Time: 3 hrs.

18EC34

Third Semester B.E. Degree Examination, June/July 2024 Digital System Design

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Design a combinational logic circuit so that an output is generated indicating when a majority of four inputs is true. (06 Marks)
 - b. Place the following equations into the proper canonical form
 i) $f(w, x, y, z) = \overline{w}x + y\overline{z}$ ii) $f(A, B, C, D) = A + \overline{B} + C)(\overline{A} + D)$

(06 Marks)

c. Using K-map determine minimal sum of product expressions and implement the simplified equation using only NAND gates $f(w, x, y, z) = \sum m(1, 2, 3, 4, 9) + \sum d(10, 11, 12, 13, 14, 15)$ (08 Marks)

OR

- 2 a. Define the following terms literal, canonical sum of products, Karnaugh Map, Prime implicatus. (04 Marks)
 - b. Find the minimal sum of the following Boolean function using Quine McClusky method $f(w, x, y, z) = \Sigma(1, 3, 13, 15) + \Sigma d(8, 9, 10, 11)$ (08 Marks)
 - c. Using K-map determine minimal product of sum expression and implement the simplified equation using only NOR gates $f(a, b, c, d) = \pi M(0, 4, 5, 7, 8, 9, 11, 12, 13, 15)$. (08 Marks)

Module-2

3 a. Implement following multiple output function using 74LS138 decoder $F_1(A, B, C) = \Sigma m(1, 4, 5, 7)$

 $F_2(A, B, C) = \pi m(2, 3, 6, 7)$

(06 Marks)

b. Explain 4-bit carry look ahead adder with necessary diagram and relevant expression.

(10 Marks)

c. Implement $f(a, b, c, d) = \Sigma m(0, 1, 5, 6, 7, 9, 10, 15)$ using 8: 1 MUX with a, b, c as select lines

(04 Marks)

OR

4 a. Implement full adder using 74138 decoder.

(06 Marks)

b. Design a 2-bit Magnitude comparator.

(08 Marks)

Design 4-line to 2 line priority uncoder which gives MSB the highest priority and LSB least priority. (06 Marks)

Module-3

- 5 a. What is race around condition? Explain JK master slave flip-flop with diagram function table and timing diagram. (08 Marks)
 - b. Explain the working of 4-bit Johnson counter using necessary diagram and waveform.

(06 Marks)

c. Explain with a neat diagram and truth table, a 4-bit SIPO shift register to store binary number 1010. (06 Marks)

OR

- 6 a. Explain the operation of switch debouncer using SR latch with the help of circuit and waveform. (06 Marks)
 - b. Explain the working of 3-bit Asynchronous up-down counter with necessary waveform and truth table. (10 Marks)
 - c. Write the difference between combinational circuits and sequential circuits. (04 Marks)

Module-4

- 7 a. Design a synchronous Mod -6 counter using clocked D- Flip-Flop. (10 Marks)
 - b. Design a Moore type sequence detector to detect a serial input sequence of 101. (10 Marks)

OR

8 a. Construct the excitation table, transition table and state diagram for the sequential circuit shown in Fig Q8(a).

Fig Q8(a) (10 Marks)

b. Design a synchronous decade counter using T-flip flop and draw the logic diagram.

(10 Marks)

Module-5

a. List the guidelines for construction of state graphs.

9

(10 Marks)

b. Design a sequential circuit to convert BCD to excess -3 code with state table state graph and transition table. (10 Marks)

OR

- 10 a. Explain with block diagram design of serial Adder with accumulator. (10 Marks)
 - b. Explain with block diagram design of Binary multiplier. (10 Marks)

* * * * *