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1  a 

Explain the following in brief: 

a) Training and visualizing of decision tree 

b) Making predictions 

a) Training and Visualizing of Decision Tree: 

Training a Decision Tree: 

Training a decision tree involves using a dataset where each data point has 

known inputs (features) and an output (target). The tree is built by recursively 

splitting the data based on feature values that result in the best separation of the 

target variable (using criteria like Gini Impurity or Entropy). The algorithm 

continues splitting until it either reaches a stopping condition (like maximum 

depth or minimum sample size) or cannot improve the splits further. 

Visualizing a Decision Tree: 

After training, a decision tree can be visualized as a flowchart-like structure. 

Each node represents a decision based on a feature, and each branch represents a 

possible outcome or condition. The leaves (end nodes) represent the final 

decision or prediction. Visualization helps in understanding how the tree splits 

data and makes decisions at each step. 

b) Making Predictions: 

Once a decision tree is trained, making predictions involves traversing the tree 

from the root to the appropriate leaf node. For a given input (a set of feature 

values), the tree applies the splits defined during training, choosing branches that 

match the feature values, until it reaches a leaf node. The output at the leaf node 

represents the predicted value (classification or regression) for that input. In 

classification, this output is typically the most common class in the leaf node, 

while in regression, it could be the average value. 
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Demonstrate working of Voting classifier with code that creates and trains it. 

A Voting Classifier combines the predictions of multiple models to make a final 

prediction. It can use two types of voting: 

1. Hard Voting: The class with the majority vote is selected as the prediction. 

2. Soft Voting: The class probabilities are averaged, and the class with the highest 

average probability is selected. 

Below is an example demonstrating the use of a Voting Classifier using hard voting. 

We'll use scikit-learn to create and train the classifier. 

Steps: 

1. Load a dataset (e.g., the Iris dataset). 

2. Create individual classifiers (e.g., Logistic Regression, KNN, and Decision 

Tree). 

3. Combine them into a VotingClassifier. 

4. Train the classifier on the training data. 

5. Make predictions on the test data. 

Code Implementation: 

python 
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Copy code 

# Import necessary libraries 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LogisticRegression 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import VotingClassifier 

from sklearn.metrics import accuracy_score 

 

# Load the Iris dataset 

data = load_iris() 

X = data.data 

y = data.target 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 

 

# Initialize individual classifiers 

clf1 = LogisticRegression(max_iter=1000, random_state=42) 

clf2 = KNeighborsClassifier() 

clf3 = DecisionTreeClassifier(random_state=42) 

 

# Create a Voting Classifier (using hard voting) 

voting_clf = VotingClassifier(estimators=[('lr', clf1), ('knn', clf2), ('dt', clf3)], 

voting='hard') 

 

# Train the Voting Classifier 

voting_clf.fit(X_train, y_train) 

 

# Make predictions on the test set 

y_pred = voting_clf.predict(X_test) 

 

# Evaluate the model's accuracy 

accuracy = accuracy_score(y_test, y_pred) 

print(f'Accuracy of the Voting Classifier: {accuracy * 100:.2f}%') 

 

# Optionally, compare with individual classifiers 

for clf in (clf1, clf2, clf3, voting_clf): 

    clf_name = clf.__class__.__name__ 

    clf.fit(X_train, y_train) 

    y_pred_individual = clf.predict(X_test) 

    accuracy_individual = accuracy_score(y_test, y_pred_individual) 

    print(f'Accuracy of {clf_name}: {accuracy_individual * 100:.2f}%') 

Explanation: 

1. Dataset: We use the Iris dataset, a popular dataset for classification tasks. It has 

4 features and 3 classes. 

2. Classifiers: 

o Logistic Regression (clf1) 

o K-Nearest Neighbors (clf2) 

o Decision Tree Classifier (clf3) 

3. Voting Classifier: The VotingClassifier is created with a list of classifiers (clf1, 

clf2, clf3) and set to use hard voting (voting='hard'). 

4. Training: The model is trained using the training data (X_train, y_train). 

5. Prediction and Evaluation: We make predictions on the test data (X_test) and 

compute the accuracy. 

Output (Example): 

text 

Copy code 

Accuracy of the Voting Classifier: 97.78% 

Accuracy of LogisticRegression: 97.78% 



 

Accuracy of KNeighborsClassifier: 95.56% 

Accuracy of DecisionTreeClassifier: 91.11% 

Accuracy of VotingClassifier: 97.78% 

Key Points: 

• The Voting Classifier aggregates the predictions of the individual models, 

generally resulting in better performance than a single model. 

• In hard voting, each classifier makes a prediction, and the majority vote is taken 

as the final output. 

• Soft voting (not demonstrated here) would involve averaging the predicted 

probabilities for each class and selecting the class with the highest average 

probability. 

