USN					

CMR INSTITUTE OF TECHNOLOGY

Internal Assesment Test – I													
Sub: VLSI DESIGN & TESTING Code:										21EC63			
Date:	Pate: 04.06.2024 Duration: 90 mins Max Marks: 50 Sem VI Branch									ECE-A,B,C,D			
Answer Any Five Questions													
Owastians											BE		
	Questions												
1.	Explain the oper	ration of an n	-channel e	nhancement r	node N	MOSFE	T wit	n neat	[10]	CO1	L1		
diagrams.													
	Derive the expre	ession for dra	in to source	e current for a	ın n-cl	nannel N	MOSF	ET in		CO1	L2		
2. all three regions.									[10]	COI	LZ		
3.	Describe in detail about any five non-ideal L-V characteristics of MOS transistor									CO1	L2		

USN	
-----	--

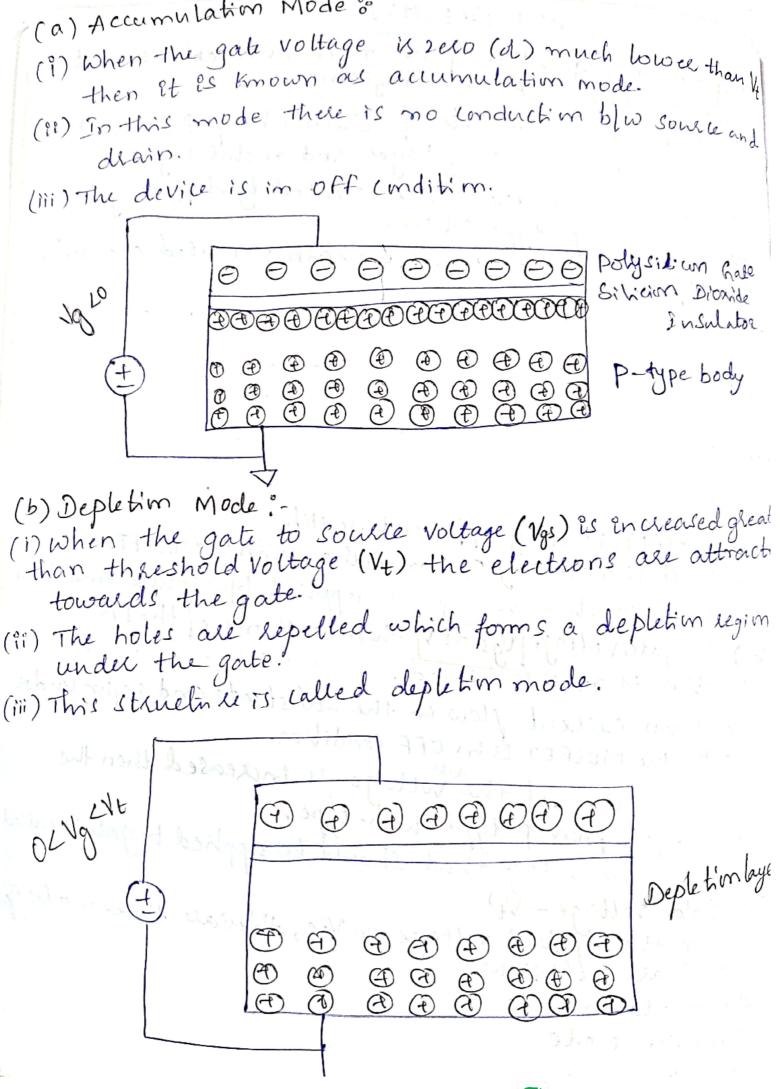
CMR INSTITUTE OF TECHNOLOGY

	Internal Assessment Test – I													
Sub: VLSI DESIGN & TESTING Code:									21EC	21EC63				
Date:	04.06.2024	Duration:	90 mins	Max Marks:	50	Sem	VI	Branch	ECE-	ECE-A,B,C,D				
	Answer Any Five Questions													
Questions											BE			
			Marks	СО	RBT									
Explain the operation of an n-channel enhancement mode MOSFET with neat diagrams.										CO1	L1			
Derive the expression for drain to source current for an n-channel MOSFET									F1.01	CO1	L2			
2.	2. in all three regions. [10] 22													
3.	Describe in det	tail about any	five non-i	deal I-V ch	aracte	ristics of	MOS tr	ansistor.	[10]	CO1	L2			

