

USN

Internal Assessment Test 3 – JULY 2024

Sub: Natural Language Processing Sub Code: 21AI643 Branch: AIML

Date: 30/07/2024 Duration: 90 mins Max Marks: 50 Sem / Sec: VI/ A OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Describe the following:

a) Topic models
b) Cohesion and Cohesion Matrix

Topic modeling is a technique in natural language processing (NLP) used to identify the underlying topics within
a collection of documents. It helps in understanding the structure and themes present in large text datasets. Here are
a few examples of topic modeling algorithms:

1. Latent Dirichlet Allocation (LDA):
○ LDA is a generative probabilistic model that assumes documents are mixtures of topics, and

topics are mixtures of words. It helps in discovering hidden topics in a set of documents.
○ Example: Given a set of news articles, LDA might identify topics such as politics, sports,

technology, and health, with each topic represented by a set of words like:
■ Politics: election, government, policy, vote
■ Sports: game, team, player, match
■ Technology: software, computer, internet, device

■ Health: doctor, disease, treatment, medicine

2. Non-Negative Matrix Factorization (NMF):
○ NMF factorizes the term-document matrix into two non-negative matrices: one representing

the document-topic distribution and the other representing the topic-word distribution.
○ Example: In a collection of research papers, NMF might identify topics like machine

learning, data science, and biology, with each topic characterized by specific terms:
■ Machine Learning: algorithm, model, training, neural
■ Data Science: data, analysis, statistical, visualization

■ Biology: cell, DNA, protein, organism

3. Latent Semantic Analysis (LSA):
○ LSA uses singular value decomposition (SVD) to decompose the term-document matrix and

capture the latent relationships between terms and documents.
○ Example: Analyzing customer reviews, LSA might reveal topics such as product quality,

customer service, and delivery experience, with each topic identified by relevant terms:
■ Product Quality: durable, reliable, excellent, value
■ Customer Service: helpful, support, response, friendly
■ Delivery Experience: fast, timely, package, tracking

Cohesion

Cohesion refers to the degree to which elements within a text or set of texts are semantically related or stick together
in a meaningful way. In topic modeling, cohesion usually pertains to the semantic similarity of words within a topic.
Higher cohesion indicates that the words within a topic are closely related in meaning, which makes the topics more
interpretable.

Example:

● A topic with high cohesion might include words like "doctor," "nurse," "hospital," and "patient," all
related to the theme of healthcare.

● A topic with low cohesion might include unrelated words like "doctor," "car," "software," and
"economy," making it harder to interpret the theme.

Cohesion Matrix

A cohesion matrix (or coherence matrix) is used to evaluate the quality of the topics generated by a topic model.

It provides a numerical representation of the cohesion between different elements (e.g., words within a topic).

Types of Cohesion Measures:

1. Pointwise Mutual Information (PMI):

[5+5]

Des-5
eg-2

dec-3
eg-2

CO4 L2

○ PMI measures the association between pairs of words within a topic. Higher PMI values
indicate that words co-occur more frequently than would be expected by chance.

○ Example: If the words "doctor" and "patient" frequently co-occur in documents about
healthcare, their PMI would be high, indicating strong cohesion.

2. Cosine Similarity:
○ Cosine similarity measures the cosine of the angle between two vectors in a multi-

dimensional space, indicating how similar the vectors are.
○ Example: In a vector space model, if the word vectors for "computer" and "software" are

close to each other, their cosine similarity would be high, suggesting they belong to a
cohesive topic.

3. Word Co-occurrence:
○ This measures how often words appear together within a certain context window in the text.

High co-occurrence rates indicate strong cohesion.
○ Example: In a collection of articles about technology, the words "internet" and "browser"

might frequently appear together, indicating a cohesive topic.

Applications of Cohesion and Cohesion Matrix:

● Model Evaluation: Assessing the quality and interpretability of the topics generated by a topic model.
● Parameter Tuning: Helping in the selection of optimal parameters for topic modeling algorithms, such

as the number of topics.
● Comparison of Models: Comparing different topic modeling approaches or algorithms to determine

which provides more coherent and meaningful topics.

