

USN

Internal Assessment Test 2 – JULY 2024

Sub: Natural Language Processing Sub Code: 21AI643 Branch: AIML

Date: 08/07/2024 Duration: 90 mins Max Marks: 50 Sem / Sec: VI / A OBE

Answer any FIVE FULL Questions MARKS CO RBT

1

What are the different steps used to achieve the goal of case annotation?

Case annotation is a crucial step in various fields such as law, medicine, and machine
learning, where it involves the detailed labeling and documentation of cases for analysis
and study.

Define Objectives and Scope:

 Determine the purpose of the annotation.
 Identify the specific cases to be annotated.
 Establish the criteria and guidelines for the annotation process.

Gather and Prepare Data:

 Collect relevant cases from various sources.
 Ensure data quality and consistency.
 Format the data appropriately for annotation (e.g., text, images, audio).

Develop Annotation Guidelines:

 Create detailed instructions for annotators to ensure consistency.
 Define categories, tags, or labels to be used.
 Provide examples and counterexamples.

Select and Train Annotators:

 Choose individuals with the necessary expertise.
 Train them on the annotation guidelines.
 Conduct pilot annotations to refine guidelines and ensure understanding.

Annotation Process:

 Assign cases to annotators.
 Annotators label and document the cases according to guidelines.
 Use annotation tools and software to facilitate the process.

Quality Control and Review:

 Implement inter-annotator agreement measures to check consistency.
 Conduct spot checks and audits of annotations.
 Provide feedback to annotators and make necessary corrections.

Data Integration and Analysis:

 Compile and integrate annotated cases into a central database.
 Analyze the annotated data to extract insights and patterns.

[10]

Description-

6

Examples-4

CO3 L2

 Use the annotated data for the intended purpose (e.g., training machine learning
models, legal case studies).

Documentation and Reporting:

 Document the entire annotation process.
 Report on the findings and outcomes of the annotation.
 Share insights with relevant stakeholders.

Continuous Improvement:

 Review and update guidelines based on feedback.
 Continuously monitor and improve the annotation process.
 Incorporate new cases and refine annotations as needed.

Examples:

Medical Field

Goal: To annotate medical images for a machine learning project to detect tumors.

1. Define Objectives and Scope:
o Objective: Develop a model to identify tumors in MRI scans.
o Scope: Annotate 1,000 MRI images.

2. Gather and Prepare Data:
o Collect MRI images from hospitals.
o Ensure images are in a compatible format (e.g., DICOM).

3. Develop Annotation Guidelines:
o Define categories like "tumor," "benign mass," and "normal tissue."
o Provide annotated examples of each category.

4. Select and Train Annotators:
o Choose radiologists and medical imaging specialists.
o Train them on the annotation tool and guidelines.

5. Annotation Process:
o Annotators label regions of interest in each MRI scan.
o Use specialized medical image annotation software.

6. Quality Control and Review:
o Check inter-annotator reliability.
o Review a subset of annotations for accuracy.

7. Data Integration and Analysis:
o Integrate annotations into a dataset.
o Use the dataset to train and validate the machine learning model.

8. Documentation and Reporting:
o Document the annotation process and guidelines.
o Report on the model's performance and findings.

9. Continuous Improvement:
o Refine guidelines based on new medical knowledge.
o Continuously improve the model with new data and annotations.

2 Write a short note on [10] CO3 L2

a. The shortest path hypothesis

b. Learning with dependency path.

The Shortest Path Hypothesis

The shortest path hypothesis is a concept often used in natural language processing (NLP)
and computational linguistics. It posits that the shortest syntactic or dependency path
between two entities in a sentence often contains the most relevant information about
their relationship. This hypothesis is based on the observation that the fewer intermediate
nodes or words there are between two entities, the more direct and meaningful their
connection is likely to be. By focusing on the shortest path, algorithms can efficiently
extract significant relationships and reduce the noise that might come from longer, less
direct paths.

For example, in a sentence like "The cat, which was sitting on the mat, chased the mouse,"
the shortest path between "cat" and "mouse" is directly through the verb "chased,"
bypassing the relative clause "which was sitting on the mat." This direct path captures the
primary action relationship between the entities.

