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Sub: Natural Language Processing Sub Code: 21AI643 Branch: AIML 

Date: 08/07/2024 Duration: 90 mins Max Marks: 50 Sem / Sec: VI / A  OBE 

Answer any FIVE FULL Questions MARKS CO RBT 

1 

What are the different steps used to achieve the goal of case annotation? 

 
Case annotation is a crucial step in various fields such as law, medicine, and machine 
learning, where it involves the detailed labeling and documentation of cases for analysis 
and study. 

Define Objectives and Scope: 

 Determine the purpose of the annotation. 
 Identify the specific cases to be annotated. 
 Establish the criteria and guidelines for the annotation process. 

Gather and Prepare Data: 

 Collect relevant cases from various sources. 
 Ensure data quality and consistency. 
 Format the data appropriately for annotation (e.g., text, images, audio). 

Develop Annotation Guidelines: 

 Create detailed instructions for annotators to ensure consistency. 
 Define categories, tags, or labels to be used. 
 Provide examples and counterexamples. 

Select and Train Annotators: 

 Choose individuals with the necessary expertise. 
 Train them on the annotation guidelines. 
 Conduct pilot annotations to refine guidelines and ensure understanding. 

Annotation Process: 

 Assign cases to annotators. 
 Annotators label and document the cases according to guidelines. 
 Use annotation tools and software to facilitate the process. 

Quality Control and Review: 

 Implement inter-annotator agreement measures to check consistency. 
 Conduct spot checks and audits of annotations. 
 Provide feedback to annotators and make necessary corrections. 

Data Integration and Analysis: 

 Compile and integrate annotated cases into a central database. 
 Analyze the annotated data to extract insights and patterns. 
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 Use the annotated data for the intended purpose (e.g., training machine learning 
models, legal case studies). 

Documentation and Reporting: 

 Document the entire annotation process. 
 Report on the findings and outcomes of the annotation. 
 Share insights with relevant stakeholders. 

Continuous Improvement: 

 Review and update guidelines based on feedback. 
 Continuously monitor and improve the annotation process. 
 Incorporate new cases and refine annotations as needed. 

Examples: 

Medical Field 

Goal: To annotate medical images for a machine learning project to detect tumors. 

1. Define Objectives and Scope: 
o Objective: Develop a model to identify tumors in MRI scans. 
o Scope: Annotate 1,000 MRI images. 

2. Gather and Prepare Data: 
o Collect MRI images from hospitals. 
o Ensure images are in a compatible format (e.g., DICOM). 

3. Develop Annotation Guidelines: 
o Define categories like "tumor," "benign mass," and "normal tissue." 
o Provide annotated examples of each category. 

4. Select and Train Annotators: 
o Choose radiologists and medical imaging specialists. 
o Train them on the annotation tool and guidelines. 

5. Annotation Process: 
o Annotators label regions of interest in each MRI scan. 
o Use specialized medical image annotation software. 

6. Quality Control and Review: 
o Check inter-annotator reliability. 
o Review a subset of annotations for accuracy. 

7. Data Integration and Analysis: 
o Integrate annotations into a dataset. 
o Use the dataset to train and validate the machine learning model. 

8. Documentation and Reporting: 
o Document the annotation process and guidelines. 
o Report on the model's performance and findings. 

9. Continuous Improvement: 
o Refine guidelines based on new medical knowledge. 
o Continuously improve the model with new data and annotations. 
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a. The shortest path hypothesis 

b. Learning with dependency path. 

 
The Shortest Path Hypothesis 

The shortest path hypothesis is a concept often used in natural language processing (NLP) 
and computational linguistics. It posits that the shortest syntactic or dependency path 
between two entities in a sentence often contains the most relevant information about 
their relationship. This hypothesis is based on the observation that the fewer intermediate 
nodes or words there are between two entities, the more direct and meaningful their 
connection is likely to be. By focusing on the shortest path, algorithms can efficiently 
extract significant relationships and reduce the noise that might come from longer, less 
direct paths. 