► Texts contain pertinent information that co-refers across sentences and paragraphs,texts
contain relations between phrases, clauses, and sentences that are often causally linked;

and texts that depend on relating a series of chronological events contain temporal features

that help the reader to build a coherent representation of the text.
For example in the movie “The Avengers”, when the helicarrier is attacked and one of its engine is broken, and
iron man and captain america are trying to fix it, the conversation between them goes like this:

That stator control unit can reverse the polarity long enough to disengage maglev and that could..

Speak English!

You see that red lever? It will slow the rotors down long enough for me to get out. Stand by it. Wait

for my word.

➢ But cohesive elements, and by consequence cohesion, does not simply feature in a

text as dialogues tend to feature in narratives, or as cartoons tend to feature in
newspapers.

➢ That is, cohesion is not present or absent in a binary or optional sense. Instead,

cohesion in text exists on a continuum of presence, which is sometimes indicative of
the text-type in question and sometimes indicative of the audience for which the text

was written.

➢ In this paper, we discuss the nature and importance of cohesion; we demonstrate a

computational tool that measures cohesion; and, most importantly, we demonstrate a
novel approach to identifying text-types by incorporating contrasting rates of

cohesion.

2 Explain Literal word matching and Soundex word matching approaches. Apply the word matching algorithms
with the given string below:
word1 = "example"

 word2 = "exampel"

Literal Word Matching

 [10]

 dec-5

 sol-5

CO4 L3

Literal word matching refers to comparing two words character by character to check if they are exactly the

same. This is a straightforward method and does not account for minor spelling errors or variations.

Example:

● Given words: word1 = "example" and word2 = "exampel"

● Literal matching will compare each character in both words.
○ e vs e
○ x vs x

○ a vs a
○ m vs m
○ p vs p
○ l vs e (mismatch)
○ e vs l (mismatch)

Since there are mismatches, word1 and word2 do not match literally.

Soundex Word Matching

Soundex is a phonetic algorithm used to index words by their sound when pronounced in English. It maps words
to a four-character code based on their pronunciation. Words that sound similar should have the same Soundex
code, even if they are spelled differently.

Soundex Algorithm Steps:

1. Retain the first letter of the word.
2. Replace the remaining letters with numbers based on the Soundex table.
3. Remove all occurrences of a, e, i, o, u, y, h, w (except the first letter).
4. Replace consecutive duplicate numbers with a single number.
5. Truncate or pad the result to ensure it is four characters long.

Example:

● Given words: word1 = "example" and word2 = "exampel"

● Convert each word to its Soundex code:

For word1 = "example":

○ E (retain first letter)

○ x = 2
○ a (ignore)
○ m = 5
○ p = 1
○ l = 4
○ e (ignore)
○ Resulting code: E251

● For word2 = "exampel":

○ E (retain first letter)
○ x = 2
○ a (ignore)
○ m = 5
○ p = 1
○ e (ignore)

○ l = 4
○ Resulting code: E251

Both words have the same Soundex code E251, indicating they sound similar.

Applying the Algorithms to the Given Strings

Literal Word Matching:

● word1 = "example"

● word2 = "exampel"

● Literal match result: No match (since there are mismatches at the 6th and 7th positions).

Soundex Word Matching:

● word1 = "example"

● word2 = "exampel"

● Soundex codes: Both are E251.

● Soundex match result: Match (since both words have the same Soundex code).

In summary, while literal word matching identifies word1 and word2 as different, Soundex word matching

identifies them as similar based on their phonetic representation.

3 Describe the following approaches used in Information Retrieval with suitable examples and algorithms.

a) Indexing b) Stop words elimination c) Stemming

1. Indexing

Indexing is the process of creating data structures that allow for efficient retrieval of information from a large
dataset. In the context of information retrieval, indexing involves organizing documents or data in a way that
makes it easier and faster to search and retrieve relevant information.

Types of Indexing:

● Inverted Index: An inverted index maps terms to the documents that contain them. This allows for
quick lookup of documents based on the presence of specific terms.

Algorithm:
○ Tokenization: Break down documents into individual terms or tokens.
○ Normalization: Convert tokens to a standard form (e.g., lowercase).
○ Index Creation: Create a dictionary where each term points to a list of documents (and

optionally, positions within the documents) that contain the term.
● Example: Consider the following documents:

○ Document 1: "Information retrieval is fun"
○ Document 2: "Retrieval of information is important"

The inverted index would be:
json

{
 "information": [1, 2],
 "retrieval": [1, 2],
 "is": [1, 2],
 "fun": [1],
 "of": [2],
 "important": [2]
}

●

2. Stop Words Elimination

Stop words elimination is the process of removing common words that are unlikely to be useful in retrieving
relevant documents. These words (e.g., "the," "is," "in," "and") occur frequently but do not carry significant
meaning in the context of a search query.

