CMR	LICNI							Suffer VEARS .
INSTITUTE OF TECHNOLOGY	USN						J	
				• • • •				

		Inter	nal Assess	ment Test – II	I Aug 2	2024										
Sub:Discrete Mathematical StructuresCode:BCS40									S405A	5A						
Date	: 02/08/2024	Duration:	90 mins	Max Marks:	50	Sem:	IV	Branch:	anch: AIML (A and B sec)							
	Questi	ion 1 is compu	lsory and	answer any 6 fro	om the re	emaining	g ques	stions.	1	1						
								Marks	OBE							
										CO	RBT					
1 II	In how many ways the 26 letters of the English alphabet be permuted so that none of the patterns				[8]	CO4	L3									
C	CAR, DOG, PUN or BYTE occurs?							[~]								
E	efine Derangement. T	here are eigh	nt letters t	o eight differe	nt peop	le to be	plac	ed in eight								
² different envelopes. Find the number of ways of doing this so that at least one letter gets to the [7] CO4					L3											
	ght person.		01				100001	Bets ts ts								
								T 0								
3 F	3 Find the rook polynomial for the 3×3 board using expansion formula. [7] CO4 L							L3								
							004	т.2								
4 S	olve the recurrence relation $a_n = 3a_{n-1} - 2a_{n-2}$, for $n \ge 2$ given $a_1 = 5$, $a_2 = 3$.							3.	[7]	CO4	L3					

	TUTE OF NOLOGY		USN										. # (21.4 lites).		CMRIT
		Inter	nal Asses	smen	t Test –	III	Aug 2	2024							
Sub:	Sub:Discrete Mathematical StructuresCode:									de:	BCS	L			
Date:	02/08/2024	Duration:	90 mins	Ma	x Mark	s:	50	50 Sem: IV Branch:					AIML and B sec)		
	Questi	ion 1 is compu	lsory and	answ	er any 6	fron	n the r	emaiı	ning	ques	tions	•			
											Marks	OBE			
	1 0	<u> </u>	T 1' 1	1 1	1		. 1	.1 .		0	1			CO	RBT
1	In how many ways the 26 letters of the English alphabet be permuted so that none of the pattern CAR, DOG, PUN or BYTE occurs?									attern	8 [8]	CO4	L3		
De	fine Derangement. T	here are eigh	nt letters	to eig	tht diff	erent	peop	le to	be	place	ed ir	ı eigh	t		
-	ifferent envelopes. Find the number of ways of doing this so that at least one letter gets to the									•		CO4	L3		
	ht person.		or ways	01 001							8.00	10 111			
3 Fir	Find the rook polynomial for the 3×3 board using expansion formula.								[7]	CO4	L3				
4 Sol	lve the recurrence rela	tion $a_n = 3a$	for $a_n = 3a_{n-1} - 2a_{n-2}$, for $n \ge 2$ given $a_1 = 5, a_2 = 3$.								[7]	CO4	L3		
														I	

5	Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x - 5 & if \ x > 0 \\ -3x + 1 & if \ x \le 0 \end{cases}$ Find	[7]	CO3	L3
	$f^{-1}(0), f^{-1}(1), f^{-1}(3), f^{-1}(6)$ and $f^{-1}([-5,5])$.			
6	Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = 1 - x + x^2$. If $(gof)(x) = 9x^2 - 9x + 3$, determine a and b.	[7]	CO3	L3
7	Sate Pigeon-hole Principle. Prove that if any number from 1 to 8 are chosen then two of them will have their sum as 9.	[7]	CO3	L3
8	Sate and prove Lagrange's theorem.	[7]	CO5	L2

5	Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x - 5 & if \ x > 0 \\ -3x + 1 & if \ x \le 0 \end{cases}$ Find	[7]	CO2	L3
	$f^{-1}(0), f^{-1}(1), f^{-1}(3), f^{-1}(6)$ and $f^{-1}([-5,5])$.			
6	Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = 1 - x + x^2$. If $(gof)(x) = 9x^2 - 9x + 3$, determine a and b.	[7]	CO3	L3
7		[7]	CO3	L3
8	Sate and prove Lagrange's theorem.	[7]	CO5	L2

