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1 Explain different types of Machine Learning Systems in brief 

Machine learning systems can be broadly classified into several categories based on 

different criteria such as the type of data they work with, the learning approach they 

use, and their output. Here’s a brief overview of the main types of machine learning 

systems: 

1. Supervised Learning 

In supervised learning, the algorithm is trained on a labeled dataset, which means that 

each training example is paired with an output label. The goal is to learn a mapping 

from inputs to outputs, so the model can predict the output for new, unseen inputs. 

• Classification: The output variable is a category. For example, classifying 

emails as spam or not spam. 

• Regression: The output variable is a continuous value. For example, 

predicting house prices. 

2. Unsupervised Learning 

In unsupervised learning, the algorithm is given data without explicit instructions on 

what to do with it. The goal is to find hidden patterns or intrinsic structures in the 

input data. 

• Clustering: The task is to group similar data points together. For example, 

customer segmentation in marketing. 

• Association: The task is to find rules that describe large portions of the data. 

For example, market basket analysis to find product purchase correlations. 

3. Semi-Supervised Learning 

This approach is a mix of supervised and unsupervised learning. It uses a small 

amount of labeled data and a large amount of unlabeled data to train the model. This 

is useful when labeling data is expensive or time-consuming. 

4. Reinforcement Learning 
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Reinforcement learning involves training an agent to make a sequence of decisions 

by rewarding it for good actions and penalizing it for bad ones. The agent learns to 

achieve a goal in an uncertain, potentially complex environment. 

• Markov Decision Processes (MDP): The decision-making is modeled with 

states, actions, and rewards. 

5. Self-Supervised Learning 

Self-supervised learning is a form of unsupervised learning where the data provides 

the supervision. This approach involves creating tasks from the data itself, allowing 

the model to learn representations by predicting parts of the data from other parts. 

6. Transfer Learning 

Transfer learning involves taking a pre-trained model developed for a task and 

adapting it to a different but related task. This is particularly useful when there is 

limited labeled data available for the new task. 

7. Multi-Instance Learning 

In multi-instance learning, the model is trained on bags of instances. The individual 

instances within a bag are not labeled, but the bag itself is labeled. The goal is to 

predict the label of new bags based on the instances they contain. 

8. Online Learning 

Online learning algorithms update the model incrementally as new data arrives. This 

is useful for scenarios where the data is too large to fit into memory or arrives in a 

stream. 

9. Batch Learning 

In batch learning, the model is trained on the entire dataset at once. This approach is 

suitable when the data is static and can fit into memory. 

10. Active Learning 

Active learning is a special case of supervised learning where the algorithm 

selectively queries the user to label new data points with the desired outputs. This is 

useful when labeling data is expensive and the model can identify the most 

informative examples to label. 

11. Dimensionality Reduction 

Dimensionality reduction methods are used to reduce the number of features in the 

dataset while retaining as much information as possible. This helps in improving 

computational efficiency and reducing overfitting. 



 

 

• Principal Component Analysis (PCA): A method to reduce dimensions by 

transforming the data into a new coordinate system. 

• t-Distributed Stochastic Neighbor Embedding (t-SNE): A technique for 

dimensionality reduction that is particularly good at visualizing high-

dimensional data. 

2 Write FIND-S algorithm and explain with example given below 

 

The FIND-S algorithm is a simple machine learning algorithm used for learning a 

hypothesis from a set of positive examples. It finds the most specific hypothesis that 

fits all the positive examples. The algorithm works as follows: 

1. Initialize the hypothesis hhh to the most specific hypothesis, h=⟨ϕ,ϕ,…,ϕ⟩h = 

\langle \phi, \phi, \ldots, \phi \rangleh=⟨ϕ,ϕ,…,ϕ⟩. 
2. For each positive training instance xxx: 

o For each attribute aia_iai: 

▪ If the attribute aia_iai of xxx matches the attribute aia_iai of 

hhh, do nothing. 

▪ If the attribute aia_iai of xxx does not match the attribute 

aia_iai of hhh, replace aia_iai of hhh with '?'. 