For example, in a sentence like "The cat, which was sitting on the mat, chased the mouse," 
the shortest path between "cat" and "mouse" is directly through the verb "chased," 
bypassing the relative clause "which was sitting on the mat." This direct path captures the 
primary action relationship between the entities. 

Learning with Dependency Path 

Learning with dependency paths is an approach in NLP where models are trained to 
understand and utilize the syntactic structure of sentences to enhance their comprehension 
and task performance. Dependency paths represent the grammatical relationships between 
words in a sentence, forming a tree-like structure where nodes are words and edges 
represent syntactic dependencies. 

By incorporating these paths, machine learning models can: 

1. Enhance Context Understanding: Dependency paths help models to capture the 
context and relationships between words more effectively, improving tasks like 
relation extraction, sentiment analysis, and named entity recognition. 

2. Improve Feature Engineering: Dependency paths provide rich, structured features 
that can be used in training machine learning algorithms, making them more robust 
and accurate. 

3. Reduce Complexity: Focusing on relevant dependency paths allows models to 
ignore irrelevant parts of the sentence, reducing complexity and improving 
efficiency. 

For example, in relation extraction, understanding the dependency path between two 
entities can help a model accurately determine how they are related. In the sentence "The 
CEO of the company announced a new policy," the dependency path from "CEO" to "policy" 
via "announced" helps in identifying the action taken by the CEO regarding the policy. 

Steps to take features for supervised learning in relations between two named entities is 

 The sequence of words between the new entities 

 The part of speech tags of these words. 

 Bag of words between the two words. 

Sentence 1: “Rajesh is the owner of the company called, Seeland” 
Sentence 2: "Reeta owns the black building called Heena” 
From these two sentences, the vocabulary is as follows, assuming stop-words (ie, the, is, of, 
etc.) are 
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removed, and that you split the sentence into individual tokens: 
vocabulary = {owner, company, called, owns, black, building} 
By using the raw frequency of each word or any standard approach find the vectors related 
to a 
sentence: 
Sentence 1: {1, 1, 1, 0, 0, 0} 
Sentence 2: {0, 0, 1, 1, 1, 1} 

 

 

3 

Write a python code on Functional overview of In-Fact System using COVID-19 

Tracking System 

 
Infact consists of an indexing and a search module. With reference to the given figure 
indexing 
pertains to the processing flow on the bottom of the diagram. InFact models text as a 
complex 
multivariate object using a unique combination of deep parsing, linguistic normalization, 
and 
efficient storage. The storage schema addresses the fundamental difficulty of reducing 
information 
contained in parse trees into generalized data structures that can be queried dynamically. 
In 
addition, InFact handles the problem of linguistic variation by mapping complex linguistic 
structures 
into semantic and syntactic equivalents. This representation supports dynamic relationship 
and 
event search, information extraction and pattern matching from large document collections 
in real 
time. 

 
 
Document Processing: 

 The first step in document processing is format conversion, which is handled through 

native 
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format converters which can convert 370 different input file types. 

 Customized document parsers address the issue that a Webpage may not be the basic 

unit 
of content, but it may consist of separate sections with an associated set of relationships 
and 
metadata. 
o For instance a blog post may contain blocks of text with different dates and topics. 
o The challenge is to automatically recognize variations from a common style 
template, and segment information in the index to match zones in the source 
documents, so the relevant section can be displayed in response to a query. 

 Next we apply logic for sentence splitting in preparation for clause processing. 

 Last, we extract morphological stems and compute frequency counts, which are then 

entered in the index. 
Clause Processing: 
• The indexing service takes the output of the sentence splitter and feeds it to a deep 
linguistic 
parser. 

 Indices are created automatically, without using predefined extraction rules, and it 

captures all 
information, not just predefined patterns. The parser performs a full constituency and 
 
dependency analysis, extracting part-of-speech (POS) tags and grammatical roles for all 
tokens in 
every clause. 