1) The English alphabets can be awanged in 26;
ways. .:
$$|S| = 26$$
 !
Let A_1, A_2, A_3, A_4 bet the sets where the pather,
 CAP, POG, PNN and BYTE occur respectively.
 $|A_1| = 24!$ $|A_2| = 24!$ $|A_3| = 22!$
 $|A_1 \cap A_2| = 24!$ $|A_2| = 24!$ $|A_4| = 23!$
 $|A_1 \cap A_2| = 24!$ $|A_2| = 24!$ $|A_4| = 22!$
 $|A_1 \cap A_2| = |A_2 \cap A_3| = |A_3 \cap A_3| = 22!$
 $|A_1 \cap A_2 \cap A_3| = |A_2 \cap A_3 \cap A_4| = 1A_1 \cap A_3 \cap A_4| = 14!$
 $|A_1 \cap A_2 \cap A_3| = |A_2 \cap A_3 \cap A_4| = 1A_1 \cap A_3 \cap A_4| = 14!$
 $|A_1 \cap A_2 \cap A_3| = |A_2 \cap A_3 \cap A_4| = 1A_1 \cap A_3 \cap A_4| = 14!$
 $|A_1 \cap A_2 \cap A_3 \cap A_4| = |A_2 \cap A_3 \cap A_4| = 1A_1 \cap A_3 \cap A_4| = 14!$
 $|A_1 \cap A_2 \cap A_3 \cap A_4| = |A_1 \cap A_3 \cap A_4| = 1A_1 \cap A_3 \cap A_4| = 14!$
 $|A_1 \cap A_2 \cap A_3 \cap A_4| = |A_1 \cap A_3 \cap A_4| = 1A_1 \cap A_3 \cap A_4| = 14!$
 $|A_1 \cap A_2 \cap A_3 \cap A_4| = |S| - (|A_1| + |A_2| + |A_3| + |A_4|) + (|A_1 \cap A_2 \cap A_3| + |A_2 \cap A_3| + |A_2 \cap A_3| + |A_1 \cap A_4| + |A_2 \cap A_3| + |A_1 \cap A_3 \cap A_4|]$
 $|A_1 \cap A_3 \cap A_4| = |S| - (|A_1 \cap A_2 \cap A_3| + |A_1 \cap A_4| + |A_2 \cap A_3| + |A_1 \cap A_3 \cap A_4|] + (|A_1 \cap A_2 \cap A_3| + |A_1 \cap A_3 \cap A_4|] + (|A_1 \cap A_2 \cap A_3 \cap A_4|]$
 $= 26! - (3(24!) + 23!) + (3(23!) + 3(21!)) - (20! + 3(14!)]$
 $+ |T| = 4.014 \times 10^{26}$ ways n

2) <u>Derangement</u> : - It is permutation of
n distinct objects where none of the n
n distinct objects where none of the n objects due in its natural place is called
derangement.
eight letters to be defined to & different
eight letters to be defined to & different pepple. This no of ways the & letters
are delinered to the 8 different people
is given by 8 ways
The plants & in which the gletters
and detenented The no. of a concerning
of the stenders s
". The No. of ways of doing this so that at
least one letter gets to the right presson.
$= 8 \left[- d_8 \right]$
$= 81 - (8[xe^{-1}))$
$= 8[(1-e^{-1})]$
= 23487.10093

3).

$$\frac{1}{\frac{4}{3}} \frac{2}{\frac{3}{6}} \frac{3}{\frac{4}{3}} \frac{3}{\frac{6}{3}} \frac{3}{\frac{1}{2}} \frac{1}{\frac{2}{3}} \frac{3}{\frac{6}{3}} \frac{3}{\frac{1}{2}} \frac{3}{\frac{6}{3}} \frac{3}{\frac{6}$$