3. Output the hypothesis hhh. 

Example Dataset 

Given the dataset: 

Color Toughness Fungus Appearance Poisonous 

Green Hard No Wrinkled Yes 

Green Hard Yes Smooth No 

Brown Soft No Wrinkled No 

Orange Hard No Wrinkled Yes 

Green Soft Yes Smooth Yes 

Green Hard Yes Wrinkled Yes 

Orange Hard No Wrinkled Yes 
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Applying FIND-S Algorithm 

1. Initialization: Start with the most specific hypothesis. h=⟨ϕ,ϕ,ϕ,ϕ⟩h = \langle 

\phi, \phi, \phi, \phi \rangleh=⟨ϕ,ϕ,ϕ,ϕ⟩ 
2. First Positive Example (Green, Hard, No, Wrinkled, Yes\text{Green, Hard, 

No, Wrinkled, Yes}Green, Hard, No, Wrinkled, Yes): 

h=⟨Green,Hard,No,Wrinkled⟩h = \langle \text{Green}, \text{Hard}, 

\text{No}, \text{Wrinkled} \rangleh=⟨Green,Hard,No,Wrinkled⟩ 
3. Second Positive Example (Orange, Hard, No, Wrinkled, Yes\text{Orange, 

Hard, No, Wrinkled, Yes}Orange, Hard, No, Wrinkled, Yes): 

h=⟨?,Hard,No,Wrinkled⟩h = \langle ?, \text{Hard}, \text{No}, 

\text{Wrinkled} \rangleh=⟨?,Hard,No,Wrinkled⟩ 
4. Third Positive Example (Green, Soft, Yes, Smooth, Yes\text{Green, Soft, 

Yes, Smooth, Yes}Green, Soft, Yes, Smooth, Yes): h=⟨?,?,?,?⟩h = \langle ?, 

?, ?, ? \rangleh=⟨?,?,?,?⟩ 
5. Fourth Positive Example (Green, Hard, Yes, Wrinkled, Yes\text{Green, 

Hard, Yes, Wrinkled, Yes}Green, Hard, Yes, Wrinkled, Yes): 

o Color: ??? 

o Toughness: ??? 

o Fungus: ??? 

o Appearance: ??? 

6. Fifth Positive Example (Orange, Hard, No, Wrinkled, Yes\text{Orange, 

Hard, No, Wrinkled, Yes}Orange, Hard, No, Wrinkled, Yes): 

o Color: ??? 

o Toughness: HardHardHard 

o Fungus: NoNoNo 

o Appearance: WrinkledWrinkledWrinkled 

Explanation 

The final hypothesis h=⟨?,Hard,No,Wrinkled⟩h = \langle ?, Hard, No, Wrinkled 

\rangleh=⟨?,Hard,No,Wrinkled⟩ indicates that the specific attributes necessary for a 

mushroom to be poisonous, according to the positive examples, are: 

• Toughness: Hard 

• Fungus: No 

• Appearance: Wrinkled 

This hypothesis means that any mushroom that is hard, has no fungus, and has a 

wrinkled appearance is predicted to be poisonous. The color attribute is irrelevant 

according to the hypothesis because it was generalized to '?', indicating that the color 

does not affect whether a mushroom is poisonous or not. 

3 Illustrate some of the basic design issues and approaches to machine learning 

considering designing a program to learn to play checkers. 

Designing a machine learning program to play checkers involves addressing several 

fundamental design issues and choosing appropriate approaches. Below are some of 

the key issues and potential solutions: 
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1. Representation of the Game State 

Issue: How to represent the board and game state in a way that is useful for the 

learning algorithm. Approach: Use a matrix or a list to represent the 8x8 board, where 

each element represents a square that can be empty, occupied by a black piece, or 

occupied by a white piece. Additional information such as whose turn it is can be 

included as well. 

2. Representation of the Policy or Value Function 

Issue: How to represent the policy (strategy) that the program will use to choose its 

moves, or the value function that evaluates the desirability of board positions. 

Approach: Use a neural network, decision tree, or other function approximator to 

represent the policy or value function. For example, a neural network can take the 

board state as input and output the predicted value or the probability of choosing each 

possible move. 

