGORITHMS Sub Code: | BCS401 |Branch: | AIML/CSEAIML
Date: 11/07/24 Duration: | 90 min Max Marks: | 50 Sem/Sec: IV-A,B,C OBE
Answer any FIVE FULL Questions MARKS | CO | RBT
What is Dynamic Programming? What are the various problems that can be
solved using dynamic programming?
Ans: Dynamic programming is a method of solving the problem with overlapping
subproblems. The method works by dividing the problem into subproblems and
finding the solution for the same. The solution of the subproblems are used to
obtain the solution for the problem. Once the sub-problem is solved, the answer is
1 |a)[stored in a table and is never recalculated. When an instance of the sub-problem 5 co3l| L1
occurs, the answer is retrieved from the table, saving time.
The various problems that uses dynamic programming are:
- Fibonacci series
- Computing binomial coefficient
- Warshal’s algorithm
- Knapsack problem
Mention the differences between Divide & Conquer and Dynamic Programming.
Ans:
DIVIDE & CONQUER DYNAMIC PROGRAMMING
Applicable when subproblems are Applicable when subproblems are not
b)| independent. independent. 5 CO3| LI
Subproblems are solved separately and | The original problem is solved by
combined to get the solution of the using the results of previous
original problem. subproblems.
Every instance of the subproblem is Only one instance of the subproblem is
recalculated. computed and stored.
Uses Top-Down approach. Uses Bottom-Up approach.

Not efficient. More efficient.

Explain the following with examples:
a) Complete Graph b) Directed Acyclic Graph c¢) Connected Graph

Write the adjacency matrix & the cost adjacency matrix of the following graph:
|'/THI'I
10 / [\E
/ \
I:I}f;\{——;}f;ﬂ\ll
N

Ans:

a) Complete Graph
A complete graph is a graph in which each vertex is connected to every other
vertex. That is, a complete graph is an undirected graph where every pair of

distinct vertices is connected by a unique edge.

Complete Graph

b) Directed Acyclic Graph
A DAG is a Directed Acyclic Graph, a type of graph whose nodes are

directionally related to each other and don’t form a directional closed loop.

c) Connected Graph
A graph is a connected graph if, for each pair of vertices, there exists at least one

single path which joins them.

10

CO3

L2

What is Transitive Closure? Apply Warshall’s algorithm to compute transitive
closure of the digraph defined by the following adjacency matrix:

0 1 0 0

0 0 0 1

0 0 0 0

1 0 1 0

Ans:
The transitive closure G* of a directed graph G is a graph that has an edge (u, v)
whenever G has a directed path from u to v.
Let G = (V, E) be a simple graph where V 1is the set of vertices and E is the set of
edges. Let N be the no. of vertices in graph G. The matrix P whose elements are
given by

P[i,j] = 1if thereis apath fromvertexito vertex j

P[i,j] = 0 Otherwise

is called path matrix or Transitive closure.

10

CO3

L3

-9

O

O

Q

@)

o O

A—c

b>c

e 7

doe

a—>d
b =>d

-5 d

o =d

ol
a A

Write a C program to implement Floyd’s algorithm.

Ans:
// C Program for Floyd Warshall Algorithm
#include <stdio.h>

// Number of vertices in the graph
#define V 4

/* Define Infinite as a large enough

value. This value will be used

for vertices not connected to each other */
#define INF 99999

// A function to print the solution matrix
void printSolution(int dist[][V]);

// Solves the all-pairs shortest path
// problem using Floyd Warshall algorithm

10

COo3

L2

void floydWarshall(int dist[][V])
{

inti,j, k;

/* Add all vertices one by one to
the set of intermediate vertices.
---> Before start of an iteration, we
have shortest distances between all
pairs of vertices such that the shortest
distances consider only the
vertices in set {0, 1, 2, .. k-1} as
intermediate vertices.
----> After the end of an iteration,
vertex no. k is added to the set of
intermediate vertices and the set
becomes {0, 1, 2, .. k} */
for (k=0; k <V; k++) {
// Pick all vertices as source one by one
for 1=0;1<V;itt+) {
// Pick all vertices as destination for the
// above picked source
for =0;j<V;j+t) {
/' If vertex k is on the shortest path from
//'1 to j, then update the value of
/1 dist[1][j]
if (dist[i][k] + dist[k][j] < dist[i][j])
dist[i][j] = dist[i][k] + dist[k][j];
}
§
}

