

USN

Internal Assessment Test II –Nov. 2021

Sub: Machine Learning Sub Code: 21AI63 Branch: AIML

Date: 06/06/2024 Duration: 90 mins Max Marks: 50 Sem / Sec: A Time
12.15 –

1.45PM
OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Explain different types of Machine Learning Systems in brief

Machine learning systems can be broadly classified into several categories based on

different criteria such as the type of data they work with, the learning approach they

use, and their output. Here’s a brief overview of the main types of machine learning

systems:

1. Supervised Learning

In supervised learning, the algorithm is trained on a labeled dataset, which means that

each training example is paired with an output label. The goal is to learn a mapping

from inputs to outputs, so the model can predict the output for new, unseen inputs.

• Classification: The output variable is a category. For example, classifying

emails as spam or not spam.

• Regression: The output variable is a continuous value. For example,

predicting house prices.

2. Unsupervised Learning

In unsupervised learning, the algorithm is given data without explicit instructions on

what to do with it. The goal is to find hidden patterns or intrinsic structures in the

input data.

• Clustering: The task is to group similar data points together. For example,

customer segmentation in marketing.

• Association: The task is to find rules that describe large portions of the data.

For example, market basket analysis to find product purchase correlations.

3. Semi-Supervised Learning

This approach is a mix of supervised and unsupervised learning. It uses a small

amount of labeled data and a large amount of unlabeled data to train the model. This

is useful when labeling data is expensive or time-consuming.

4. Reinforcement Learning

[10] CO1 L2

Reinforcement learning involves training an agent to make a sequence of decisions

by rewarding it for good actions and penalizing it for bad ones. The agent learns to

achieve a goal in an uncertain, potentially complex environment.

• Markov Decision Processes (MDP): The decision-making is modeled with

states, actions, and rewards.

5. Self-Supervised Learning

Self-supervised learning is a form of unsupervised learning where the data provides

the supervision. This approach involves creating tasks from the data itself, allowing

the model to learn representations by predicting parts of the data from other parts.

6. Transfer Learning

Transfer learning involves taking a pre-trained model developed for a task and

adapting it to a different but related task. This is particularly useful when there is

limited labeled data available for the new task.

7. Multi-Instance Learning

In multi-instance learning, the model is trained on bags of instances. The individual

instances within a bag are not labeled, but the bag itself is labeled. The goal is to

predict the label of new bags based on the instances they contain.

8. Online Learning

Online learning algorithms update the model incrementally as new data arrives. This

is useful for scenarios where the data is too large to fit into memory or arrives in a

stream.

9. Batch Learning

In batch learning, the model is trained on the entire dataset at once. This approach is

suitable when the data is static and can fit into memory.

10. Active Learning

Active learning is a special case of supervised learning where the algorithm

selectively queries the user to label new data points with the desired outputs. This is

useful when labeling data is expensive and the model can identify the most

informative examples to label.

11. Dimensionality Reduction

Dimensionality reduction methods are used to reduce the number of features in the

dataset while retaining as much information as possible. This helps in improving

computational efficiency and reducing overfitting.

• Principal Component Analysis (PCA): A method to reduce dimensions by

transforming the data into a new coordinate system.

• t-Distributed Stochastic Neighbor Embedding (t-SNE): A technique for

dimensionality reduction that is particularly good at visualizing high-

dimensional data.

2 Write FIND-S algorithm and explain with example given below

The FIND-S algorithm is a simple machine learning algorithm used for learning a

hypothesis from a set of positive examples. It finds the most specific hypothesis that

fits all the positive examples. The algorithm works as follows:

1. Initialize the hypothesis hhh to the most specific hypothesis, h=⟨ϕ,ϕ,…,ϕ⟩h =

\langle \phi, \phi, \ldots, \phi \rangleh=⟨ϕ,ϕ,…,ϕ⟩.
2. For each positive training instance xxx:

o For each attribute aia_iai:

▪ If the attribute aia_iai of xxx matches the attribute aia_iai of

hhh, do nothing.