3. Choice of Learning Algorithm 

Issue: Which learning algorithm to use to train the policy or value function. 

Approach: Possible algorithms include: 

• Reinforcement Learning (RL): Algorithms like Q-learning, SARSA, or 

more advanced methods like Deep Q-Networks (DQN) and Policy Gradient 

methods can be used to learn the value of states or the best actions to take. 

• Supervised Learning: If a dataset of expert moves is available, supervised 

learning can be used to train the policy network to imitate expert play. 

4. Exploration vs. Exploitation 

Issue: How to balance exploring new moves (which might be better) with exploiting 

known good moves. Approach: Use techniques like epsilon-greedy (with a decay 

schedule), where the program chooses a random move with probability ε and the best-

known move with probability 1-ε, or more advanced methods like Upper Confidence 

Bound (UCB) for better exploration. 

5. Feature Extraction 

Issue: How to extract useful features from the raw board state that can help the 

learning algorithm. Approach: Use domain knowledge to hand-craft features (e.g., 

number of pieces, number of kings, piece positions) or use deep learning to 

automatically learn features from the raw board state. 

6. Training and Evaluation 

Issue: How to train the model effectively and how to evaluate its performance. 

Approach: 



 

 

• Training: Use self-play, where the program plays against itself, to generate 

training data. Techniques like Experience Replay can be used to store and 

reuse past game experiences. 

• Evaluation: Play games against other programs or human players to evaluate 

the performance. Use metrics such as win/loss ratio and the quality of moves 

to measure improvement. 

7. Handling the Complexity of the Game 

Issue: Checkers has a large state space and a long game horizon, making learning and 

planning difficult. Approach: Use techniques like: 

• Search Algorithms: Incorporate search algorithms like Minimax with Alpha-

Beta pruning to look ahead several moves and evaluate the outcomes. 

• Hierarchical Learning: Break the problem into smaller sub-problems, such 

as learning separate policies for different phases of the game (e.g., opening, 

mid-game, endgame). 

8. Dealing with Opponent Strategies 

Issue: The program must be robust to a variety of opponent strategies. Approach: 

Train the program against a diverse set of opponents, including different versions of 

itself with varied strategies, to ensure it can handle different playing styles. 

 
4  Apply the Candidate Elimination algorithm to a set of training examples to 

demonstrate how it identifies the boundary hypotheses in the version space. 

 

The Candidate Elimination algorithm is used in machine learning to find the set of all 

hypotheses that are consistent with the given training examples. It maintains two sets 

of hypotheses: the most specific hypotheses (S) and the most general hypotheses (G). 

The algorithm iteratively refines these sets as it processes each training example. 

Training Examples 

Given the dataset: 

Sky 
AirTem

p 
Humidity Wind 

Wate

r 

Forecas

t 
EnjoySport 

Sunny Warm Normal Strong Warm Same Yes 
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Sunny Warm High Strong Warm Same Yes 

Rainy Cold High Strong Warm Change No 

Sunny Warm High Strong Cool Change Yes 

Steps of the Candidate Elimination Algorithm 

1. Initialization: 

o SSS (most specific hypothesis): ⟨ϕ,ϕ,ϕ,ϕ,ϕ,ϕ⟩\langle \phi, \phi, \phi, 

\phi, \phi, \phi \rangle⟨ϕ,ϕ,ϕ,ϕ,ϕ,ϕ⟩ 
o GGG (most general hypothesis): ⟨?,?,?,?,?,?⟩\langle ?, ?, ?, ?, ?, ? 

\rangle⟨?,?,?,?,?,?⟩ 
2. Processing each example: 

o For a positive example, update SSS: 

▪ Generalize SSS minimally to cover the example. 

▪ Remove any hypotheses from GGG that do not cover the 

example. 

o For a negative example, update GGG: 

▪ Specialize GGG minimally to exclude the example. 

▪ Remove any hypotheses from SSS that cover the example. 

