BCS405C

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 **Optimization Techniques** CMR

M.R.

BANTime: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Explain the understanding of Jacobian in the context of data science.	05	L2	CO ₁
	b.	Calculate the gradient of a matrix with respect to the matrix: $X = \begin{bmatrix} x_0 & x_1 \\ x_2 & x_3 \end{bmatrix} \qquad Y = \begin{bmatrix} \sin(x_0 + 2x_1) & 2x_1 + x_3 \\ 2x_0 + x_2 & \cos(2x_1 + x_3) \end{bmatrix}$	07	L2	COI
	c.	$\begin{bmatrix} x_2 & x_3 \end{bmatrix} \qquad \begin{bmatrix} 2x_0 + x_2 & \cos(2x_1 + x_3) \end{bmatrix}$ Obtain 3 rd Degree polynomial for the function $f(x, y) = e^x$ siny about the	08	L2	CO1
	L.	point $\left(1, \frac{\pi}{2}\right)$.			
		OR	06	12	CO1
Q.2	a.	Calculate the gradient, given $u = \frac{yz}{x}$, $v = \frac{xz}{y}$, $w = \frac{xy}{z}$.	06	L2	C01
	b.	Calculate gradient of a vector with respect to the matrix $\begin{bmatrix} x_0 & x_1 \end{bmatrix}$	07	L2	CO1
		$X = \begin{bmatrix} x_0 & x_1 \\ x_2 & x_3 \end{bmatrix}, Y = x_0 \sin(x_1^2 x_2), x_2 \cos(x_3^2 x_0)$	07	L2	CO1
	c.	Calculate the Third Degree polynomial for the function $f(x, y) = xe^{y} + 1$ near to the point $(1, 0)$.	07	L2	COI
		Module →2			
Q.3	a.	Explain the term Back propagation.	06	L2	CO
Q. 3	b.	Assume that the Neurons have a sigmoid activation function. Perform a	14	L3	CO2
		forward pass and a backward pass on the network. Assume that the actual			
		output of y is 0.5 and the learning rate is 1. Perform another forward pass.			
	avone.	$2_1 = 0.35$ $\omega_{13} = 0.1$ Hz $\omega_{25} = 0.3$ ω_{5}			
		7-0.9 Was 0.9			
		3=0.9 W24=0.6 H4			
		Fig.Q3(b)			
		OR			
Q.4	a.	Draw a computation graph of function $f(x) = \sqrt{x^2 + e^{x^2}} + \cos(x^2 + e^{x^2})$.	05	L2	CO2
		Also find $\frac{2f}{2x}$ using Automatic differentiation.			
		1 of 3			

		*
b. Assume that the hidden layer uses sigmoid activation function. Perform a forward pass and a backward pass and predict y. Assume that actual output	L3	CO2
y = 1 and learning rate is 0.9.		
x=1 cu=0.2 cu=-3		
12 9		
7-0 Was 1850 1051		
W35 = 0.2 O5 = 0.2		
Fig.Q4(b)		
Module - 3	12	CO2
Q.5 a. Explain the terms local minima, Global minima and saddle points. Also explain the conditions for a point to be local Extrema with the help of Hessian matrix.	L2	CO3
b. Find the local Extrema for the function 05	L3	CO3
$f(x,y,z) = x^3 + y^3 + z^3 - 9xy - 9xz + 27x$	L3	CO3
c. By using 3 point interval search method, find maximum of 10	L3	COS
$f(x) = x(3-x)^{5/3} \text{ over } [0, 3]. \text{ Carry out 5 iterations.}$		
OR OR Analyze local minima and local Maxima using first derivative method, for 05	L2	CO3
the function $f(x) = 2x^3 - 3x^2 - 12x + 5$.		9
b. Minimize $f(x) = x^2$ over $[-5, 15]$ using Fibonacce method, taking $n = 7$.	L3	CO3
Module – 4	1.2	COA
Q.7 a. Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$, starting from $X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 12	L3	CO4
using steepest descent method.	12	COA
b. Explain the terms Gradient Descent, Mini Batch Gradient Descent and Stochastic Gradient Descent.	L2	CO4
OR		
	L3	CO4
Q.8 a. Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ starting from $X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 06		
 using Newton's method. b. We have recorded weekly average price of a stock over 6 consecutive days. 14 	L3	CO4
Y shows weekly average price of a stock and X shows number of days. Try		
to fit best possible function f to establish the relationship between number		
of days and conversion rates where $y = f(x) = a + bx$.		
x 1 2 3 4 5 6 y 10 14 18 22 25 33 CMRIT LIBRARY BANGALORE - 560 037		
The initial a and b are $a = 4.9$, $b = 4.401$. The learning rate is mentioned as 0.05. Perform three iterations. Also plot the prediction and the actual data		
in the graph.		
2 of 3		

-]	BCS	405C
		Module – 5			
Q.9	a.	Explain the terms: (i) Momentum based gradient descent	10	L2	CO5
	b.	(ii) RMS prop optimizer Calculate the 5 years of moving average for the given data: Year 1977 1978 1979 1980 1981 1982 Production 14 17 22 28 26 18 Years 1983 1984 1985 1986 1987 1988 CMRIT LIBRAR	10	L3	CO5
		Years 1983 1984 1985 1986 1987 1988 CMR11 Laboration Production 29 24 25 29 30 23 BANGALORE - 560 03	37		
		OR		1	
Q.10	a.	Explain convex and concave function. Also explain non-convex optimization.	10	L2	CO5
	b.	Explain the terms: (i) Adagrad optimizer (ii) Adam optimizer	10	L2	CO5
	1	CR.			