▪ If the attribute aia_iai of xxx does not match the attribute

aia_iai of hhh, replace aia_iai of hhh with '?'.

3. Output the hypothesis hhh.

Example Dataset

Given the dataset:

Color Toughness Fungus Appearance Poisonous

Green Hard No Wrinkled Yes

Green Hard Yes Smooth No

Brown Soft No Wrinkled No

Orange Hard No Wrinkled Yes

Green Soft Yes Smooth Yes

Green Hard Yes Wrinkled Yes

Orange Hard No Wrinkled Yes

[10] CO1 L3

Applying FIND-S Algorithm

1. Initialization: Start with the most specific hypothesis. h=⟨ϕ,ϕ,ϕ,ϕ⟩h = \langle

\phi, \phi, \phi, \phi \rangleh=⟨ϕ,ϕ,ϕ,ϕ⟩
2. First Positive Example (Green, Hard, No, Wrinkled, Yes\text{Green, Hard,

No, Wrinkled, Yes}Green, Hard, No, Wrinkled, Yes):

h=⟨Green,Hard,No,Wrinkled⟩h = \langle \text{Green}, \text{Hard},

\text{No}, \text{Wrinkled} \rangleh=⟨Green,Hard,No,Wrinkled⟩
3. Second Positive Example (Orange, Hard, No, Wrinkled, Yes\text{Orange,

Hard, No, Wrinkled, Yes}Orange, Hard, No, Wrinkled, Yes):

h=⟨?,Hard,No,Wrinkled⟩h = \langle ?, \text{Hard}, \text{No},

\text{Wrinkled} \rangleh=⟨?,Hard,No,Wrinkled⟩
4. Third Positive Example (Green, Soft, Yes, Smooth, Yes\text{Green, Soft,

Yes, Smooth, Yes}Green, Soft, Yes, Smooth, Yes): h=⟨?,?,?,?⟩h = \langle ?,

?, ?, ? \rangleh=⟨?,?,?,?⟩
5. Fourth Positive Example (Green, Hard, Yes, Wrinkled, Yes\text{Green,

Hard, Yes, Wrinkled, Yes}Green, Hard, Yes, Wrinkled, Yes):

o Color: ???

o Toughness: ???

o Fungus: ???

o Appearance: ???

6. Fifth Positive Example (Orange, Hard, No, Wrinkled, Yes\text{Orange,

Hard, No, Wrinkled, Yes}Orange, Hard, No, Wrinkled, Yes):

o Color: ???

o Toughness: HardHardHard

o Fungus: NoNoNo

o Appearance: WrinkledWrinkledWrinkled

Explanation

The final hypothesis h=⟨?,Hard,No,Wrinkled⟩h = \langle ?, Hard, No, Wrinkled

\rangleh=⟨?,Hard,No,Wrinkled⟩ indicates that the specific attributes necessary for a

mushroom to be poisonous, according to the positive examples, are:

• Toughness: Hard

• Fungus: No

• Appearance: Wrinkled

This hypothesis means that any mushroom that is hard, has no fungus, and has a

wrinkled appearance is predicted to be poisonous. The color attribute is irrelevant

according to the hypothesis because it was generalized to '?', indicating that the color

does not affect whether a mushroom is poisonous or not.

3 Illustrate some of the basic design issues and approaches to machine learning

considering designing a program to learn to play checkers.

Designing a machine learning program to play checkers involves addressing several

fundamental design issues and choosing appropriate approaches. Below are some of

the key issues and potential solutions:

[10] CO1 L2

1. Representation of the Game State

Issue: How to represent the board and game state in a way that is useful for the

learning algorithm. Approach: Use a matrix or a list to represent the 8x8 board, where

each element represents a square that can be empty, occupied by a black piece, or

occupied by a white piece. Additional information such as whose turn it is can be

included as well.

2. Representation of the Policy or Value Function

Issue: How to represent the policy (strategy) that the program will use to choose its

moves, or the value function that evaluates the desirability of board positions.