Step-by-Step Processing 

1. Processing the first example: 

⟨Sunny, Warm, Normal, Strong, Warm, Same, Yes⟩\langle \text{Sunny, Warm, 

Normal, Strong, Warm, Same, Yes} 

\rangle⟨Sunny, Warm, Normal, Strong, Warm, Same, Yes⟩ 

• SSS (generalize to cover the example): 

S=⟨Sunny, Warm, Normal, Strong, Warm, Same⟩S = \langle \text{Sunny, 

Warm, Normal, Strong, Warm, Same} 

\rangleS=⟨Sunny, Warm, Normal, Strong, Warm, Same⟩ 
• GGG (remove inconsistent hypotheses, but no change needed as GGG covers 

the example): G=⟨?,?,?,?,?,?⟩G = \langle ?, ?, ?, ?, ?, ? \rangleG=⟨?,?,?,?,?,?⟩ 

2. Processing the second example: 

⟨Sunny, Warm, High, Strong, Warm, Same, Yes⟩\langle \text{Sunny, Warm, 

High, Strong, Warm, Same, Yes} 

\rangle⟨Sunny, Warm, High, Strong, Warm, Same, Yes⟩ 

• SSS (generalize to cover both positive examples): 

S=⟨Sunny, Warm, ? , Strong, Warm, Same⟩S = \langle \text{Sunny, Warm, ? 

, Strong, Warm, Same} \rangleS=⟨Sunny, Warm, ? , Strong, Warm, Same⟩ 
• GGG (no change): G=⟨?,?,?,?,?,?⟩G = \langle ?, ?, ?, ?, ?, ? 

\rangleG=⟨?,?,?,?,?,?⟩ 



 

 

3. Processing the third example: 

⟨Rainy, Cold, High, Strong, Warm, Change, No⟩\langle \text{Rainy, Cold, High, 

Strong, Warm, Change, No} 

\rangle⟨Rainy, Cold, High, Strong, Warm, Change, No⟩ 

• SSS (no change as it is a negative example): 

S=⟨Sunny, Warm, ? , Strong, Warm, Same⟩S = \langle \text{Sunny, Warm, ? 

, Strong, Warm, Same} \rangleS=⟨Sunny, Warm, ? , Strong, Warm, Same⟩ 
• GGG (specialize GGG to exclude the negative example): 

G={⟨Sunny, ?, ?, ?, ?, ?⟩,⟨?,Warm, ?, ?, ?, ?⟩,⟨?,?,?,?,?,Same⟩,⟨?,?,?,?,Warm, 

?⟩}G = \{ \langle \text{Sunny, ?, ?, ?, ?, ?} \rangle, \langle ?, \text{Warm, ?, 

?, ?, ?} \rangle, \langle ?, ?, ?, ?, ?, \text{Same} \rangle, \langle ?, ?, ?, ?, 

\text{Warm, ?} \rangle 

\}G={⟨Sunny, ?, ?, ?, ?, ?⟩,⟨?,Warm, ?, ?, ?, ?⟩,⟨?,?,?,?,?,Same⟩,⟨?,?,?,?,War

m, ?⟩} 

Final Version Space 

The final version space contains all hypotheses that lie between SSS and GGG. 

• SSS (most specific hypothesis): S=⟨Sunny, Warm, ? , Strong, ? , ?⟩S = \langle 

\text{Sunny, Warm, ? , Strong, ? , ?} 

\rangleS=⟨Sunny, Warm, ? , Strong, ? , ?⟩ 
• GGG (most general hypotheses): 

G={⟨Sunny, ?, ?, ?, ?, ?⟩,⟨?,Warm, ?, ?, ?, ?⟩}G = \{ \langle \text{Sunny, ?, ?, 

?, ?, ?} \rangle, \langle ?, \text{Warm, ?, ?, ?, ?} \rangle 

\}G={⟨Sunny, ?, ?, ?, ?, ?⟩,⟨?,Warm, ?, ?, ?, ?⟩} 

 
   5 Explain the steps involved in classification using MNIST Dataset. 

The MNIST (Modified National Institute of Standards and Technology) dataset is a 

large database of handwritten digits commonly used for training various image 

processing systems. Here’s a step-by-step guide to performing classification using the 