According to rook polynomial.

$$\gamma(c_{1}E) = \chi(\gamma(p_{1}X)) + \gamma(E_{1}N).$$

 $= \chi + (\eta^{2} + 2\chi^{2}) + 1 + g \chi + 1(\eta\chi^{2} + (\eta\chi^{3}))$
 $= \chi + (\eta^{2} + 2\chi^{2}) + 1 + g \chi + 1(\eta\chi^{2} + (\eta\chi^{3}))$
 $\gamma(c_{1}E) = 1 + q \chi + 1g\chi^{2} + 6\chi^{3})$
4) $a_{1} = 3a_{n-1} - 2q_{n-2}$ for $n \ge 2$.
Gritum $a_{1} = s, q_{2} = 3$.
 $a_{n} - 3a_{n-1} + 2a_{n-2} = 0$ for $\chi \ge 2$.
 $c_{n} = 1 - c_{n-1} = -3 - c_{n-2} = 2$.
 $q_{cronding} + 0$ formula $(\eta K^{2} + c_{n-1}K + c_{n-2} = 0)$.
 $k^{2} - 3k + 1 \ge 0$.
 $k^{2} - 2k - k + 2 = 0$
 $k(k-2) - 1(k-2) = 0$
 $(k-2) - 1(k-2) = 0$
 $(k-2) - 1(k-2) = 0$
 $k = 2, 1$
Gritum $a_{1} = s, q_{2} = 3$
 $a_{1} = s = A 2^{1} + B 1^{1}$
 $s = 2A + B$
 $B = s - 2A$.
 $B = 3 - 4A$.

Ì

$$S-2A = 3-4A^{-1}$$

$$4A-2A = 3-5.$$

$$2A = -2.$$

$$A = -1$$

$$B = 5 - 2(-1)$$

$$B = 5 + 2$$

$$B = 3 + .$$

$$A = -1$$

$$B = 5 - 2(-1)$$

$$B = 5 + 2$$

$$B = 3 + .$$

$$A = -1$$

$$B = 5 + 2$$

$$B = 3 + .$$

$$A = -1$$

$$A = -2^{-1} + 7 + .$$

$$S = -2^{-1} + 7 + .$$

$$A = -1$$

$$A = -2^{-1} + 7 + .$$

$$S = -3n + 1 = 0.$$

$$A = -1$$

$$A = -2^{-1} + 7 + .$$

$$S = -2^{-1} + 7 + .$$

$$S = -3n + 1 = 1$$

$$A = -2^{-1} + 7 + .$$

$$S = -3n + 1 = 1$$

$$A = -3n + 1 =$$

$$f^{-1}([-s,s]) = -s \leq -3n + 1 \leq s.$$

$$-s \leq -3n - 5 \leq s. -6 \leq -3n \leq 4.$$

$$a \leq 3n \leq 10.$$

$$a \leq 3n \leq 10.$$

$$a \leq n \leq 10$$

$$b \leq n \leq 10$$

$$b \leq n \leq 10$$

$$b \leq n \leq 10$$

$$a \leq 10$$

$$b \leq n \leq 10$$

$$a = 3$$

$$a = -3$$

F). If m peqiens are three and n peqien holes
are three such that
$$m > n$$
 then attend
 $attends$
 $P+1 (or) wore peqiens will exist in our peqienhole.where $P = \lfloor \frac{m-1}{n} \rfloor$
if as create sets which onto contains pair of
members from 1 too that will have sum q.
 $A_1 = \lambda 1 \cdot 8$
 $A_2 = \lambda 2, 7$.
 $A_3 = \lambda 3, 6$ >
 $Pu = \lambda 4, 15$.
The pairs in the set A_1 , $A_2 \cdot A_3$, and A_4 .
hour sam q. If we take three nose numbers
together they will not add up to q
. If we select two numbers from 1 to 8 then.
they will have their sum as q.$