Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. What is an Operation Research? Explain the phases of OR.

(08 Marks)

b. A farmer has to plant two kinds of trees P and Q in a land of 4400sq.m area. Each P tree requires at least 15sq.m and Q tree requires 30sq.m area. The annual water requirement of P tree is 30 units and Q tree requires 20 units. A maximum of 3300 units of water is available annually. It is also estimated that the ratio of number of Q trees to the number of P trees should not be less than 6/19 and not more than 17/8. The return per tree from P is expected to be one and half times as much as from Q tree. Formulate the problem as a LP model.

(06 Marks)

- c. Define the following terms: i) Feasible solution ii) O
- ii) Optimal solution.

(02 Marks)

OR

a. Explain the assumptions of simplex method.

(06 Marks)

b. Use graphical method and solve following problem:

 $Maximize Z = 6x_1 + 5x_2$

Subject to $x_1 + x_2 \le 5$

 $3x_1 + 2x_2 \le 12$

 $x_1, x_2 \ge 0$

(06 Marks)

c. Define the following terms with an example: i) Slack variable ii) Surplus variable.(04 Marks)

Module-2

3 a. Find all the basic solutions of the following problem

Maximize $Z = x_1 + 3x_2 + 3x_3$

Subject to constraints $x_1 + 2x_2 + 3x_3 = 4$

$$2x_1 + 3x_2 + 5x_3 = 7$$

Also find which of the basic solution are:

i) basic feasible ii) non-degenerate basic feasible iii) optimal basic feasible.

(06 Marks)

b. Solve the following LPP by Big-M method.

Maximize $Z = -2x_1 - x_2$

Subject to constraints $3x_1 + x_2 = 3$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

where
$$x_1, x_2 \ge 0$$
.

(10 Marks)

OR

4 a. Solve the following LPP by simplex method.

 $Maximize = 3x_1 + 2x_2$

Subject to constrains $x_1 + x_2 \le 4$

$$x_1 - x_2 \le 4$$

and $x_1, x_2 \ge 0$.

(08 Marks)

b. Solve the following LPP by two-phase simplex method.

Maximize
$$z = 3x_1 - x_2$$

Subject to constraints
$$2x_1 + x_2 \ge 2$$

$$x_1 + 3x_2 \le 2$$

$$x_2 \le 4$$

and
$$x_1, x_2 \ge 0$$

(08 Marks)

Module-3

Explain Primal dual relationship in mathematical form.

(08 Marks)

b. Obtain the dual problem of the following primal LP problem.

Maximize
$$z = 40x_1 + 120x_2$$

Subject to the constraints $x_1 - 2x_2 \le 8$,

$$3x_1 + 5x_2 = 90$$

$$3x_1 + 5x_2 = 90,$$

$$15x_1 + 44x_2 \le 660,$$

$$x_1 \ge 0, x_2 \ge 0.$$

$$x_1 \ge 0, x_2 \ge 0$$

(08 Marks)

- Define dual simplex method. Explain the procedure of dual simplex method. (08 Marks)
 - Use dual simplex method to solve the following problem:

Maximize
$$z = -2x_1 - 3x_2$$

Subject to the constraints $x_1 + x_2 \ge 2$, $2x_1 + x_2 \le 10$ and $x_1 + x_2 \le 8$, with x_1 and x_2 non negative.

$$2x_1 + x_2 \le 10$$
 and

$$x_1 + x_2 \leq 8$$

(08 Marks)

Module-4

Find the initial basic feasible solution for the following problem, and also find the 7 transportation cost using North West Corner Rule.

			*	S-2
	4	6	8	8
	6	10	6	7
1	5	7	6	8
L		1		

Demand

(05 Marks)

Write the procedure of Vogel's approximation method.

- (06 Marks)
- Solve the following problem using Vogel's approximation method:

					Supply
4	4	6	8	8	40
	6	8	6	7	60
	5	7	6	8	50

20 30 50 Demand

(05 Marks)

OR

8 a. Three jobs are to be done by 4 machines: Each job can be assigned to one and only one machine. The cost of each job on each machine is given in the following table:

		Machine					
		M_1	M_2	M_3	M_4		
	J_1	18	24	28	32		
Job	J_2	8	13	17	19		
Call Control	J_3	10	15	15	22		

What are the job assignments which will minimize the total cost?

(08 Marks)

b. Obtain the optimum solution for the given problem using MODI method.

2	3	11	7	6
1	0	6	1	1
5	8	15	9	10
7	5	3	2	

(08 Marks)

Module-5

9 a. Define: i) pure strategy ii) mixed strategy iii) optimal strategy.

(06 Marks)

b. Solve the following game by dominance principle.

	7		Play	er B	
		\mathbf{B}_1	B_2	\mathbf{B}_3	B_4
400	\mathbf{A}_1	3	2	4	0
	A_2	34	4	2	4
Player A	A_3	4	2	4	0
The state of the s	A ₄	0	4	0	8
	- A			1 40 1	State of the last

(10 Marks)

OR

10 a. Solve the following game by graphical method.

(06 Marks)

	Player B				
	I	II	Ш	IV	V
Player A I	2	-1	5	-2	6
II	-2	4	-3	1	0

- b. Write short notes on:
 - i) Genetic algorithm
 - ii) Tabu search algorithm.

CMRIT LIBRARY

(10 Marks)

* * * *