MNIST dataset: 

Step 1: Import Required Libraries 

First, import the necessary libraries. You will typically need libraries such as numpy 

for numerical operations, matplotlib for plotting, and tensorflow or scikit-learn for 

machine learning tasks. 

python 

Copy code 

import numpy as np 

import matplotlib.pyplot as plt 

from tensorflow.keras.datasets import mnist 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Flatten 

from tensorflow.keras.utils import to_categorical 
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Step 2: Load the MNIST Dataset 

The MNIST dataset can be directly loaded from TensorFlow or Keras datasets. 

python 

Copy code 

(X_train, y_train), (X_test, y_test) = mnist.load_data() 

Step 3: Data Exploration and Visualization 

Explore the dataset to understand its structure and visualize some samples. 

python 

Copy code 

print("Training data shape:", X_train.shape) 

print("Testing data shape:", X_test.shape) 

 

# Plot the first image in the training dataset 

plt.imshow(X_train[0], cmap='gray') 

plt.title('Digit: {}'.format(y_train[0])) 

plt.show() 

Step 4: Preprocess the Data 

Normalize the images to have pixel values between 0 and 1 and convert the labels to 

categorical format. 

python 

Copy code 

# Normalize the images 

X_train = X_train.astype('float32') / 255 

X_test = X_test.astype('float32') / 255 

 

# Convert labels to categorical 

y_train = to_categorical(y_train, 10) 

y_test = to_categorical(y_test, 10) 

Step 5: Build the Model 

Create a neural network model using Keras. Here, a simple feedforward neural 

network is used. 

python 

Copy code 

model = Sequential() 

model.add(Flatten(input_shape=(28, 28))) 

model.add(Dense(128, activation='relu')) 

model.add(Dense(64, activation='relu')) 

model.add(Dense(10, activation='softmax')) 



 

 

Step 6: Compile the Model 

Compile the model by specifying the loss function, optimizer, and metrics. 

python 

Copy code 

model.compile(loss='categorical_crossentropy', 

              optimizer='adam', 

              metrics=['accuracy']) 

Step 7: Train the Model 

Train the model on the training dataset. 

python 

Copy code 

model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, 

y_test)) 

Step 8: Evaluate the Model 

Evaluate the model on the test dataset to see its performance. 

python 

Copy code 

test_loss, test_acc = model.evaluate(X_test, y_test) 

print('Test accuracy:', test_acc) 

Step 9: Make Predictions 

Use the trained model to make predictions on new data. 

python 

Copy code 

predictions = model.predict(X_test) 

 

# Example prediction 

print('Predicted label:', np.argmax(predictions[0])) 

print('True label:', np.argmax(y_test[0])) 

 

6(a) Discuss limitations of Find-S over Candidate Elimination Algorithm 

The Find-S and Candidate Elimination algorithms are both used in the field of 

machine learning to find hypotheses that are consistent with given training examples. 

However, they have different approaches and limitations. Here are the key limitations 

of the Find-S algorithm compared to the Candidate Elimination algorithm: 

1. Inability to Handle Inconsistent Training Data 
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• Find-S: Assumes that there are no contradictory examples in the training data. 

If there are conflicting examples (e.g., the same instance with different 

classifications), Find-S will not be able to handle them and will produce an 

incorrect hypothesis. 

• Candidate Elimination: Can handle inconsistent training data by 

maintaining a version space of hypotheses. It eliminates inconsistent 

hypotheses as new training examples are processed. 

2. Limited to the Most Specific Hypothesis 

• Find-S: Only finds the most specific hypothesis that fits all the positive 

examples. It does not consider any general hypotheses that might also fit the 

data. This can lead to overfitting, where the hypothesis is too specific and does 

not generalize well to unseen data. 

• Candidate Elimination: Maintains both the most specific (S) and the most 

general (G) hypotheses, allowing for a broader and more flexible search 

within the version space. This helps in balancing specificity and generality. 

3. No Consideration of Negative Examples 

• Find-S: Ignores negative examples entirely, which can result in a hypothesis 

that incorrectly classifies negative instances as positive. This is because it only 

focuses on generalizing positive examples. 