Approach: Use a neural network, decision tree, or other function approximator to

represent the policy or value function. For example, a neural network can take the

board state as input and output the predicted value or the probability of choosing each

possible move.

3. Choice of Learning Algorithm

Issue: Which learning algorithm to use to train the policy or value function.

Approach: Possible algorithms include:

• Reinforcement Learning (RL): Algorithms like Q-learning, SARSA, or

more advanced methods like Deep Q-Networks (DQN) and Policy Gradient

methods can be used to learn the value of states or the best actions to take.

• Supervised Learning: If a dataset of expert moves is available, supervised

learning can be used to train the policy network to imitate expert play.

4. Exploration vs. Exploitation

Issue: How to balance exploring new moves (which might be better) with exploiting

known good moves. Approach: Use techniques like epsilon-greedy (with a decay

schedule), where the program chooses a random move with probability ε and the best-

known move with probability 1-ε, or more advanced methods like Upper Confidence

Bound (UCB) for better exploration.

5. Feature Extraction

Issue: How to extract useful features from the raw board state that can help the

learning algorithm. Approach: Use domain knowledge to hand-craft features (e.g.,

number of pieces, number of kings, piece positions) or use deep learning to

automatically learn features from the raw board state.

6. Training and Evaluation

Issue: How to train the model effectively and how to evaluate its performance.

Approach:

• Training: Use self-play, where the program plays against itself, to generate

training data. Techniques like Experience Replay can be used to store and

reuse past game experiences.

• Evaluation: Play games against other programs or human players to evaluate

the performance. Use metrics such as win/loss ratio and the quality of moves

to measure improvement.

7. Handling the Complexity of the Game

Issue: Checkers has a large state space and a long game horizon, making learning and

planning difficult. Approach: Use techniques like:

• Search Algorithms: Incorporate search algorithms like Minimax with Alpha-

Beta pruning to look ahead several moves and evaluate the outcomes.

• Hierarchical Learning: Break the problem into smaller sub-problems, such

as learning separate policies for different phases of the game (e.g., opening,

mid-game, endgame).

8. Dealing with Opponent Strategies

Issue: The program must be robust to a variety of opponent strategies. Approach:

Train the program against a diverse set of opponents, including different versions of

itself with varied strategies, to ensure it can handle different playing styles.

4 Apply the Candidate Elimination algorithm to a set of training examples to

demonstrate how it identifies the boundary hypotheses in the version space.

The Candidate Elimination algorithm is used in machine learning to find the set of all

hypotheses that are consistent with the given training examples. It maintains two sets

of hypotheses: the most specific hypotheses (S) and the most general hypotheses (G).

The algorithm iteratively refines these sets as it processes each training example.

Training Examples

Given the dataset:

Sky
AirTem

p
Humidity Wind

Wate

r

Forecas

t
EnjoySport

Sunny Warm Normal Strong Warm Same Yes

[6] CO1 L3

Sunny Warm High Strong Warm Same Yes

Rainy Cold High Strong Warm Change No

Sunny Warm High Strong Cool Change Yes

Steps of the Candidate Elimination Algorithm

1. Initialization:

o SSS (most specific hypothesis): ⟨ϕ,ϕ,ϕ,ϕ,ϕ,ϕ⟩\langle \phi, \phi, \phi,

\phi, \phi, \phi \rangle⟨ϕ,ϕ,ϕ,ϕ,ϕ,ϕ⟩
o GGG (most general hypothesis): ⟨?,?,?,?,?,?⟩\langle ?, ?, ?, ?, ?, ?

\rangle⟨?,?,?,?,?,?⟩
2. Processing each example:

o For a positive example, update SSS:

▪ Generalize SSS minimally to cover the example.

▪ Remove any hypotheses from GGG that do not cover the

example.

o For a negative example, update GGG:

▪ Specialize GGG minimally to exclude the example.

▪ Remove any hypotheses from SSS that cover the example.

