

ourth Semester B.E. Degree Examination, June/July 2024 **Analog Circuits**

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the design concept of common emitter collector to Base feedback resistor biasing 1 circuit and explain how collector to base feedback resistor provides a negative feedback in the circuit.
 - b. Considering the conceptual circuit of common source MOSFET amplifier, derive the expression for transconductance g_m and voltage gain A_V.
 - c. For common emitter voltage divider circuit having $\beta = 100$, $R_1 = 10$ K Ω , $R_2 = 5$ K Ω , R_C = 1 K Ω and R_E = 500 Ω is provided with DC biasing voltage V_{CC} = 10 V, Calculate V_{CE} (05 Marks) and Ic.

- a. Derive an expression for small signal collector current, transconductance gm and voltage 2 gain Av in BJT, when small signal V_{bc} is applied between base and emitter. (10 Marks)
 - b. Design voltage divider bias circuit using MOSFET to establish $I_D = 0.5$ mA and MOSFET parameter are $V_t = 1 \text{ V}$ and $K'_n \left(\frac{\omega}{T}\right) = 0.5 \text{ mA/V}^2$. Assume $V_{DD} = 15 \text{ V}$. (10 Marks)

Module-2

- a. Explain Three basic configurations of MOSFET amplifier and derive expression for 3 characteristic parameter of amplifiers. (08 Marks)
 - b. Briefly explain the Barkhausen criteria for oscillation.

(04 Marks)

c. For an n-channel MOSFET with $t_{ox} = 10$ nm, L = 1 μ m, W = 10 μ m, $L_{ov} = 0.05$ μ m, $C_{Sbo} = C_{dbo} = 10$ fF, $V_O = 0.6$ V, $V_{SB} = 1$ V, $V_{DS} = 2$ V. Calculate the following capacitance when the transistor is operating in saturation,

(i) C_{OX} (ii) Cov

(iv) C_{gd} (iii) C_{gs}

(v) C_{sb} and C_{db} .

Consider $\in_{ox} = 3.45 \times 10^{-3}$

(08 Marks)

OR

- Explain the working of RC phase shift oscillator and show how RC network provides 180° (08 Marks) of phase shift.
 - b. In a transistor Calpitts oscillator $C_1 = 1$ nF and $C_2 = 1000$ nF. Find the value of L for a frequency of 100 kHz.
 - c. Explain the High frequency response of common source MOSFET amplifier with its (08 Marks) equivalent circuit.

Module-3

- 5 a. Explain the effect of negative feedback on input and output resistance of voltage series feedback amplifier. (10 Marks)
 - b. Explain transformer coupled Class A power amplifier and show that the maximum efficiency of transformer coupled Class A power amplifier is 50%. (10 Marks)

OF

- 6 a. Draw the block diagram of four types of feedback topologies and compare them with respect to input and output resistance. (10 Marks)
 - b. Compare Class B pushpull and complementary symmetry power amplifiers. (04 Marks)
 - c. In a Class B push pull amplifier operating with V_{CC} = 25V provides a 22 V peak signal to an 8 Ω load. Find
 - (i) Peak load current (ii) dc current drawn from the supply (iii) input power
 - (iv) Output current efficiency (v) power dissipation (06 Marks)

Module-4

- 7 a. State the ideal op-amp characteristics. (06 Marks)
 - b. Design a linear combination circuit using op-amp to obtain output $V_0 = -2V_1 8V_2 V_3$ with $R_{_{fh}} \geq 20\,\mathrm{k}\Omega$ at all the inputs and all the resistances $\leq 200\,\mathrm{k}\Omega$ (04 Marks)
 - c. Draw the circuit of 3 op-amp instrumentation amplifier and derive the expression for its output voltage. (10 Marks)

OR

- 8 a. Explain the working of voltage follower using op-amp and show that its gain is unity. State its advantages. (06 Marks)
 - b. Explain the working of zero crossing detectors. (06 Marks)
 - c. Design an inverting Schmitt trigger to have trigger voltages of $\pm 4V$ using op-amp 741 with supply of $\pm 15V$. Consider $I_{B(max)} = 500 \, \text{nA}$. (08 Marks)

Module-5

- 9 a. With neat circuit diagram, explain the operation of R-2R D/A converter. (10 Marks)
 - b. Explain the working of pulse width modulation circuit using 555 IC. (06 Marks)
 - c. Design a low pass filter using op-amp at a cut off frequency of 1 kHz with pass gain of 2 and choose $C = 0.01 \mu F$ (04 Marks)

CMRIT LIBRARY

OR BANGALORE - 560 037

- 10 a. Explain with neat circuit diagram the working of positive precision Half Wave Rectifier.
 (06 Marks)
 - b. Design a monostable 555 timer circuit to produce an output pulse of 10 sec wide and draw the circuit diagram. Choose $C = 100 \mu F$. (04 Marks)
 - c. Draw the circuit of second order low pass filter and explain its operation. (10 Marks)

* * * * *