Learning with Dependency Path

Learning with dependency paths is an approach in NLP where models are trained to
understand and utilize the syntactic structure of sentences to enhance their comprehension
and task performance. Dependency paths represent the grammatical relationships between
words in a sentence, forming a tree-like structure where nodes are words and edges
represent syntactic dependencies.

By incorporating these paths, machine learning models can:

1. Enhance Context Understanding: Dependency paths help models to capture the
context and relationships between words more effectively, improving tasks like
relation extraction, sentiment analysis, and named entity recognition.

2. Improve Feature Engineering: Dependency paths provide rich, structured features
that can be used in training machine learning algorithms, making them more robust
and accurate.

3. Reduce Complexity: Focusing on relevant dependency paths allows models to
ignore irrelevant parts of the sentence, reducing complexity and improving
efficiency.

For example, in relation extraction, understanding the dependency path between two
entities can help a model accurately determine how they are related. In the sentence "The
CEO of the company announced a new policy," the dependency path from "CEO" to "policy"
via "announced" helps in identifying the action taken by the CEO regarding the policy.

Steps to take features for supervised learning in relations between two named entities is

 The sequence of words between the new entities

 The part of speech tags of these words.

 Bag of words between the two words.

Sentence 1: “Rajesh is the owner of the company called, Seeland”
Sentence 2: "Reeta owns the black building called Heena”
From these two sentences, the vocabulary is as follows, assuming stop-words (ie, the, is, of,
etc.) are

Desc &

examples

a-5

b-5

removed, and that you split the sentence into individual tokens:
vocabulary = {owner, company, called, owns, black, building}
By using the raw frequency of each word or any standard approach find the vectors related
to a
sentence:
Sentence 1: {1, 1, 1, 0, 0, 0}
Sentence 2: {0, 0, 1, 1, 1, 1}

3

Write a python code on Functional overview of In-Fact System using COVID-19

Tracking System

Infact consists of an indexing and a search module. With reference to the given figure
indexing
pertains to the processing flow on the bottom of the diagram. InFact models text as a
complex
multivariate object using a unique combination of deep parsing, linguistic normalization,
and
efficient storage. The storage schema addresses the fundamental difficulty of reducing
information
contained in parse trees into generalized data structures that can be queried dynamically.
In
addition, InFact handles the problem of linguistic variation by mapping complex linguistic
structures
into semantic and syntactic equivalents. This representation supports dynamic relationship
and
event search, information extraction and pattern matching from large document collections
in real
time.

Document Processing:

 The first step in document processing is format conversion, which is handled through

native

 [10]

Description-

4

diagram-4

psuedocode

-2

CO3 L3

format converters which can convert 370 different input file types.

 Customized document parsers address the issue that a Webpage may not be the basic

unit
of content, but it may consist of separate sections with an associated set of relationships
and
metadata.
o For instance a blog post may contain blocks of text with different dates and topics.
o The challenge is to automatically recognize variations from a common style
template, and segment information in the index to match zones in the source
documents, so the relevant section can be displayed in response to a query.

 Next we apply logic for sentence splitting in preparation for clause processing.

 Last, we extract morphological stems and compute frequency counts, which are then

entered in the index.
Clause Processing:
• The indexing service takes the output of the sentence splitter and feeds it to a deep
linguistic
parser.

 Indices are created automatically, without using predefined extraction rules, and it

captures all
information, not just predefined patterns. The parser performs a full constituency and

dependency analysis, extracting part-of-speech (POS) tags and grammatical roles for all
tokens in
every clause.

 Next it captures inter-clause links, through:

o Explicit tagging of conjunction or pronouns that provide the link between the syntactic
structures for two adjacent clauses in the same sentence.
o Pointing to the list of annotated keywords in the antecedent and following sentence.
Linguistic Normalization:

 Apply normalization rules at the syntactic, semantic, or even pragmatic level.

 Our approach to coreferencing and anaphora resolution make use of syntactic

agreement
and/or binding theory constraints.

 Binding theory places syntactic restrictions on the possible coreference relationships

between pronouns and their antecedents.
o Example:

 "John works by himself," "himself" must refer to John.

 "John bought him a new car," "him" must refer to some other individual

mentioned in a previous sentence.

 ""You have not been sending money," John said in a recent call to his wife

from Germany, "binding theory constraints limit pronoun resolution to first
and second. persons within a quotation (e.g., you)

 Referencing and anaphora resolution models also benefit from preferential weighting

based
on dependency attributes.