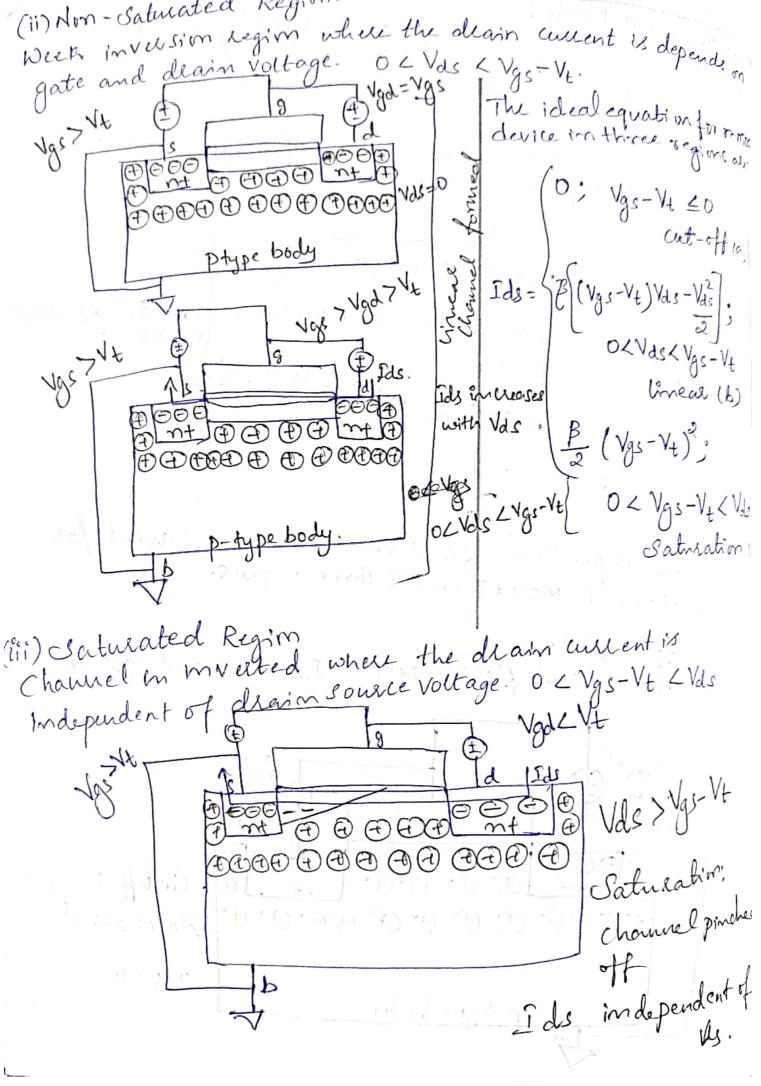
USN					

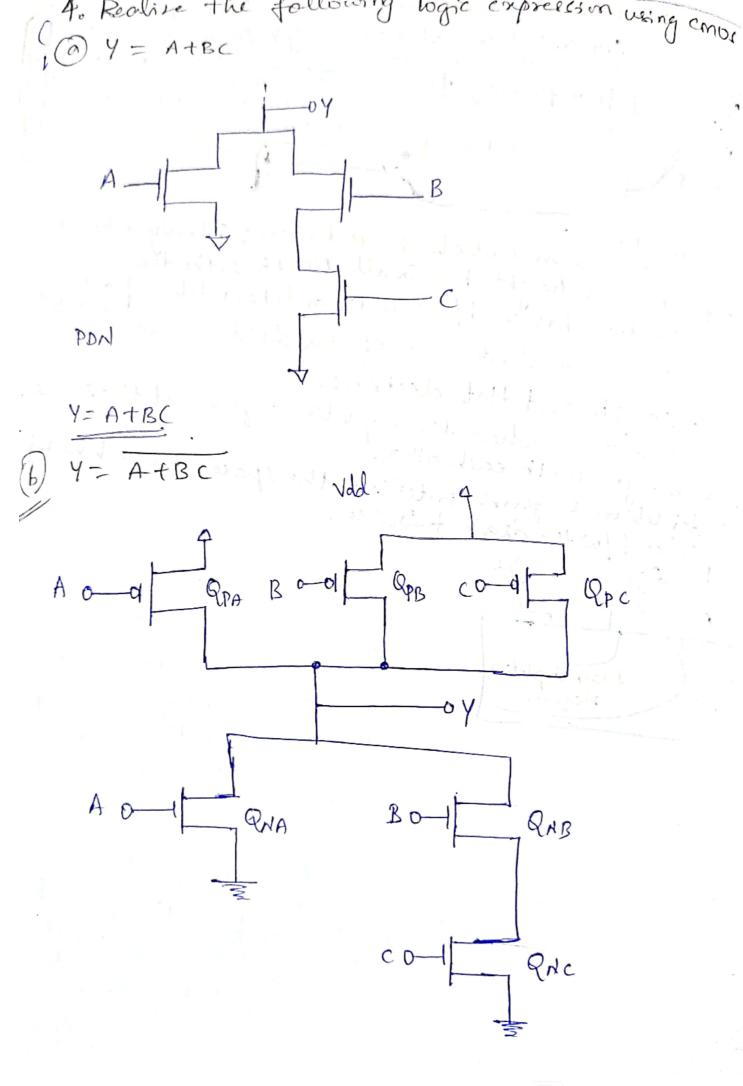
4.	Realize the following logic expression using CMOS: a) $Y = A + \overline{BC}$ b) $Y = \overline{(A + B + C).D}$	[10]	CO1	L2
5.	Design a 4:1 multiplexer using transmission gate.	[10]	CO1	L2
6.	Illustrate with neat sketch, explain the DC transfer characteristics of CMOS inverter (Include the condition for all five regions).	[10]	CO1	L2