Algorithm:

1. Create a List of Stop Words: This list contains words to be removed during preprocessing.
2. Tokenization: Break down documents into individual terms.
3. Stop Words Removal: Remove terms that are present in the stop words list.

Example: Given the document: "Information retrieval is fun and important"

● Stop words list: ["is", "and"]
● After removal: "Information retrieval fun important"

[10]

des-7
example-3

CO5 L2

3. Stemming

Stemming is the process of reducing words to their base or root form. The goal is to treat words with the same
root as identical for retrieval purposes, which helps in matching documents to queries more effectively.

Types of Stemming Algorithms:

● Porter Stemmer: One of the most widely used stemming algorithms, which applies a series of rules to
iteratively reduce words to their stems.

Algorithm:
○ Step 1: Remove common suffixes (e.g., "ing," "ed," "s").
○ Step 2: Apply transformations to handle plural forms and past tense.
○ Step 3: Further reductions to handle derivational suffixes.
○ Step 4: Final cleanup to ensure the word is in its simplest form.

● Example: Given the words: "running," "runner," "runs"

○ Porter Stemmer reduces these to: "run," "run," "run"

Examples and Algorithms:

Indexing Example

Consider the documents:

● Doc 1: "Cats are great pets."
● Doc 2: "Dogs are great pets."

● Doc 3: "Cats and dogs can be great friends."

Inverted Index Creation:

1. Tokenization:
○ Doc 1: ["cats", "are", "great", "pets"]
○ Doc 2: ["dogs", "are", "great", "pets"]
○ Doc 3: ["cats", "and", "dogs", "can", "be", "great", "friends"]

2. Normalization:
○ Convert all tokens to lowercase (already lowercase here).

Index Creation:
json

{
 "cats": [1, 3],
 "are": [1, 2],
 "great": [1, 2, 3],
 "pets": [1, 2],
 "dogs": [2, 3],
 "and": [3],
 "can": [3],
 "be": [3],
 "friends": [3]
}

3.

Stop Words Elimination Example

Given the document: "Cats are great pets and dogs are too"

● Stop words list: ["are", "and", "too"]
● After removal: "Cats great pets dogs"

Stemming Example

Given the words: "connecting," "connected," "connection"

● Porter Stemmer reduces these to: "connect," "connect," "connect"

Summary

● Indexing enables efficient search by creating structures like inverted indices that map terms to

documents.
● Stop words elimination improves relevance by removing common words that do not add meaningful

value.
● Stemming enhances retrieval by reducing words to their base form, thus treating related words as

equivalent.

4 Explain basic Information Retrieval process with a neat diagram.

State and explain the importance of Zip’s law related to word distribution in NLP.

The Information Retrieval (IR) process involves several steps to fetch relevant information from a large collection
of data based on a user's query. Here's a step-by-step explanation along with a diagram to illustrate the process.

Steps in the Information Retrieval Process:

1. Document Collection: The collection of documents that will be searched. These documents can be

any form of text, such as web pages, articles, books, etc.
2. Preprocessing: This step involves preparing the text for indexing and retrieval. It includes several sub-

steps:
○ Tokenization: Splitting text into individual words or tokens.

○ Stop Words Removal: Eliminating common words that do not carry significant meaning
(e.g., "the", "is", "in").

○ Stemming/Lemmatization: Reducing words to their base or root form.
3. Indexing: Creating an index to enable efficient search. An inverted index is commonly used, which

maps each term to the documents in which it appears.
4. Query Processing: Similar to document preprocessing, the user's query is processed to prepare it for

searching.
○ Tokenization: Splitting the query into individual terms.

○ Stop Words Removal: Removing common words.
○ Stemming/Lemmatization: Reducing query terms to their base form.