 Apply a transformational grammar to map multiple surface structures into an equivalent

deep structure.

 A common example is the normalization of a dependency structure involving a passive

verb

form into the active, and recognition of the deep subject of such clause.

 At the more pragmatic level, apply rules to normalize composite verb expressions,

capture
explicit and implicit negations, or to verbalize noun or adjectives

 For instance, the sentences "Bill did not visit Jane," which contains an explicit negation,

and
"Bill failed to visit Jane, where the negation is rendered by a composite verb expression, are
mapped to the same structure.
import datetime

class COVID19TrackingSystem:

 def __init__(self):

 self.cases = []

 self.vaccination_records = []

 self.reports = []

 def add_case(self, case_id, date_reported, location, status):

 case = {

 'case_id': case_id,

 'date_reported': date_reported,

 'location': location,

 'status': status

 }

 self.cases.append(case)

 def add_vaccination_record(self, record_id, person_id, date_vaccinated,

vaccine_type):

 record = {

 'record_id': record_id,

 'person_id': person_id,

 'date_vaccinated': date_vaccinated,

 'vaccine_type': vaccine_type

 }

 self.vaccination_records.append(record)

 def generate_report(self, report_date):

 total_cases = len(self.cases)

 total_vaccinated = len(self.vaccination_records)

 active_cases = len([case for case in self.cases if case['status'] == 'active'])

 recovered_cases = len([case for case in self.cases if case['status'] ==

'recovered'])

 deaths = len([case for case in self.cases if case['status'] == 'deceased'])

 report = {

 'report_date': report_date,

 'total_cases': total_cases,

 'total_vaccinated': total_vaccinated,

 'active_cases': active_cases,

 'recovered_cases': recovered_cases,

 'deaths': deaths

 }

 self.reports.append(report)

 return report

 def display_report(self, report):

 print("COVID-19 Report as of", report['report_date'])

 print("Total Cases:", report['total_cases'])

 print("Total Vaccinated:", report['total_vaccinated'])

 print("Active Cases:", report['active_cases'])

 print("Recovered Cases:", report['recovered_cases'])

 print("Deaths:", report['deaths'])

Example Usage

if __name__ == "__main__":

 system = COVID19TrackingSystem()

 # Adding COVID-19 cases

 system.add_case(1, datetime.date(2023, 7, 1), 'New York', 'active')

 system.add_case(2, datetime.date(2023, 7, 2), 'California', 'recovered')

 system.add_case(3, datetime.date(2023, 7, 3), 'Texas', 'deceased')

 system.add_case(4, datetime.date(2023, 7, 4), 'Florida', 'active')

 # Adding Vaccination Records

 system.add_vaccination_record(1, 'person_1', datetime.date(2023, 6, 1), 'Pfizer')

 system.add_vaccination_record(2, 'person_2', datetime.date(2023, 6, 2),

'Moderna')

 system.add_vaccination_record(3, 'person_3', datetime.date(2023, 6, 3), 'Johnson

& Johnson')

 # Generating and displaying report

 report = system.generate_report(datetime.date(2023, 7, 5))

 system.display_report(report)

 COVID19TrackingSystem Class: This class handles the tracking of COVID-19 cases and
vaccination records. It also generates reports based on the data.

 add_case Method: Adds a new COVID-19 case to the system with details such as case ID,
date reported, location, and status (e.g., active, recovered, deceased).

 add_vaccination_record Method: Adds a new vaccination record with details such as
record ID, person ID, date vaccinated, and vaccine type.

 generate_report Method: Generates a report that summarizes the total number of cases,
total vaccinated, active cases, recovered cases, and deaths as of a given date.

 display_report Method: Displays the generated report in a readable format.

4

a. Write an algorithm for the functioning of word matching feedback system used

 in ISTART.

b. Write a note on various approaches to analyzing texts with examples.

[10]

a)Desc- &

examples-3

Algorithm-2

CO4 L3

 iSTART (Interactive Strategy Training for Active Reading and Thinking) is an
intelligent tutoring system designed to help students improve their reading
comprehension skills. A word matching feedback system in iSTART can provide
immediate feedback to users based on their input. Here’s an algorithm for such a
system:

Algorithm: Word Matching Feedback System

1. Input:
o User input text (user_text)
o Reference text (reference_text)

2. Preprocessing:
o Tokenize user_text and reference_text into words.
o Convert all tokens to lowercase to ensure case insensitivity.
o Remove any punctuation or special characters from the tokens.