// Print the shortest distance matrix
printSolution(dist);

}

/* A utility function to print solution */
void printSolution(int dist[][V])
{
printf(
"The following matrix shows the shortest distances"
" between every pair of vertices \n");
for (inti=0;1<V;it++) {
for (int j = 05 j < V; j++) {
if (dist[i][j] == INF)
printf("%7s", "INF");
else
printf("%7d", dist[i][j]);
h
printf("\n");
h
}

// driver's code
int main()

{

/* Let us create the following weighted graph

10
(0)---->(3)
N
5 |
| 1
Vo
(1)ere>(2)
3 %/

int graph[V][V] = { {0, 5, INF, 10 },
{ INF, 0, 3, INF },
{ INF, INF, 0, 1 },
{ INF, INF, INF, 0 } };

// Function call
floydWarshall(graph);
return O;

}

Write four spanning trees for the following graph. What is the cost of a Minimum
Spanning Tree and obtain using Prim’s algorithm?

Ans:

10

CO4

L3

qfver\ (] [V E) -

} w

| b e fn P SPMM'E? ik

Sal

=y

@'W“ L CLSOY?'H\IT\

SR TY) 70 S -Ve wbﬁi’*ﬂwa veder (v)

0 Fd at Un acﬁjaunf vevhtkes «‘{f v

8% QJ,Q.LCP Jon veatl wofth min P
contpurd wr mseaf i doee ot forrm
Csz,Q_I

SH : 'APOJ' Thoue qx wid wnlil ol pode wu

()'IP[]*(H:O

et and

SU (mbt’kmﬁ veaben =

adjacent verlion [Ta2 =100, 1oy =30
O)10 @
V = d) |-—>H :30

2->3=50 a-> 5 rH{o Ti“”

) 2,

V2H =30 >3 =50 ,.Q-é';T =49 ,, e =l

1

V:B ‘ 5—)5:@3(

I >4 = 30 a3 =0, £ 5,° 95 549 = 38

)
, ¢l Lomu ©4
Hexw we wcantt 3¢l V'(w) (VAR RS

(‘lj(\h'({ee .

¢ . [35¢ « a4
1Sy =30 X‘M;)'uhd) , 923750 & » 555,127 ’ }

(D *© 2

2 (5) 5
(® e

oo Tha .'
%2 ?;‘ﬂ)&))h’"ah\o') p\UU . DA o D wodiw oua
("LY/,Q,O’M § »

. - 0. « 0 -,) 6 T
T\\,«/\ T ot s gK)QAM% \‘NG l' Zzu/ﬁ g//}
cost = 10425415 420425 e
0
cont - 10S 7(_: A
' % [u
ALEORITHM prim e G B[t)) y e
I oire: JI\Q{,#\ (:I(Vl) AT ot | v
- 0_ Clincewemi 00 qn nAVY e (QT)

Write a C program to implement Dijkstra’s Algorithm to obtain single source
shortest paths to all other vertices.

Ans:
#include<stdio.h>
#include<stdlib.h>

void dijkstra(int n, int cost[n][n], int source, int parent[], int visited|], int dist[])
{
int min, u, v;
for(int i=0;i<n;i++){
if(i!=source){
min = 99;
u=-1;
for(int j=0;j<n;j++)
if(visited[j]==0){
if(dist[j]<min){
min = dist[j];
u=j
}
§
}
iflu==-1)
return;
visited[u] = 1;
for(v=0;v<n;v++){
if(visited[v]==0){

10

CO4

L2

if((dist[u]+cost[u][v]<dist[v]) && (cost[u][Vv]!=0)){
dist[v] = dist[u]+cost[u][Vv];
parent[v] = u;
b
§
b
h
}
for(int i=0;i<n;i++){
printf("\n%d -> %d with parent[%d] = %d\n", source, 1, parent[i], dist[i]);
}
b

void main(){
int n;
printf("Enter the no. of nodes: ");
scanf("%d", &n);
int cost[n][n];
int dist[n];
int parent[n];
int visited[n];
int source;
printf("\nEnter the cost adjacency matrix:\n");
for(int 1=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d", &cost[i][j]);
printf("\nSelect Source man: ");
scanf("%d", &source);
for(int i=0;i<n;i++)
{
visited[i] = 0;
parent[i] = source;
dist[i] = cost[source][i];
H
visited[source] = 1;
dijkstra(n, cost, source, parent, visited, dist);

Cl CCl

HOD

All the Best