 

3 a 

Demonstrate how new predictors can correct its predecessor by using training instances 

of underfitted predecessor. 

To demonstrate how new predictors can correct the mistakes of an underfitted predecessor, 

we can use **Boosting**. Boosting is an ensemble technique where each new model 

(predictor) is trained to correct the errors (residuals) made by its predecessor. This 

technique combines weak learners (models that perform slightly better than random 

guessing) to form a strong learner, by focusing more on the misclassified instances during 

each iteration. 

 

A common example of boosting is **AdaBoost** (Adaptive Boosting). In AdaBoost, the 

algorithm gives higher weight to the training instances that were misclassified by previous 

models, thereby encouraging the new model to focus on those instances and correct the 

errors. 

 

Let's demonstrate how AdaBoost works and how new predictors can correct the mistakes 

of underfitted predecessors using Python code: 

 

Steps: 

1. **Train an underfitted model** (weak learner), such as a shallow decision tree (a 

"stump"). 

2. **Boost the model** by training additional weak learners to focus on the errors of the 

previous learners. 

3. **Combine the models** to make the final prediction. 

 

Code Implementation with AdaBoost: 

 

```python 

# Import necessary libraries 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import AdaBoostClassifier 

from sklearn.metrics import accuracy_score 

 

# Load the Iris dataset 

data = load_iris() 

X = data.data 

y = data.target 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 

 

# Initialize a weak learner (shallow decision tree) 

weak_learner = DecisionTreeClassifier(max_depth=1, random_state=42) 

 

# Train the weak learner 

weak_learner.fit(X_train, y_train) 

 

# Make predictions with the weak learner 
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y_pred_weak = weak_learner.predict(X_test) 

 

# Evaluate the performance of the weak learner 

accuracy_weak = accuracy_score(y_test, y_pred_weak) 

print(f'Accuracy of the weak learner (underfitted): {accuracy_weak * 100:.2f}%') 

 

# Now, apply AdaBoost to improve performance by adding additional weak learners 

adaboost = AdaBoostClassifier(base_estimator=weak_learner, n_estimators=50, 

random_state=42) 

 

# Train AdaBoost model 

adaboost.fit(X_train, y_train) 

 

# Make predictions with the AdaBoost model 

y_pred_adaboost = adaboost.predict(X_test) 

 

# Evaluate the performance of the AdaBoost model 

accuracy_adaboost = accuracy_score(y_test, y_pred_adaboost) 

print(f'Accuracy of the AdaBoost model: {accuracy_adaboost * 100:.2f}%') 

``` 

 

Explanation: 

1. **Weak Learner (Shallow Decision Tree)**:   

   We first train a weak learner (a decision tree with depth 1, also known as a "decision 

stump"). This model is underfitted and is expected to perform poorly on the test data. 

 

2. **AdaBoost Classifier**:   

   AdaBoost is then used to create an ensemble of 50 weak learners. AdaBoost adjusts the 

weights of the training instances during each iteration, emphasizing those that were 

misclassified by previous models. This helps subsequent models focus on correcting the 

errors of the predecessor. 

 

3. **Training and Predictions**:   

   The `AdaBoostClassifier` is trained using the weak learner, and predictions are made on 

the test data. The accuracy of both the underfitted weak learner and the AdaBoost 

ensemble model is evaluated. 

 

Output (Example): 

```text 

Accuracy of the weak learner (underfitted): 55.56% 

Accuracy of the AdaBoost model: 97.78% 

``` 

 

Key Insights: 

- The **weak learner** (decision stump) has poor accuracy because it is underfitted. For 

example, it might only learn basic patterns like the class distribution but not the intricate 

relationships in the data. 

- **AdaBoost** significantly improves accuracy by adding successive learners that focus 

on the misclassified instances. As each new model is trained, it tries to correct the mistakes 

of the previous ones by assigning more weight to the misclassified instances. This leads 

to a much better performance in the final ensemble model. 

- The improvement shows how new predictors (in the form of AdaBoost's weak learners) 

correct the errors of underfitted predecessors. 
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Explain Gradient Boosting in brief. 

 Gradient Boosting in Brief 

 

**Gradient Boosting** is an advanced ensemble technique used for both regression and 

classification tasks. It builds a strong model by combining multiple weak learners (usually 

decision trees) sequentially, where each new learner corrects the errors made by the 
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previous ones. The key idea is that instead of fitting new models to the original data, each 

new model is trained to predict the residual errors (the difference between the actual and 

predicted values) of the previous model. 

 

Here’s how **Gradient Boosting** works, step-by-step: 

 

1. **Initialization**: 

   - The first model in the sequence is trained on the data, typically a simple model (e.g., 

decision tree). 