3. Word Matching:
o Initialize an empty list feedback to store feedback messages.
o For each word in the reference_text tokens:

 Check if the word exists in the user_text tokens.
 If the word exists, append a positive feedback message to

feedback.
 If the word does not exist, append a corrective feedback message

to feedback.
4. Additional Feedback (Optional):

o Calculate the similarity score between user_text and reference_text
using a similarity metric (e.g., cosine similarity, Jaccard similarity).

o Provide additional feedback based on the similarity score (e.g., overall
similarity percentage, areas for improvement).

5. Output:
o Return or display the feedback list to the user.

Psuedocode

def word_matching_feedback_system(user_text, reference_text):

 # Preprocessing

 user_tokens = preprocess_text(user_text)

 reference_tokens = preprocess_text(reference_text)

 # Word Matching

 feedback = []

 for word in reference_tokens:

 if word in user_tokens:

 feedback.append(f"Good job! You used the word '{word}'.")

 else:

 feedback.append(f"Try to include the word '{word}'.")

 # Additional Feedback (Optional)

 similarity_score = calculate_similarity(user_text, reference_text)

 feedback.append(f"Overall similarity score: {similarity_score:.2f}")

 return feedback

def preprocess_text(text):

 # Tokenize, convert to lowercase, and remove punctuation

b) Desc &

examples-3

psuedocode

-2

 tokens = text.lower().split()

 tokens = [token.strip('.,!?') for token in tokens]

 return tokens

def calculate_similarity(text1, text2):

 # Calculate similarity score between two texts (e.g., using cosine similarity)

 # This is a placeholder implementation

 return 0.85 # Example similarity score

Example Usage

user_text = "The cat chased the mouse."

reference_text = "The cat was chasing a mouse."

feedback = word_matching_feedback_system(user_text, reference_text)

for message in feedback:

 print(message)

b)Approaches to Analyzing Texts with Examples

 Statistical Methods:

 Word Frequency Analysis: Counting the occurrence of each word in a text.
Commonly used to identify key themes or topics.

o Example: Analyzing the frequency of words in a political speech to identify
the main issues discussed.

 N-gram Analysis: Examining contiguous sequences of n items (words) in a text.
Useful for understanding common phrases or collocations.

o Example: Using bigrams (2-grams) to study common two-word phrases in
customer reviews.

 Rule-Based Methods:

 Regular Expressions: Using pattern matching to identify specific text patterns.
Useful for tasks like extracting dates, email addresses, or specific keywords.

o Example: Extracting phone numbers from a document using regular
expressions.

 Part-of-Speech (POS) Tagging: Assigning POS tags to each word in a text to
understand the grammatical structure. Useful for syntactic analysis.

o Example: Identifying all nouns and verbs in a sentence to understand its
structure.

 Machine Learning Approaches:

 Text Classification: Using algorithms to classify text into predefined categories.
Useful for tasks like spam detection, sentiment analysis, and topic categorization.

o Example: Classifying movie reviews as positive or negative using a trained
machine learning model.

 Named Entity Recognition (NER): Identifying and classifying named entities (e.g.,
persons, organizations, locations) in a text.

o Example: Extracting names of companies and locations from news articles.

 Deep Learning Approaches:

 Recurrent Neural Networks (RNNs): Using RNNs and their variants (e.g., LSTM,

GRU) for sequence modeling. Effective for tasks like language modeling and text
generation.

o Example: Generating text that mimics the style of a given author using an
LSTM network.

 Transformers: Leveraging transformer models (e.g., BERT, GPT) for various NLP
tasks. These models have achieved state-of-the-art performance in many text
analysis tasks.

o Example: Using BERT for question answering, where the model finds
answers to questions based on a given text.

 Hybrid Approaches:

 Combining rule-based methods with machine learning techniques to leverage the
strengths of both.

o Example: Using regular expressions to extract candidate entities from a
text, followed by a machine learning model to classify and refine these
entities.