5. Searching: Matching the processed query against the index to retrieve relevant documents.
6. Ranking: Ordering the retrieved documents based on relevance to the query. This can be done using

various ranking algorithms, such as TF-IDF (Term Frequency-Inverse Document Frequency) or BM25.
7. Results Presentation: Displaying the ranked list of documents to the user.

| Document | | Preprocessing| | Indexing |

| Collection + -----> | (Tokenization| | (Inverted |
| (Text Data) | | Stop Words | -----> | Index) |

| | | Removal, | | |

| | | Stemming) | | |

 |
 v

 | Index |
 ^

 |

| User Query | | Query | | Searching |
| (Text Query) + -----> | Processing |-----> | (Match Query |

| | | (Tokenization, | | against Index)|
| | | Stop Words | | |

| | | Removal, | | |

| | | Stemming) | | |

 |
 v

 | Ranking |
 | (TF-IDF, |

 | BM25) |
 v

 | Results |
 | Presentation |

[5+5]

des-3
eg-2

CO5 L2

Zipf’s Law in NLP

Zipf’s Law states that in a given corpus of natural language, the frequency of any word is inversely proportional

to its rank in the frequency table. Specifically, the second most frequent word occurs approximately half as often
as the most frequent word, the third most frequent word occurs about one-third as often, and so on.

Formal Expression of Zipf’s Law:

f(r)≈Craf(r) \approx \frac{C}{r^a}f(r)≈raC

● f(r)f(r)f(r): Frequency of the word with rank rrr
● CCC: Constant
● rrr: Rank of the word
● aaa: Exponent close to 1 (typically around 1)

Importance of Zipf’s Law in NLP:

1. Understanding Vocabulary Distribution: Zipf’s Law helps in understanding the distribution

of words in a language, which is crucial for tasks like corpus analysis, language modeling, and lexicon
building.

2. Efficient Indexing: By recognizing that a small number of words appear very frequently while the
majority appear rarely, IR systems can optimize indexing and storage. For example, stop words can be

identified and handled differently to improve search efficiency.
3. Compression and Storage: Zipf’s Law is used in text compression algorithms because it reveals

patterns in word frequency that can be exploited to reduce the size of stored text data.
4. Improving Search Performance: Understanding word frequency distribution helps in designing better

ranking algorithms. For instance, frequent words might be given less weight in relevance scoring.
5. Handling Rare Words: Zipf’s Law indicates that most words in a large corpus are rare. Techniques

like smoothing in language models are used to address the issue of rare words.
6. Resource Allocation: Helps in allocating computational resources effectively by focusing more on

processing frequent terms that contribute most to the information content.

Example:

Consider a corpus with the following word frequencies:

● "the": 5000 times (rank 1)
● "is": 2500 times (rank 2)
● "in": 1666 times (rank 3)
● "and": 1250 times (rank 4)
● "of": 1000 times (rank 5)

According to Zipf's Law, the word ranked 2 should appear about half as frequently as the word ranked 1, the word
ranked 3 about one-third as frequently, and so on. This distribution helps in understanding the redundancy and

importance of different words in text processing tasks.

des-3
eg-2

5 Explain the Cluster and fuzzy models of information retrieval systems with suitable examples.

The cluster model attempts to reduce the number of matches during retrieval.

The cluster hypothesis that explains why clustering could prove efficient in IR states that

“Closely associated documents tend to be relevant to the same clusters.”

The hypothesis suggests that closely associated documents are likely to be retrieved together.

By forming groups or classes or clusters of related documents, the search time reduces

considerably.

Instead of matching a query with every document in the collection, it is matched with

representatives of the cluster (class), and only documents from a class whose representative is

close to query, are considered for individual match.

[10]

Desc-5
examples-5

CO5 L2

Clustering is applied on terms instead of documents. Terms can be grouped to form classes of

co-occurrence terms.

A number of methods are used to group documents. One of the method is based on similarity

matrix.

Cluster Generation method based on Similarity Matrix

Let D = { d1,d2,d3,…..dm } be set of documents.

Let E = (eij)n,n be the similarity matrix.

The element Ei,j in this matrix, denotes a similarity between document di and dj.

Let T be the threshold value.

Any pair of documents di and dj (i != j) whose similarity measure exceeds threshold (eij >=

T) is grouped to form a cluster.

The remaining documents form a single cluster.

The set of clusters thus obtained is

C = { C1, C2, …, Ck, …, Cp }

A representative vector of each cluster is constructed by computing the centroid of the

document vectors belonging to that class.