 Next it captures inter-clause links, through: 

o Explicit tagging of conjunction or pronouns that provide the link between the syntactic 
structures for two adjacent clauses in the same sentence. 
o Pointing to the list of annotated keywords in the antecedent and following sentence. 
Linguistic Normalization: 

 Apply normalization rules at the syntactic, semantic, or even pragmatic level. 

 Our approach to coreferencing and anaphora resolution make use of syntactic 

agreement 
and/or binding theory constraints. 

 Binding theory places syntactic restrictions on the possible coreference relationships 

between pronouns and their antecedents. 
o Example: 

 "John works by himself," "himself" must refer to John. 

 "John bought him a new car," "him" must refer to some other individual 

mentioned in a previous sentence. 

 ""You have not been sending money," John said in a recent call to his wife 

from Germany, "binding theory constraints limit pronoun resolution to first 
and second. persons within a quotation (e.g., you) 

 Referencing and anaphora resolution models also benefit from preferential weighting 

based 
on dependency attributes. 

 Apply a transformational grammar to map multiple surface structures into an equivalent 

deep structure. 

 A common example is the normalization of a dependency structure involving a passive 

verb 



 

form into the active, and recognition of the deep subject of such clause. 

 At the more pragmatic level, apply rules to normalize composite verb expressions, 

capture 
explicit and implicit negations, or to verbalize noun or adjectives 

 For instance, the sentences "Bill did not visit Jane," which contains an explicit negation, 

and 
"Bill failed to visit Jane, where the negation is rendered by a composite verb expression, are 
mapped to the same structure. 
import datetime 

 

class COVID19TrackingSystem: 

    def __init__(self): 

        self.cases = [] 

        self.vaccination_records = [] 

        self.reports = [] 

 

    def add_case(self, case_id, date_reported, location, status): 

        case = { 

            'case_id': case_id, 

            'date_reported': date_reported, 

            'location': location, 

            'status': status 

        } 

        self.cases.append(case) 

 

    def add_vaccination_record(self, record_id, person_id, date_vaccinated, 

vaccine_type): 

        record = { 

            'record_id': record_id, 

            'person_id': person_id, 

            'date_vaccinated': date_vaccinated, 

            'vaccine_type': vaccine_type 

        } 

        self.vaccination_records.append(record) 

 

    def generate_report(self, report_date): 

        total_cases = len(self.cases) 

        total_vaccinated = len(self.vaccination_records) 

        active_cases = len([case for case in self.cases if case['status'] == 'active']) 

        recovered_cases = len([case for case in self.cases if case['status'] == 

'recovered']) 

        deaths = len([case for case in self.cases if case['status'] == 'deceased']) 

 

        report = { 

            'report_date': report_date, 

            'total_cases': total_cases, 

            'total_vaccinated': total_vaccinated, 

            'active_cases': active_cases, 

            'recovered_cases': recovered_cases, 

            'deaths': deaths 

        } 

        self.reports.append(report) 



 

        return report 

 

    def display_report(self, report): 

        print("COVID-19 Report as of", report['report_date']) 

        print("Total Cases:", report['total_cases']) 

        print("Total Vaccinated:", report['total_vaccinated']) 

        print("Active Cases:", report['active_cases']) 

        print("Recovered Cases:", report['recovered_cases']) 

        print("Deaths:", report['deaths']) 

 

# Example Usage 

if __name__ == "__main__": 

    system = COVID19TrackingSystem() 

     

    # Adding COVID-19 cases 

    system.add_case(1, datetime.date(2023, 7, 1), 'New York', 'active') 

    system.add_case(2, datetime.date(2023, 7, 2), 'California', 'recovered') 

    system.add_case(3, datetime.date(2023, 7, 3), 'Texas', 'deceased') 

    system.add_case(4, datetime.date(2023, 7, 4), 'Florida', 'active') 

 