5

Briefly describe LSA feedback systems. Mention four benchmarks used by LSA to

Assess the level of an explanation.

Latent Semantic Analysis (LSA) is a technique in natural language processing that analyzes
relationships between a set of documents and the terms they contain by producing a set of
concepts related to the documents and terms. LSA feedback systems leverage this
technique to provide feedback on textual content, such as student essays, explanations, or
responses, by assessing the semantic content and coherence of the text. The system
compares the semantic similarity between a student's text and a set of reference texts or
ideal answers to provide meaningful feedback.

How LSA Feedback Systems Work

1. Text Representation: Convert the text into a term-document matrix, where rows
represent terms and columns represent documents.

2. Dimensionality Reduction: Apply Singular Value Decomposition (SVD) to reduce the
dimensions of the matrix, capturing the most significant patterns in the data.

3. Semantic Space: Represent both the student's text and the reference texts in the
same reduced-dimensional semantic space.

4. Similarity Measurement: Compute the cosine similarity between the student's text
and reference texts to determine how closely they match in terms of semantic
content.

5. Feedback Generation: Provide feedback based on the similarity scores, highlighting
areas of strength and suggestions for improvement.

Four Benchmarks Used by LSA to Assess the Level of an Explanation

1. Cosine Similarity to Reference Texts:
o Measure the cosine similarity between the student's explanation and a set

of reference explanations. A higher similarity score indicates that the
student's text closely matches the content and context of the reference

[10]

Desc-5

Examples-2

CO4 L2

texts.
2. Coverage of Key Concepts:

o Assess whether the student's explanation includes key concepts and terms
that are present in the reference texts. LSA can identify whether important
ideas are missing or if unnecessary information is included.

3. Coherence and Structure:
o Evaluate the coherence of the student's explanation by analyzing the

overall structure and flow of the text. LSA can help identify if the
explanation follows a logical sequence and maintains thematic consistency.

4. Comparison with Exemplars:
o Compare the student's explanation with high-quality exemplar texts. By

calculating the similarity scores to these exemplars, LSA can provide
feedback on how closely the student's explanation aligns with well-written
examples.

Example Usage in Education

In an educational setting, LSA feedback systems can be used to automatically grade essays
or provide formative feedback to students. For instance, a student's essay on climate
change could be compared to a set of high-quality essays on the same topic. The system
would analyze the semantic content, check for the presence of key concepts like "global
warming," "carbon emissions," and "renewable energy," and provide feedback on areas
where the student's essay deviates from the ideal explanations.

FUNCTION LSA_Feedback_System(student_text, reference_texts, exemplar_texts):

 # Step 1: Preprocessing

 student_terms = preprocess_text(student_text)

 reference_terms = [preprocess_text(ref) for ref in reference_texts]

 exemplar_terms = [preprocess_text(exemplar) for exemplar in exemplar_texts]

 # Step 2: Construct Term-Document Matrix

 term_document_matrix = create_term_document_matrix(student_terms,

reference_terms + exemplar_terms)

 # Step 3: Apply Singular Value Decomposition (SVD)

 U, S, Vt = apply_SVD(term_document_matrix)

 # Step 4: Represent Texts in Semantic Space

 student_vector = project_into_semantic_space(student_terms, U, S)

 reference_vectors = [project_into_semantic_space(ref, U, S) for ref in

reference_terms]

 exemplar_vectors = [project_into_semantic_space(exemplar, U, S) for exemplar in

exemplar_terms]

 # Step 5: Calculate Cosine Similarities

 reference_similarities = [cosine_similarity(student_vector, ref_vector) for ref_vector

in reference_vectors]

 exemplar_similarities = [cosine_similarity(student_vector, exemplar_vector) for

exemplar_vector in exemplar_vectors]

 # Step 6: Evaluate Key Concept Coverage

 key_concepts = extract_key_concepts(reference_terms)

 coverage_score = evaluate_coverage(student_terms, key_concepts)

 # Step 7: Evaluate Coherence and Structure (Optional: Simple Heuristic)

 coherence_score = evaluate_coherence(student_text)

 # Step 8: Generate Feedback

 feedback = []

 feedback.append("Similarity to Reference Texts: " + average(reference_similarities))

 feedback.append("Similarity to Exemplars: " + average(exemplar_similarities))

 feedback.append("Coverage of Key Concepts: " + coverage_score)

 feedback.append("Coherence and Structure: " + coherence_score)