Step-by-Step Processing

1. Processing the first example:

⟨Sunny, Warm, Normal, Strong, Warm, Same, Yes⟩\langle \text{Sunny, Warm,

Normal, Strong, Warm, Same, Yes}

\rangle⟨Sunny, Warm, Normal, Strong, Warm, Same, Yes⟩

• SSS (generalize to cover the example):

S=⟨Sunny, Warm, Normal, Strong, Warm, Same⟩S = \langle \text{Sunny,

Warm, Normal, Strong, Warm, Same}

\rangleS=⟨Sunny, Warm, Normal, Strong, Warm, Same⟩
• GGG (remove inconsistent hypotheses, but no change needed as GGG covers

the example): G=⟨?,?,?,?,?,?⟩G = \langle ?, ?, ?, ?, ?, ? \rangleG=⟨?,?,?,?,?,?⟩

2. Processing the second example:

⟨Sunny, Warm, High, Strong, Warm, Same, Yes⟩\langle \text{Sunny, Warm,

High, Strong, Warm, Same, Yes}

\rangle⟨Sunny, Warm, High, Strong, Warm, Same, Yes⟩

• SSS (generalize to cover both positive examples):

S=⟨Sunny, Warm, ? , Strong, Warm, Same⟩S = \langle \text{Sunny, Warm, ?

, Strong, Warm, Same} \rangleS=⟨Sunny, Warm, ? , Strong, Warm, Same⟩
• GGG (no change): G=⟨?,?,?,?,?,?⟩G = \langle ?, ?, ?, ?, ?, ?

\rangleG=⟨?,?,?,?,?,?⟩

3. Processing the third example:

⟨Rainy, Cold, High, Strong, Warm, Change, No⟩\langle \text{Rainy, Cold, High,

Strong, Warm, Change, No}

\rangle⟨Rainy, Cold, High, Strong, Warm, Change, No⟩

• SSS (no change as it is a negative example):

S=⟨Sunny, Warm, ? , Strong, Warm, Same⟩S = \langle \text{Sunny, Warm, ?

, Strong, Warm, Same} \rangleS=⟨Sunny, Warm, ? , Strong, Warm, Same⟩
• GGG (specialize GGG to exclude the negative example):

G={⟨Sunny, ?, ?, ?, ?, ?⟩,⟨?,Warm, ?, ?, ?, ?⟩,⟨?,?,?,?,?,Same⟩,⟨?,?,?,?,Warm,

?⟩}G = \{ \langle \text{Sunny, ?, ?, ?, ?, ?} \rangle, \langle ?, \text{Warm, ?,

?, ?, ?} \rangle, \langle ?, ?, ?, ?, ?, \text{Same} \rangle, \langle ?, ?, ?, ?,

\text{Warm, ?} \rangle

\}G={⟨Sunny, ?, ?, ?, ?, ?⟩,⟨?,Warm, ?, ?, ?, ?⟩,⟨?,?,?,?,?,Same⟩,⟨?,?,?,?,War

m, ?⟩}

Final Version Space

The final version space contains all hypotheses that lie between SSS and GGG.

• SSS (most specific hypothesis): S=⟨Sunny, Warm, ? , Strong, ? , ?⟩S = \langle

\text{Sunny, Warm, ? , Strong, ? , ?}

\rangleS=⟨Sunny, Warm, ? , Strong, ? , ?⟩
• GGG (most general hypotheses):

G={⟨Sunny, ?, ?, ?, ?, ?⟩,⟨?,Warm, ?, ?, ?, ?⟩}G = \{ \langle \text{Sunny, ?, ?,

?, ?, ?} \rangle, \langle ?, \text{Warm, ?, ?, ?, ?} \rangle

\}G={⟨Sunny, ?, ?, ?, ?, ?⟩,⟨?,Warm, ?, ?, ?, ?⟩}

 5 Explain the steps involved in classification using MNIST Dataset.

The MNIST (Modified National Institute of Standards and Technology) dataset is a

large database of handwritten digits commonly used for training various image

processing systems. Here’s a step-by-step guide to performing classification using the

MNIST dataset:

Step 1: Import Required Libraries

First, import the necessary libraries. You will typically need libraries such as numpy

for numerical operations, matplotlib for plotting, and tensorflow or scikit-learn for

machine learning tasks.

python

Copy code

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.utils import to_categorical

[4] CO2 L2

Step 2: Load the MNIST Dataset

The MNIST dataset can be directly loaded from TensorFlow or Keras datasets.

python

Copy code

(X_train, y_train), (X_test, y_test) = mnist.load_data()

Step 3: Data Exploration and Visualization

Explore the dataset to understand its structure and visualize some samples.

python

Copy code

print("Training data shape:", X_train.shape)

print("Testing data shape:", X_test.shape)

Plot the first image in the training dataset

plt.imshow(X_train[0], cmap='gray')

plt.title('Digit: {}'.format(y_train[0]))

plt.show()

Step 4: Preprocess the Data

Normalize the images to have pixel values between 0 and 1 and convert the labels to

categorical format.

python

Copy code

Normalize the images

X_train = X_train.astype('float32') / 255

X_test = X_test.astype('float32') / 255

Convert labels to categorical

y_train = to_categorical(y_train, 10)

y_test = to_categorical(y_test, 10)

Step 5: Build the Model

Create a neural network model using Keras. Here, a simple feedforward neural

network is used.

python

Copy code

model = Sequential()

model.add(Flatten(input_shape=(28, 28)))

model.add(Dense(128, activation='relu'))

model.add(Dense(64, activation='relu'))

model.add(Dense(10, activation='softmax'))

Step 6: Compile the Model

Compile the model by specifying the loss function, optimizer, and metrics.

python

Copy code

model.compile(loss='categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

Step 7: Train the Model

Train the model on the training dataset.

python

Copy code

model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test,

y_test))

Step 8: Evaluate the Model

Evaluate the model on the test dataset to see its performance.

python

Copy code

test_loss, test_acc = model.evaluate(X_test, y_test)

print('Test accuracy:', test_acc)

Step 9: Make Predictions

Use the trained model to make predictions on new data.

python

Copy code

predictions = model.predict(X_test)

Example prediction

print('Predicted label:', np.argmax(predictions[0]))

print('True label:', np.argmax(y_test[0]))

6(a) Discuss limitations of Find-S over Candidate Elimination Algorithm

The Find-S and Candidate Elimination algorithms are both used in the field of

machine learning to find hypotheses that are consistent with given training examples.

However, they have different approaches and limitations. Here are the key limitations

of the Find-S algorithm compared to the Candidate Elimination algorithm:

1. Inability to Handle Inconsistent Training Data

[05] CO1 L2

• Find-S: Assumes that there are no contradictory examples in the training data.

If there are conflicting examples (e.g., the same instance with different

classifications), Find-S will not be able to handle them and will produce an

incorrect hypothesis.

• Candidate Elimination: Can handle inconsistent training data by

maintaining a version space of hypotheses. It eliminates inconsistent

hypotheses as new training examples are processed.

2. Limited to the Most Specific Hypothesis

• Find-S: Only finds the most specific hypothesis that fits all the positive

examples. It does not consider any general hypotheses that might also fit the

data. This can lead to overfitting, where the hypothesis is too specific and does

not generalize well to unseen data.

• Candidate Elimination: Maintains both the most specific (S) and the most

general (G) hypotheses, allowing for a broader and more flexible search

within the version space. This helps in balancing specificity and generality.

3. No Consideration of Negative Examples

• Find-S: Ignores negative examples entirely, which can result in a hypothesis

that incorrectly classifies negative instances as positive. This is because it only

focuses on generalizing positive examples.

• Candidate Elimination: Uses both positive and negative examples to refine

the hypothesis space, ensuring that the resulting hypotheses correctly classify

both positive and negative instances.

4. Sensitivity to Noise

• Find-S: Highly sensitive to noise in the training data. Since it focuses on the

most specific hypothesis, any noisy or incorrect positive example can lead to

a highly specific and incorrect hypothesis.