Representation vector for a cluster Ck is rk = { a1k, a2k, …, aik, …, amk }

An element aik in this vector is computed as

Where aij is weight of the term ti, of the document dj, in cluster Ck.

During retrieval, the query is compared with the cluster vectors

(r1, r2, …, rk, …, rp)

This comparison is carried out by computing the similarity between the query vector q and

the representative vector r, as

A cluster C, whose similarity s, exceeds a threshold is returned and the search proceeds in
that cluster.

•

•

• In the fuzzy model, the document is represented as a fuzzy set of terms, i.e., a set of

pairs [ti ,μ (ti)] Where μ is the membership function.

• The membership function assigns to each term of the document a numeric membership

degree.

• The membership degree expresses the significance of term to the information contained

in the document.

• Significance values (weights) are assigned based on the number of occurrences of the

term in the document and in the entire document collection.

• Each document in the collection -

D = { d1, d2, …, dj, …, dn }

Can thus be represented as a vector of term weights,

(wij, w2j, w3j, …, wij, …, wmj)
 t

Where wij is the degree to which term ti belongs to document dj.

• Each term in the document is considered a representative of a subject area and wij is
the membership function of document dj to the subject area represented by term ti.

• Each term ti is represented by a fuzzy set fi in the domain of documents given by

fi = { (dj, wij) } | i = 1, …, m; j = 1, …, n

• This weighted representation makes it possible to rank the retrieved documents in

decreasing order of their relevance to the user’s query.

• Queries are Boolean queries.

• For each term that appears in the query, a set of documents is retrieved.

• Fuzzy set operations are then applied to obtain the desired result.

Single-term Query:

• For a single-term query q=tq, those documents from the fuzzy set

fq ={(dj, wiq)},

are retrieved for which wiq exceeds a given threshold. The threshold may also be

zero.

AND Query:

• For an AND query q = tq1 ^ tq2, the fuzzy sets fq1 and fq2 are obtained and then, their

intersection is obtained, using the fuzzy intersection operator

fq1 ^ fq2 = min { (dj, wiq1), (dj, wiq) }

 The documents in this set are returned.

OR Query:

• For an OR query q = tq1 V tq2, the union of fuzzy sets fq1 and fa2 is computed to

retrieve documents as follows -

 fq1 V fq2 = max { (dj, wiq1), (dj, wiq) }

Consider the following 3 documents:

d1 = { information, retrieval, query }

d2 = { retrieval, query, model }

 d3 = { information, retrieval }

Where the set of terms used to represent documents is

T = { information, model, query, retrieval }

Fuzzy set for terms

 f1 = { (d1, 1/3), (d2, 0), (d3, 1/2) } → t1 = information

 f2 = { (d1, 0), (d2, 1/3), (d3, 0) } → t2 = model

 f3 = { (d1, 1/3), (d2, 1/3), (d3, 0) } → t3 = query

 f4 = { (d1, 1/3), (d2, 1/3), (d3, 1/2) } → t4 = retrieval

If the query is q = t2 ∧ t4, then document d2 is returned.

6 a) Define term weighting. Consider a document represented by the three terms {tornado, swirl,

wind} with the raw tf 4, 1 and 1 respectively. In a collection of 100 documents, 15 documents
contain the term tornado, 20 contain swirl and 40 contain wind. Find the idf and the term

weight of the three terms.

idf - tornado -> log(n / ni) = log (100 / 15) = 0.824 Weight - tornado -> tf x idf = 4 * 0.824
= 3.296

idf - swirl -> log(n / ni) = log (100 / 20) = 0.699 Weight - tornado -> tf x idf = 1 * 0.699
= 0.699

idf - wind -> log(n / ni) = log (100 / 40) = 0.398 Weight - tornado -> tf x idf = 1 * 0.398
= 0.398

[5]
Desc-3

calculator-2

CO5 L3

b) Explain WordNet and FrameNet with suitable examples and write the hypernym chain for

‘RIVER’ extracted from WordNet 2.0

WordNet:

WordNet is a large lexical database for the English language. Inspired by psycholinguistic

theories, it was developed and is being maintained at the Cognitive Science Laboratory,

Princeton University, under the direction of George A. Miller.