 RETURN feedback

FUNCTION preprocess_text(text):

 # Tokenize, convert to lowercase, and remove punctuation

 tokens = tokenize(text)

 tokens = to_lowercase(tokens)

 tokens = remove_punctuation(tokens)

 RETURN tokens

FUNCTION create_term_document_matrix(student_terms, all_terms):

 # Create a matrix where rows are terms and columns are documents

 matrix = initialize_matrix(student_terms, all_terms)

 RETURN matrix

FUNCTION apply_SVD(matrix):

 # Apply Singular Value Decomposition

 U, S, Vt = svd(matrix)

 RETURN U, S, Vt

FUNCTION project_into_semantic_space(terms, U, S):

 # Project terms into the reduced-dimensional semantic space

 vector = project(terms, U, S)

 RETURN vector

FUNCTION cosine_similarity(vector1, vector2):

 # Calculate cosine similarity between two vectors

 similarity = dot_product(vector1, vector2) / (magnitude(vector1) *

magnitude(vector2))

 RETURN similarity

FUNCTION extract_key_concepts(reference_terms):

 # Extract key concepts from reference terms

 key_concepts = identify_key_concepts(reference_terms)

 RETURN key_concepts

FUNCTION evaluate_coverage(student_terms, key_concepts):

 # Evaluate the coverage of key concepts in the student terms

 coverage = calculate_coverage(student_terms, key_concepts)

 RETURN coverage

FUNCTION evaluate_coherence(text):

 # Simple heuristic to evaluate coherence (e.g., sentence structure)

 coherence = check_coherence(text)

 RETURN coherence

FUNCTION average(similarities):

 # Calculate average similarity score

 avg_score = sum(similarities) / len(similarities)

 RETURN avg_score

Example Usage

student_text = "The cat chased the mouse."

reference_texts = ["A cat is chasing a mouse.", "The mouse was chased by the cat."]

exemplar_texts = ["Cats often chase mice.", "In many stories, cats chase mice."]

feedback = LSA_Feedback_System(student_text, reference_texts, exemplar_texts)

FOR message IN feedback:

 PRINT message

 Preprocessing: Tokenizes the input text, converts it to lowercase, and removes
punctuation.

 Term-Document Matrix: Constructs a matrix representing the term frequencies in the
documents.

 SVD Application: Applies Singular Value Decomposition (SVD) to reduce the dimensions
of the term-document matrix.

 Semantic Space Projection: Projects the terms into the reduced-dimensional semantic
space.

 Cosine Similarities: Calculates cosine similarity between the student's vector and both
reference and exemplar vectors.

 Key Concept Coverage: Evaluates if the student's text covers key concepts present in the
reference texts.

 Coherence and Structure: Uses a simple heuristic to evaluate the coherence and
structure of the student's text.

 Feedback Generation: Generates feedback based on similarity scores, key concept

coverage, and coherence.

6

a.Explain in detail the high-level representation approaches in text mining

b. Explain document separation as a sequence mapping problem

High-Level Representation Approaches in Text Mining

Text mining involves the extraction of meaningful information from text. To do this
effectively, various high-level representation approaches are used to convert unstructured
text into structured forms that can be analyzed. Here are some prominent high-level
representation approaches in text mining:

1. Bag-of-Words (BoW):
o Description: BoW represents a text as a collection of its words, disregarding

grammar and word order but keeping multiplicity.
o Example: For the sentences "The cat sat on the mat" and "The dog sat on

the mat," BoW representation would count the frequency of each word in a
fixed vocabulary.

o Advantages: Simple and easy to implement; useful for tasks like document
classification.

o Disadvantages: Ignores the order and context of words, which can be
crucial for understanding meaning.

2. TF-IDF (Term Frequency-Inverse Document Frequency):
o Description: Enhances the BoW model by weighing the frequency of a word

in a document against its frequency across all documents.
o Example: Words that appear frequently in one document but not in many

others are given higher weights.
o Advantages: Reduces the impact of common words that are less

informative.
o Disadvantages: Still ignores the context and sequence of words.