   - For regression, the initial prediction can be the mean of the target values. For 

classification, it could be the log odds of the classes. 

    

2. **Compute Residuals**: 

   - After the first model makes its predictions, the residuals (errors) are computed as the 

difference between the true target values and the predictions. 

   - These residuals represent the areas where the model is making mistakes and where 

future models will focus to improve the overall performance. 

 

3. **Train the Next Model**: 

   - A new model is trained on the residuals from the previous model (instead of the original 

target values). This new model tries to predict the errors made by the previous model. 

   - The new model is usually a small decision tree (often referred to as a "decision stump" 

for simplicity). 

    

 4. **Update the Model**: 

   - The predictions of the new model are combined with the previous model’s predictions. 

Typically, a learning rate (shrinkage factor) is applied to control how much influence the 

new model has on the final prediction. 

   - The combined model will now make better predictions, as the second model has 

corrected some of the errors of the first one. 

 

 5. **Repeat the Process**: 

   - Steps 2 through 4 are repeated iteratively. With each iteration, a new model is added 

to reduce the residuals of the previous ensemble model. 

   - The process continues for a specified number of iterations or until a stopping criterion 

is met (such as no improvement in performance). 

 

6. **Final Prediction**: 

   - The final prediction is a weighted sum of the predictions from all the individual models, 

where each model contributes according to its accuracy and the learning rate. 

 

Key Characteristics of Gradient Boosting: 

- **Boosting**: Gradient Boosting is a boosting technique, meaning it builds models 

sequentially and corrects the errors of the previous models. 

- **Gradient Descent**: The "gradient" part comes from using gradient descent to 

minimize the residual errors. This is what differentiates Gradient Boosting from other 

boosting algorithms (like AdaBoost). Gradient descent is used to find the optimal model 

by iteratively adjusting the model parameters to reduce errors. 

- **Additive Model**: The method adds new trees (or models) to the ensemble one at a 

time, with each new tree focusing on the mistakes made by the current ensemble of trees. 

- **Learning Rate**: A key hyperparameter in Gradient Boosting that controls the 

contribution of each new model. A lower learning rate requires more trees but may result 

in better generalization. 

 

Advantages of Gradient Boosting: 

- **High Accuracy**: Gradient Boosting often provides state-of-the-art performance in 

many machine learning tasks. 

- **Flexibility**: It can be used for both regression and classification tasks and works 

well on a variety of data types. 

- **Handles Complex Data**: Gradient Boosting can model complex data relationships 

and interactions due to the iterative process of correcting residuals. 



 

 

Disadvantages: 

- **Prone to Overfitting**: If not properly tuned (especially the number of trees or the 

learning rate), Gradient Boosting can overfit the training data. 

- **Computationally Intensive**: It can be slower to train compared to other algorithms, 

especially when the number of iterations is large. 

- **Sensitivity to Hyperparameters**: Proper tuning of parameters such as the learning 

rate, number of trees, and tree depth is critical for good performance. 

 

Example of Gradient Boosting in Scikit-learn: 

 

```python 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import GradientBoostingClassifier 

from sklearn.metrics import accuracy_score 

 

# Load dataset 

data = load_iris() 

X = data.data 

y = data.target 

 

# Split data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 

 

# Create a Gradient Boosting model 

gb_model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, 

max_depth=3) 

 

# Train the model 

gb_model.fit(X_train, y_train) 

 

# Make predictions 

y_pred = gb_model.predict(X_test) 

 

# Evaluate performance 

accuracy = accuracy_score(y_test, y_pred) 

print(f"Accuracy of Gradient Boosting Model: {accuracy * 100:.2f}%") 

``` 

 

 

4 a 

Construct a regression using the following data which consists of 10 data instances and 

three attributes “Assessment’, ‘Assignment’ and Project.(Refer the notes) 

Sl. no Assessments Assignment Project Result(%) 

1 Good Yes Yes 95 

2 Average Yes No 70 

3 Good No Yes 75 

4 Poor No No 45 

5 Good Yes Yes 98 

6 Average No Yes 80 

7 Good No No 75 

8 Poor Yes Yes 65 

9 Average No No 58 

10 Good Yes Yes 89 
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Explain Bagging and Pasting in brief. 

Bagging and Pasting: Brief Overview 

Bagging (Bootstrap Aggregating) and Pasting are both ensemble methods designed to 

improve the performance of machine learning models by combining the predictions of 

multiple base models. Both techniques reduce variance and prevent overfitting, but they 

differ in how they generate the training data for each base model. 

1. Bagging (Bootstrap Aggregating): 
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Bagging is an ensemble technique that trains multiple models on random subsets of the 

training data, where each subset is drawn with replacement. The idea is to generate 

different training sets by sampling with replacement (i.e., bootstrap sampling) and then 

averaging the predictions (for regression) or using a majority vote (for classification) to 

produce the final result. 