    # Adding Vaccination Records 

    system.add_vaccination_record(1, 'person_1', datetime.date(2023, 6, 1), 'Pfizer') 

    system.add_vaccination_record(2, 'person_2', datetime.date(2023, 6, 2), 

'Moderna') 

    system.add_vaccination_record(3, 'person_3', datetime.date(2023, 6, 3), 'Johnson 

& Johnson') 

 

    # Generating and displaying report 

    report = system.generate_report(datetime.date(2023, 7, 5)) 

    system.display_report(report) 

 

  COVID19TrackingSystem Class: This class handles the tracking of COVID-19 cases and 
vaccination records. It also generates reports based on the data. 

  add_case Method: Adds a new COVID-19 case to the system with details such as case ID, 
date reported, location, and status (e.g., active, recovered, deceased). 

  add_vaccination_record Method: Adds a new vaccination record with details such as 
record ID, person ID, date vaccinated, and vaccine type. 

  generate_report Method: Generates a report that summarizes the total number of cases, 
total vaccinated, active cases, recovered cases, and deaths as of a given date. 

  display_report Method: Displays the generated report in a readable format. 

 

4 

a.  Write an algorithm for the functioning of word matching feedback system used 

 in ISTART. 

b. Write a note on various approaches to analyzing texts with examples.  
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 iSTART (Interactive Strategy Training for Active Reading and Thinking) is an 
intelligent tutoring system designed to help students improve their reading 
comprehension skills. A word matching feedback system in iSTART can provide 
immediate feedback to users based on their input. Here’s an algorithm for such a 
system: 

Algorithm: Word Matching Feedback System 

1. Input: 
o User input text (user_text) 
o Reference text (reference_text) 

2. Preprocessing: 
o Tokenize user_text and reference_text into words. 
o Convert all tokens to lowercase to ensure case insensitivity. 
o Remove any punctuation or special characters from the tokens. 

3. Word Matching: 
o Initialize an empty list feedback to store feedback messages. 
o For each word in the reference_text tokens: 

 Check if the word exists in the user_text tokens. 
 If the word exists, append a positive feedback message to 

feedback. 
 If the word does not exist, append a corrective feedback message 

to feedback. 
4. Additional Feedback (Optional): 

o Calculate the similarity score between user_text and reference_text 
using a similarity metric (e.g., cosine similarity, Jaccard similarity). 

o Provide additional feedback based on the similarity score (e.g., overall 
similarity percentage, areas for improvement). 

5. Output: 
o Return or display the feedback list to the user. 

Psuedocode 

def word_matching_feedback_system(user_text, reference_text): 

    # Preprocessing 

    user_tokens = preprocess_text(user_text) 

    reference_tokens = preprocess_text(reference_text) 

     

    # Word Matching 

    feedback = [] 

    for word in reference_tokens: 

        if word in user_tokens: 

            feedback.append(f"Good job! You used the word '{word}'.") 

        else: 

            feedback.append(f"Try to include the word '{word}'.") 

 

    # Additional Feedback (Optional) 

    similarity_score = calculate_similarity(user_text, reference_text) 

    feedback.append(f"Overall similarity score: {similarity_score:.2f}") 

 

    return feedback 

 

def preprocess_text(text): 

    # Tokenize, convert to lowercase, and remove punctuation 
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    tokens = text.lower().split() 

    tokens = [token.strip('.,!?') for token in tokens] 

    return tokens 

 

def calculate_similarity(text1, text2): 

    # Calculate similarity score between two texts (e.g., using cosine similarity) 

    # This is a placeholder implementation 

    return 0.85  # Example similarity score 

 

# Example Usage 

user_text = "The cat chased the mouse." 

reference_text = "The cat was chasing a mouse." 

feedback = word_matching_feedback_system(user_text, reference_text) 

for message in feedback: 

    print(message) 

 
b)Approaches to Analyzing Texts with Examples 

  Statistical Methods: 

 Word Frequency Analysis: Counting the occurrence of each word in a text. 
Commonly used to identify key themes or topics. 

o Example: Analyzing the frequency of words in a political speech to identify 
the main issues discussed. 