3. Word Embeddings:
o Description: Uses dense vector representations for words, capturing

semantic meanings based on context.
o Examples: Word2Vec, GloVe, FastText.
o Advantages: Captures semantic relationships between words (e.g., "king" is

[10]

a-dec &

examples-5

CO4 L2

to "queen" as "man" is to "woman").
o Disadvantages: Requires significant computational resources for training;

may capture biases present in training data.
4. Document Embeddings:

o Description: Extends word embeddings to whole documents, capturing the
overall meaning.

o Examples: Doc2Vec, InferSent, Universal Sentence Encoder.
o Advantages: Useful for tasks like document classification, clustering, and

sentiment analysis.
o Disadvantages: More complex to train than word embeddings.

5. Topic Modeling:
o Description: Identifies topics present in a collection of documents.
o Examples: Latent Dirichlet Allocation (LDA), Non-negative Matrix

Factorization (NMF).
o Advantages: Helps in understanding the main themes and topics within

large corpora.
o Disadvantages: Requires careful tuning and interpretation; topics may not

always be easily interpretable.
6. Latent Semantic Analysis (LSA):

o Description: Reduces dimensions of the term-document matrix using
Singular Value Decomposition (SVD), capturing latent semantic structures.

o Advantages: Captures the underlying relationships between terms and
documents.

o Disadvantages: Can be computationally expensive; may not handle
polysemy (multiple meanings) well.

7. Transformers and Contextual Representations:
o Description: Uses transformer models to create contextualized word

representations, where the meaning of a word is determined by its context
in the sentence.

o Examples: BERT, GPT, RoBERTa.
o Advantages: State-of-the-art performance in many NLP tasks; captures

deep semantic meaning and context.
o Disadvantages: Highly computationally intensive; requires large datasets

for training.

Document Separation as a Sequence Mapping Problem

Document separation involves dividing a continuous stream of text into distinct documents.
This can be approached as a sequence mapping problem, where the task is to map a
sequence of input text into sequences representing individual documents.

Steps in Document Separation as a Sequence Mapping Problem

1. Input Sequence:
o The input is a continuous stream of text, such as a long transcript, email

thread, or concatenated document file.
2. Feature Extraction:

o Extract features that help in identifying boundaries between documents.
Features can include:

 Textual markers (e.g., titles, headers, signatures).
 Metadata (e.g., timestamps, authorship information).
 Content features (e.g., abrupt topic changes, specific keywords).

3. Sequence Labeling:
o Treat the problem as a sequence labeling task, where each token (or

b-Dec&

psuedocode

-5

character) in the input sequence is labeled as either part of a document or
a boundary.

o Labels can be binary (boundary/non-boundary) or categorical (types of
boundaries).

4. Model Selection:
o Use models that are effective in sequence mapping and labeling, such as:

 Hidden Markov Models (HMMs): Probabilistic models that capture
the likelihood of transitions between states (e.g., from inside a
document to a boundary).

 Conditional Random Fields (CRFs): Discriminative models that
consider the entire sequence for labeling, effective for capturing
context.

 Recurrent Neural Networks (RNNs): Neural networks designed for
sequence data, capturing dependencies over time.

 Transformers: Models that handle long-range dependencies and
context, suitable for processing long texts.

5. Training:
o Train the chosen model on annotated data, where boundaries between

documents are labeled. The model learns to recognize patterns indicative
of document boundaries.

6. Prediction:
o Apply the trained model to new, unlabeled sequences of text. The model

predicts boundaries, effectively splitting the text into distinct documents.
7. Post-processing:

o Refine the predicted boundaries based on additional rules or heuristics to
ensure logical separation of documents.

Subject: Meeting Agenda

Hi team,

Please find the agenda for our meeting attached.

Best,

John

---Original Message---

Subject: Re: Project Update

Hi John,

Thanks for the update.

Best,

Alice

1. Feature Extraction:
o Identify features like "Subject:", "---Original Message---", "Best," as

potential boundaries.
2. Sequence Labeling:

o Label tokens or characters as document parts or boundaries based on these
features.

3. Model:
o Use a CRF model trained on similar email threads to predict the boundaries.

4. Prediction and Post-processing:
o Apply the model to label and split the email thread into individual emails.

This approach ensures accurate and automated document separation, which is crucial for

organizing, indexing, and retrieving information from large, unstructured text streams.

CI CCI HOD-AIML