Key Characteristics of Bagging: 

• Data Sampling: Each model is trained on a random subset of the training data 

sampled with replacement. This means that some data points may appear 

multiple times in a subset, while others may not appear at all. 

• Model Independence: The base models (usually weak learners like decision 

trees) are trained independently of each other. 

• Final Prediction: For regression tasks, the predictions of the models are 

averaged. For classification, the majority vote from all the base models is taken. 

Benefits of Bagging: 

• Reduces variance by averaging out the predictions of different models. 

• Helps prevent overfitting by reducing the sensitivity to the noise in the data. 

• Can improve the performance of weak learners, such as decision trees, by using 

multiple models. 

Example: 

• A common example of Bagging is the Random Forest algorithm, where 

multiple decision trees are trained on different subsets of the data (with 

replacement) and then averaged (for regression) or voted on (for classification). 

2. Pasting: 

Pasting is very similar to Bagging, but with one key difference: in Pasting, the subsets 

of the training data are sampled without replacement. This means that each subset used 

to train the base models contains unique data points, without duplication. 

Key Characteristics of Pasting: 

• Data Sampling: Each model is trained on a random subset of the training data, 

but the subset is drawn without replacement. This results in training sets that 

are smaller than the original dataset, and each data point can appear only once in 

each subset. 

• Model Independence: Like Bagging, the models are trained independently on 

these subsets. 

• Final Prediction: The final prediction is made by averaging the predictions (for 

regression) or using a majority vote (for classification). 

Benefits of Pasting: 

• Reduces variance by using multiple models, but with no repeated data points in 

any single training set. 

• Helps avoid overfitting, similar to Bagging, but may be more robust in scenarios 

where the dataset is not large. 

Example: 

• Pasting can be seen as a variant of Bagging in algorithms like Bootstrap 

Aggregating, but it is less commonly used compared to Bagging. 

 

6 a 

Explain Stack Generalization in brief. 

Stacking, also known as Stacked Generalization, is an ensemble learning technique that 

combines multiple machine learning models to improve predictive performance. Unlike 

traditional methods like Bagging or Boosting, which rely on combining predictions from 

models of the same type, Stacking involves using different types of models and 

combining their outputs using another model (called the meta-model or stacker). 

The main idea behind stacking is that different base models might have different strengths 

and weaknesses, and by combining them, we can improve generalization and make more 

accurate predictions. 

How Stacking Works: 

1. Train Base Learners: 

o First, multiple base models (also called level-0 models) are trained on 

the original dataset. These base models could be different algorithms 

(e.g., decision trees, SVM, logistic regression) or even different 

hyperparameter configurations of the same algorithm. 

2. Generate Predictions for Meta-Model: 
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o Once the base learners are trained, they make predictions on the training 

data (or a separate validation set). These predictions are collected and 

treated as new features for the next model. 

3. Train Meta-Model: 

o A meta-model (also called a level-1 model) is trained on the predictions 

made by the base learners. The meta-model learns how to combine the 

outputs of the base models to make the final prediction. Commonly, this 

meta-model is a simple algorithm like logistic regression, but it can be 

any model that can handle the predictions from the base models as input. 

4. Final Prediction: 

o To make predictions on new (test) data, the base learners first generate 

predictions. These predictions are then passed to the meta-model, which 

combines them to make the final prediction. 

Example of Stacking Workflow: 

1. Step 1: Train multiple base models (e.g., Random Forest, SVM, and KNN) on 

the training data. 

2. Step 2: Use the trained base models to make predictions on the training data (or 

a holdout set). These predictions form a new feature matrix. 

3. Step 3: Train a meta-model (e.g., Logistic Regression or another model) on the 

predictions of the base models. 

4. Step 4: When making predictions on new data, the base models generate 

predictions, which are fed into the meta-model to produce the final output. 

Advantages of Stacking: 

• Improved Generalization: By combining models that may perform differently 

on different parts of the data, stacking often leads to better generalization 

compared to individual models. 

• Flexibility: Stacking can use different types of models, making it flexible and 

adaptable to various problems. 

• Reduction of Bias: The meta-model can learn to correct the biases or weaknesses 

of the base models, often leading to improved predictive accuracy. 

Disadvantages of Stacking: 

• Complexity: Stacking involves training multiple models and requires additional 

computational resources compared to simpler ensemble methods like Bagging or 

Boosting. 

• Overfitting Risk: If not properly tuned (e.g., when the base models are too 

complex), stacking can lead to overfitting, especially if the meta-model overfits 

to the predictions of the base models. 

• Data Requirements: Stacking often requires more data, as the meta-model 

needs a sufficiently large dataset of base model predictions to make accurate 

predictions. 
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