 N-gram Analysis: Examining contiguous sequences of n items (words) in a text. 
Useful for understanding common phrases or collocations. 

o Example: Using bigrams (2-grams) to study common two-word phrases in 
customer reviews. 

  Rule-Based Methods: 

 Regular Expressions: Using pattern matching to identify specific text patterns. 
Useful for tasks like extracting dates, email addresses, or specific keywords. 

o Example: Extracting phone numbers from a document using regular 
expressions. 

 Part-of-Speech (POS) Tagging: Assigning POS tags to each word in a text to 
understand the grammatical structure. Useful for syntactic analysis. 

o Example: Identifying all nouns and verbs in a sentence to understand its 
structure. 

  Machine Learning Approaches: 

 Text Classification: Using algorithms to classify text into predefined categories. 
Useful for tasks like spam detection, sentiment analysis, and topic categorization. 

o Example: Classifying movie reviews as positive or negative using a trained 
machine learning model. 

 Named Entity Recognition (NER): Identifying and classifying named entities (e.g., 
persons, organizations, locations) in a text. 

o Example: Extracting names of companies and locations from news articles. 

  Deep Learning Approaches: 

 Recurrent Neural Networks (RNNs): Using RNNs and their variants (e.g., LSTM, 



 

GRU) for sequence modeling. Effective for tasks like language modeling and text 
generation. 

o Example: Generating text that mimics the style of a given author using an 
LSTM network. 

 Transformers: Leveraging transformer models (e.g., BERT, GPT) for various NLP 
tasks. These models have achieved state-of-the-art performance in many text 
analysis tasks. 

o Example: Using BERT for question answering, where the model finds 
answers to questions based on a given text. 

  Hybrid Approaches: 

 Combining rule-based methods with machine learning techniques to leverage the 
strengths of both. 

o Example: Using regular expressions to extract candidate entities from a 
text, followed by a machine learning model to classify and refine these 
entities. 

 

 

 

5 

Briefly describe LSA feedback systems. Mention four benchmarks used by LSA to 

Assess the level of an explanation. 

 

Latent Semantic Analysis (LSA) is a technique in natural language processing that analyzes 
relationships between a set of documents and the terms they contain by producing a set of 
concepts related to the documents and terms. LSA feedback systems leverage this 
technique to provide feedback on textual content, such as student essays, explanations, or 
responses, by assessing the semantic content and coherence of the text. The system 
compares the semantic similarity between a student's text and a set of reference texts or 
ideal answers to provide meaningful feedback. 

How LSA Feedback Systems Work 

1. Text Representation: Convert the text into a term-document matrix, where rows 
represent terms and columns represent documents. 

2. Dimensionality Reduction: Apply Singular Value Decomposition (SVD) to reduce the 
dimensions of the matrix, capturing the most significant patterns in the data. 

3. Semantic Space: Represent both the student's text and the reference texts in the 
same reduced-dimensional semantic space. 

4. Similarity Measurement: Compute the cosine similarity between the student's text 
and reference texts to determine how closely they match in terms of semantic 
content. 

5. Feedback Generation: Provide feedback based on the similarity scores, highlighting 
areas of strength and suggestions for improvement. 

Four Benchmarks Used by LSA to Assess the Level of an Explanation 

1. Cosine Similarity to Reference Texts: 
o Measure the cosine similarity between the student's explanation and a set 

of reference explanations. A higher similarity score indicates that the 
student's text closely matches the content and context of the reference 
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texts. 
2. Coverage of Key Concepts: 

o Assess whether the student's explanation includes key concepts and terms 
that are present in the reference texts. LSA can identify whether important 
ideas are missing or if unnecessary information is included. 