WordNet consists of three databases

● One for nouns

● One for verbs
● One for both adjectives and adverbs

Information is organized into sets of synonymous words called synsets, each representing one

base concept. The synsets are linked to each other by means of lexical and semantic relations.
Lexical relations occur between word forms (senses) and semantic relations between word

meanings. These relations include synonymy, hypernymy / hyponymy, antonymy, meronymy

/ holonymy, troponymy, etc. A word may appear in more than one synset and in more than one
part of speech. The meaning of the word is called sense. WordNet lists all senses of a word,

each sense belonging to a different synset.

WordNet’s sense entries consist of set synonyms and a gloss. A gloss consists of a dictionary-

style definition and examples demonstrating the use of a synset in a sentence. Glosses help
differentiate meanings.

The Figure below shows Noun relations in WordNet

Nouns and verbs are organized into hierarchies based on the hypernymy/hyponymy relation.

[5]
desc-3

eg:2

CO5 L3

WordNet is freely and publicly available for download from

http://wordnet.princeton.edu/obtain. WordNet for other languages have been developed, for

example, EuroWordNet and Hindi WordNet.

EuroWordNet covers European languages, including English, Dutch, Spanish, Italian,

German, French, Czech, and Estonian.

Hindi WordNet has been developed by CFILT (Resource Center for Indian Language

Technology Solutions), IIT Bombay. Its database consists of more than 26208 synsets and
56928 Hindi words. It is organized using the same principles as English WordNet but include

some Hindi-specific relations - causative relations. Hindi WordNet can be obtained from the

URL http://www.cfilt.iitb.ac.in/wordnet/webhwn/

CFLIT has also developed a Marathi WordNet
http://www.cfilt.iitb.ac.in/wordnet/webmwn/wn.php

Applications of WordNet:

• Concept identifications in Natural language
WordNet can be used to identify concepts pertaining to a term, to suit them

to the full semantic richness.

• Word sense disambiguation
It offers

• sense definitions of words

• identifies synsets of synonyms

• Defines a number of semantic relations

• Automatic Query Expansion

WordNet semantic relations can be used to expand queries so that the search
for a document is not confined to the pattern-matching of query terms, but

also covers synonyms.

• Document structuring and categorization
The semantic information extracted from WordNet has been used for text

categorization.

• Document summarization
The approach presented by Barzilay and Elhadad uses information from
WordNet to compute lexical chains.

http://wordnet.princeton.edu/obtain
http://www.cfilt.iitb.ac.in/sordnet/sebhwn/
http://www.cfilt.iitb.ac.in/wordnet/webmwn/wn/php

FrameNet:

• FrameNet is a large database of semantically annotated English sentences.

• It is based on principles of frame semantics.

• It defines a tagset of semantic roles called the frame element.

• Sentences from the British National Corpus are tagged with these frame elements.

• The basic philosophy involved is that each word evokes a particular situation with

particular participants.

• FrameNet aims at capturing these situations through the case-frame representation of

words (verbs, adjectives, and nouns).

• The word that invokes a frame is called the target word or predicate, and the participant
entities are defined using semantic roles, which are called frame elements.

• The FrameNet ontology can be viewed as a semantic-level representation of the

predicate-argument structure.

• Each frame contains a main lexical item as a predicate and associated frame-specific

semantic roles, such as AUTHORITIES, TIME, AND SUSPECT in the ARREST

frame, called frame elements.

• Example: The sentence below is annotated with semantic roles AUTHORITIES AND

SUSPECT

[Authorities The police] nabbed [suspect the snatcher].

• The COMMUNICATION frame has the semantic roles ADDRESSEE,

COMMUNICATOR, TOPIC, and MEDIUM.

• A JUDGEMENT frame contains roles such as a JUDGE, EVALUEE, and REASON.

• Example:

[judge She] [Evaluee blames the police] [Reason for failing to provide enough

protection].

• A frame may inherit roles from another frame. Eg., a STATEMENT frame may inherit

from a COMMUNICATION frame, it contains roles such as SPEAKER,
ADDRESSEE, and MESSAGE.

• Example:

[Speaker She] told [Addressee me] [Message ‘I’ll return by 7:00 pm today’].

Applications of FrameNet:

FrameNet data can be used for
1. Automatic semantic parsing

2. Information extraction

3. Question answering system
4. Information retrieval

5. Machine translation

6. Text summarization
7. Word sense disambiguation

CI CCI HOD-AIML