• Candidate Elimination: Uses both positive and negative examples to refine 

the hypothesis space, ensuring that the resulting hypotheses correctly classify 

both positive and negative instances. 

4. Sensitivity to Noise 

• Find-S: Highly sensitive to noise in the training data. Since it focuses on the 

most specific hypothesis, any noisy or incorrect positive example can lead to 

a highly specific and incorrect hypothesis. 

• Candidate Elimination: More robust to noise because it considers a range of 

hypotheses and refines the hypothesis space incrementally. However, it still 

can be affected by noise, but less severely than Find-S. 

5. Output Hypothesis Quality 

• Find-S: The final hypothesis produced by Find-S is highly dependent on the 

order of the training examples and the presence of noisy data. It may not 

always represent the best hypothesis that fits the training data. 

• Candidate Elimination: Provides a more comprehensive set of hypotheses 

by considering all possible generalizations and specializations, leading to a 

more reliable final hypothesis that fits the training data well. 

6. Complexity and Computation 

• Find-S: Simple and computationally efficient since it only updates the 

hypothesis with each positive example and does not maintain multiple 

hypotheses. 



 

 

• Candidate Elimination: More computationally complex because it maintains 

and updates both the S and G sets with each training example. This can be 

more resource-intensive, especially with a large hypothesis space and many 

examples. 

6(b)  Define the following terms: (i) Concept Learning (ii)Version Space (iii) 

Hypothesis Space (iv)General Boundary (v) Specific Boundary 

 

(i) Concept Learning 

Concept Learning is the task of inferring a Boolean-valued function from training 

examples of its input and output. It involves finding a general rule that covers all the 

positive examples and none of the negative examples. In simpler terms, concept 

learning is about finding a hypothesis that correctly classifies given data points into 

positive and negative categories based on their attributes. 

(ii) Version Space 

Version Space is the subset of the hypothesis space that is consistent with all the 

training examples seen so far. It represents the set of all hypotheses that correctly 

classify the training examples. The version space is bounded by the most specific 

hypothesis (S) and the most general hypothesis (G). 

(iii) Hypothesis Space 

Hypothesis Space (H) is the set of all possible hypotheses that can be formulated 

using a given hypothesis language. It includes all the potential rules or functions that 

could explain the relationship between input features and output labels. In concept 

learning, the hypothesis space contains all the possible ways to classify the examples 

based on their attributes. 

(iv) General Boundary 

General Boundary (G) of the version space is the set of the most general hypotheses 

that are consistent with the training examples. These hypotheses are as general as 

possible without misclassifying any of the negative examples. The general boundary 

represents one limit of the version space, ensuring that no hypothesis more general 

than those in G is consistent with all the training examples. 

(v) Specific Boundary 

Specific Boundary (S) of the version space is the set of the most specific hypotheses 

that are consistent with the training examples. These hypotheses are as specific as 

possible while still correctly classifying all the positive examples. The specific 

boundary represents the other limit of the version space, ensuring that no hypothesis 

more specific than those in S is consistent with all the training examples. 
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COGNITIVE 

LEVEL 
REVISED BLOOMS TAXONOMY KEYWORDS 

L1 
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, 

when, where, etc.  

L2 
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, 

discuss, extend  

L3 
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, 

change, classify, experiment, discover.  

L4 
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, 

infer.  

L5 
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, 

discriminate, support, conclude, compare, summarize.  

 

 

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) 
CORRELATION 

LEVELS 

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation 

PO2 Problem analysis PO8 Ethics 1 Slight/Low 

PO3 Design/development of solutions PO9 Individual and team work 2 
Moderate/ 

Medium 

PO4 
Conduct investigations of 

complex problems 
PO10 Communication 3 

Substantial/ 

High 

PO5 Modern tool usage PO11 Project management and finance  



 

 

PO6 The Engineer and society PO12 Life-long learning  

PSO1 Develop applications using different stacks of web and programming technologies 

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems 

PSO3 Apply software engineering methods to design, develop, test and manage software systems. 

PSO4 Develop intelligent applications for business and industry  

 

 