3. Coherence and Structure: 
o Evaluate the coherence of the student's explanation by analyzing the 

overall structure and flow of the text. LSA can help identify if the 
explanation follows a logical sequence and maintains thematic consistency. 

4. Comparison with Exemplars: 
o Compare the student's explanation with high-quality exemplar texts. By 

calculating the similarity scores to these exemplars, LSA can provide 
feedback on how closely the student's explanation aligns with well-written 
examples. 

Example Usage in Education 

In an educational setting, LSA feedback systems can be used to automatically grade essays 
or provide formative feedback to students. For instance, a student's essay on climate 
change could be compared to a set of high-quality essays on the same topic. The system 
would analyze the semantic content, check for the presence of key concepts like "global 
warming," "carbon emissions," and "renewable energy," and provide feedback on areas 
where the student's essay deviates from the ideal explanations. 

FUNCTION LSA_Feedback_System(student_text, reference_texts, exemplar_texts): 

 

    # Step 1: Preprocessing 

    student_terms = preprocess_text(student_text) 

    reference_terms = [preprocess_text(ref) for ref in reference_texts] 

    exemplar_terms = [preprocess_text(exemplar) for exemplar in exemplar_texts] 

 

    # Step 2: Construct Term-Document Matrix 

    term_document_matrix = create_term_document_matrix(student_terms, 

reference_terms + exemplar_terms) 

 

    # Step 3: Apply Singular Value Decomposition (SVD) 

    U, S, Vt = apply_SVD(term_document_matrix) 

     

    # Step 4: Represent Texts in Semantic Space 



 

    student_vector = project_into_semantic_space(student_terms, U, S) 

    reference_vectors = [project_into_semantic_space(ref, U, S) for ref in 

reference_terms] 

    exemplar_vectors = [project_into_semantic_space(exemplar, U, S) for exemplar in 

exemplar_terms] 

 

    # Step 5: Calculate Cosine Similarities 

    reference_similarities = [cosine_similarity(student_vector, ref_vector) for ref_vector 

in reference_vectors] 

    exemplar_similarities = [cosine_similarity(student_vector, exemplar_vector) for 

exemplar_vector in exemplar_vectors] 

 

    # Step 6: Evaluate Key Concept Coverage 

    key_concepts = extract_key_concepts(reference_terms) 

    coverage_score = evaluate_coverage(student_terms, key_concepts) 

 

    # Step 7: Evaluate Coherence and Structure (Optional: Simple Heuristic) 

    coherence_score = evaluate_coherence(student_text) 

 

    # Step 8: Generate Feedback 

    feedback = [] 

    feedback.append("Similarity to Reference Texts: " + average(reference_similarities)) 

    feedback.append("Similarity to Exemplars: " + average(exemplar_similarities)) 

    feedback.append("Coverage of Key Concepts: " + coverage_score) 

    feedback.append("Coherence and Structure: " + coherence_score) 

 

    RETURN feedback 

 



 

FUNCTION preprocess_text(text): 

    # Tokenize, convert to lowercase, and remove punctuation 

    tokens = tokenize(text) 

    tokens = to_lowercase(tokens) 

    tokens = remove_punctuation(tokens) 

    RETURN tokens 

 

FUNCTION create_term_document_matrix(student_terms, all_terms): 

    # Create a matrix where rows are terms and columns are documents 

    matrix = initialize_matrix(student_terms, all_terms) 

    RETURN matrix 

 

FUNCTION apply_SVD(matrix): 

    # Apply Singular Value Decomposition 

    U, S, Vt = svd(matrix) 

    RETURN U, S, Vt 

 

FUNCTION project_into_semantic_space(terms, U, S): 

    # Project terms into the reduced-dimensional semantic space 

    vector = project(terms, U, S) 

    RETURN vector 

 

FUNCTION cosine_similarity(vector1, vector2): 

    # Calculate cosine similarity between two vectors 

    similarity = dot_product(vector1, vector2) / (magnitude(vector1) * 

magnitude(vector2)) 