• Candidate Elimination: More robust to noise because it considers a range of

hypotheses and refines the hypothesis space incrementally. However, it still

can be affected by noise, but less severely than Find-S.

5. Output Hypothesis Quality

• Find-S: The final hypothesis produced by Find-S is highly dependent on the

order of the training examples and the presence of noisy data. It may not

always represent the best hypothesis that fits the training data.

• Candidate Elimination: Provides a more comprehensive set of hypotheses

by considering all possible generalizations and specializations, leading to a

more reliable final hypothesis that fits the training data well.

6. Complexity and Computation

• Find-S: Simple and computationally efficient since it only updates the

hypothesis with each positive example and does not maintain multiple

hypotheses.

• Candidate Elimination: More computationally complex because it maintains

and updates both the S and G sets with each training example. This can be

more resource-intensive, especially with a large hypothesis space and many

examples.

6(b) Define the following terms: (i) Concept Learning (ii)Version Space (iii)

Hypothesis Space (iv)General Boundary (v) Specific Boundary

(i) Concept Learning

Concept Learning is the task of inferring a Boolean-valued function from training

examples of its input and output. It involves finding a general rule that covers all the

positive examples and none of the negative examples. In simpler terms, concept

learning is about finding a hypothesis that correctly classifies given data points into

positive and negative categories based on their attributes.

(ii) Version Space

Version Space is the subset of the hypothesis space that is consistent with all the

training examples seen so far. It represents the set of all hypotheses that correctly

classify the training examples. The version space is bounded by the most specific

hypothesis (S) and the most general hypothesis (G).

(iii) Hypothesis Space

Hypothesis Space (H) is the set of all possible hypotheses that can be formulated

using a given hypothesis language. It includes all the potential rules or functions that

could explain the relationship between input features and output labels. In concept

learning, the hypothesis space contains all the possible ways to classify the examples

based on their attributes.

(iv) General Boundary

General Boundary (G) of the version space is the set of the most general hypotheses

that are consistent with the training examples. These hypotheses are as general as

possible without misclassifying any of the negative examples. The general boundary

represents one limit of the version space, ensuring that no hypothesis more general

than those in G is consistent with all the training examples.

(v) Specific Boundary

Specific Boundary (S) of the version space is the set of the most specific hypotheses

that are consistent with the training examples. These hypotheses are as specific as

possible while still correctly classifying all the positive examples. The specific

boundary represents the other limit of the version space, ensuring that no hypothesis

more specific than those in S is consistent with all the training examples.

[05] CO1 L2

CO PO Mapping

CO-PO and CO-PSO Mapping

Course Outcomes

B
lo

o
m

s

L
ev

el

M
o
d

u
le

s

co
v
er

ed

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

P
S

O
4

CO1

Understand the concept of

Machine Learning and

Concept Learning.

L1 1,2, 3 2 1 - - - - - - - - 1 - - - -

CO2

Apply the concept of ML and

various classification

methods in a project.

L2,

L3
1,2 2 2 1 - - - - - - - - - - - - -

CO3

Analyse various training

models in ML and the SVM

algorithm to be implemented.

L2 1,2 3 2 1 - - - - - - - - 1 - - - -

CO4

Apply the ML concept in a

decision tree structure and

implementation of Ensemble

learning and Random Forest

L3 3,4 3 2 1 - - - - - - - - 2 - - - -

CO5

Apply Bayes techniques and

explore more about the

classification in ML.

L2,

L3
4,5 3 2 1 - - - - - - - - 1 - - - -

COGNITIVE

LEVEL
REVISED BLOOMS TAXONOMY KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)
CORRELATION

LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation

PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3 Design/development of solutions PO9 Individual and team work 2
Moderate/

Medium

PO4
Conduct investigations of

complex problems
PO10 Communication 3

Substantial/

High

PO5 Modern tool usage PO11 Project management and finance

PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

PSO3 Apply software engineering methods to design, develop, test and manage software systems.

PSO4 Develop intelligent applications for business and industry