    RETURN similarity 



 

 

FUNCTION extract_key_concepts(reference_terms): 

    # Extract key concepts from reference terms 

    key_concepts = identify_key_concepts(reference_terms) 

    RETURN key_concepts 

 

FUNCTION evaluate_coverage(student_terms, key_concepts): 

    # Evaluate the coverage of key concepts in the student terms 

    coverage = calculate_coverage(student_terms, key_concepts) 

    RETURN coverage 

 

FUNCTION evaluate_coherence(text): 

    # Simple heuristic to evaluate coherence (e.g., sentence structure) 

    coherence = check_coherence(text) 

    RETURN coherence 

 

FUNCTION average(similarities): 

    # Calculate average similarity score 

    avg_score = sum(similarities) / len(similarities) 

    RETURN avg_score 

 

# Example Usage 

student_text = "The cat chased the mouse." 

reference_texts = ["A cat is chasing a mouse.", "The mouse was chased by the cat."] 

exemplar_texts = ["Cats often chase mice.", "In many stories, cats chase mice."] 

feedback = LSA_Feedback_System(student_text, reference_texts, exemplar_texts) 



 

FOR message IN feedback: 

    PRINT message 

  Preprocessing: Tokenizes the input text, converts it to lowercase, and removes 
punctuation. 

  Term-Document Matrix: Constructs a matrix representing the term frequencies in the 
documents. 

  SVD Application: Applies Singular Value Decomposition (SVD) to reduce the dimensions 
of the term-document matrix. 

  Semantic Space Projection: Projects the terms into the reduced-dimensional semantic 
space. 

  Cosine Similarities: Calculates cosine similarity between the student's vector and both 
reference and exemplar vectors. 

  Key Concept Coverage: Evaluates if the student's text covers key concepts present in the 
reference texts. 

  Coherence and Structure: Uses a simple heuristic to evaluate the coherence and 
structure of the student's text. 

  Feedback Generation: Generates feedback based on similarity scores, key concept 

coverage, and coherence. 

6 

a.Explain in detail the high-level representation approaches in text mining 

b. Explain document separation as a sequence mapping problem 

 

High-Level Representation Approaches in Text Mining 

Text mining involves the extraction of meaningful information from text. To do this 
effectively, various high-level representation approaches are used to convert unstructured 
text into structured forms that can be analyzed. Here are some prominent high-level 
representation approaches in text mining: 

1. Bag-of-Words (BoW): 
o Description: BoW represents a text as a collection of its words, disregarding 

grammar and word order but keeping multiplicity. 
o Example: For the sentences "The cat sat on the mat" and "The dog sat on 

the mat," BoW representation would count the frequency of each word in a 
fixed vocabulary. 

o Advantages: Simple and easy to implement; useful for tasks like document 
classification. 

o Disadvantages: Ignores the order and context of words, which can be 
crucial for understanding meaning. 

2. TF-IDF (Term Frequency-Inverse Document Frequency): 
o Description: Enhances the BoW model by weighing the frequency of a word 

in a document against its frequency across all documents. 
o Example: Words that appear frequently in one document but not in many 

others are given higher weights. 
o Advantages: Reduces the impact of common words that are less 

informative. 
o Disadvantages: Still ignores the context and sequence of words. 

3. Word Embeddings: 
o Description: Uses dense vector representations for words, capturing 

semantic meanings based on context. 
o Examples: Word2Vec, GloVe, FastText. 
o Advantages: Captures semantic relationships between words (e.g., "king" is 
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to "queen" as "man" is to "woman"). 
o Disadvantages: Requires significant computational resources for training; 

may capture biases present in training data. 
4. Document Embeddings: 

o Description: Extends word embeddings to whole documents, capturing the 
overall meaning. 

o Examples: Doc2Vec, InferSent, Universal Sentence Encoder. 
o Advantages: Useful for tasks like document classification, clustering, and 

sentiment analysis. 
o Disadvantages: More complex to train than word embeddings. 

5. Topic Modeling: 
o Description: Identifies topics present in a collection of documents. 
o Examples: Latent Dirichlet Allocation (LDA), Non-negative Matrix 

Factorization (NMF). 
o Advantages: Helps in understanding the main themes and topics within 

large corpora. 
o Disadvantages: Requires careful tuning and interpretation; topics may not 

always be easily interpretable. 
6. Latent Semantic Analysis (LSA): 

o Description: Reduces dimensions of the term-document matrix using 
Singular Value Decomposition (SVD), capturing latent semantic structures. 

o Advantages: Captures the underlying relationships between terms and 
documents. 

o Disadvantages: Can be computationally expensive; may not handle 
polysemy (multiple meanings) well. 

7. Transformers and Contextual Representations: 
o Description: Uses transformer models to create contextualized word 

representations, where the meaning of a word is determined by its context 
in the sentence. 

o Examples: BERT, GPT, RoBERTa. 
o Advantages: State-of-the-art performance in many NLP tasks; captures 

deep semantic meaning and context. 
o Disadvantages: Highly computationally intensive; requires large datasets 

for training. 

Document Separation as a Sequence Mapping Problem 

Document separation involves dividing a continuous stream of text into distinct documents. 
This can be approached as a sequence mapping problem, where the task is to map a 
sequence of input text into sequences representing individual documents. 

Steps in Document Separation as a Sequence Mapping Problem 

1. Input Sequence: 
o The input is a continuous stream of text, such as a long transcript, email 

thread, or concatenated document file. 
2. Feature Extraction: 

o Extract features that help in identifying boundaries between documents. 
Features can include: 

 Textual markers (e.g., titles, headers, signatures). 
 Metadata (e.g., timestamps, authorship information). 
 Content features (e.g., abrupt topic changes, specific keywords). 

3. Sequence Labeling: 
o Treat the problem as a sequence labeling task, where each token (or 
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character) in the input sequence is labeled as either part of a document or 
a boundary. 

o Labels can be binary (boundary/non-boundary) or categorical (types of 
boundaries). 

4. Model Selection: 
o Use models that are effective in sequence mapping and labeling, such as: 

 Hidden Markov Models (HMMs): Probabilistic models that capture 
the likelihood of transitions between states (e.g., from inside a 
document to a boundary). 

 Conditional Random Fields (CRFs): Discriminative models that 
consider the entire sequence for labeling, effective for capturing 
context. 

 Recurrent Neural Networks (RNNs): Neural networks designed for 
sequence data, capturing dependencies over time. 

 Transformers: Models that handle long-range dependencies and 
context, suitable for processing long texts. 

5. Training: 
o Train the chosen model on annotated data, where boundaries between 

documents are labeled. The model learns to recognize patterns indicative 
of document boundaries. 

6. Prediction: 
o Apply the trained model to new, unlabeled sequences of text. The model 

predicts boundaries, effectively splitting the text into distinct documents. 
7. Post-processing: 

o Refine the predicted boundaries based on additional rules or heuristics to 
ensure logical separation of documents. 

Subject: Meeting Agenda 

Hi team, 

Please find the agenda for our meeting attached. 

 

Best, 

John 

 

---Original Message--- 

Subject: Re: Project Update 

Hi John, 

Thanks for the update. 

 

Best, 

Alice 

1. Feature Extraction: 
o Identify features like "Subject:", "---Original Message---", "Best," as 

potential boundaries. 
2. Sequence Labeling: 

o Label tokens or characters as document parts or boundaries based on these 
features. 

3. Model: 
o Use a CRF model trained on similar email threads to predict the boundaries. 

4. Prediction and Post-processing: 
o Apply the model to label and split the email thread into individual emails. 

This approach ensures accurate and automated document separation, which is crucial for 



 

organizing, indexing, and retrieving information from large, unstructured text streams. 
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