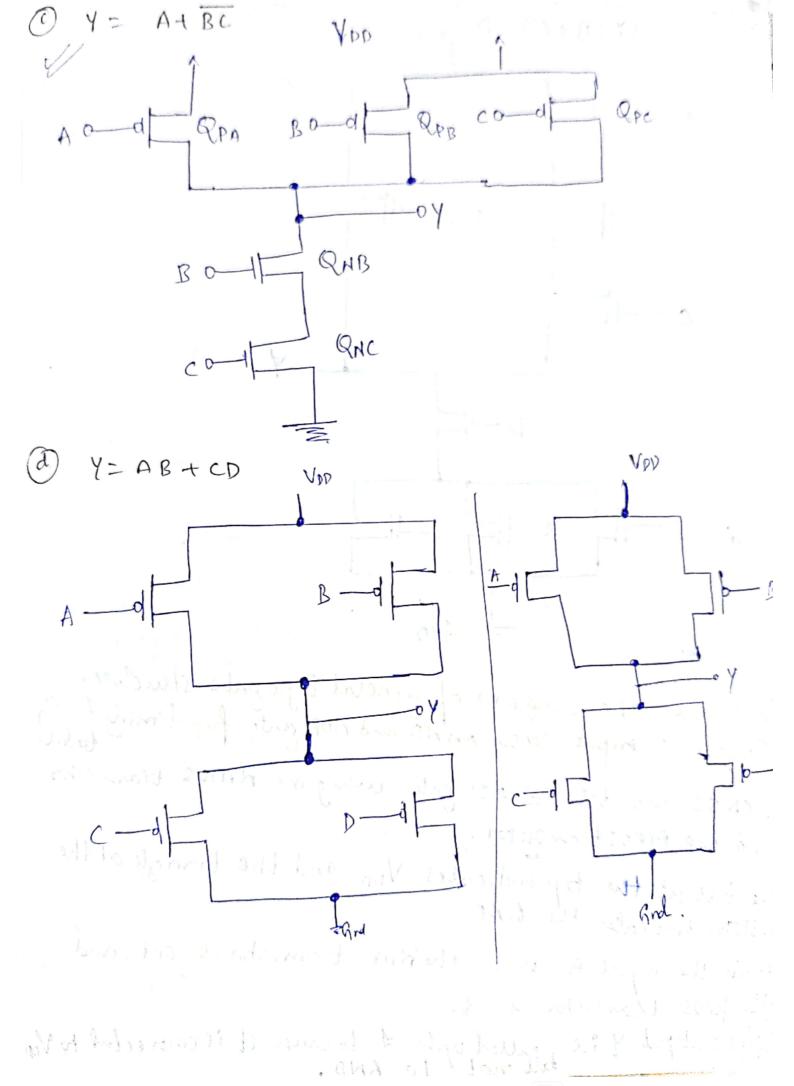
CI CCI HOD


TICAL					
USN					

4.	Realize the following logic expression using CMOS: a) $Y = A + \overline{BC}$ b) $Y = \overline{(A + B + C).D}$	[10]	CO1	L2
5.	Design a 4:1 multiplexer using transmission gate.	[10]	CO1	L2
6.	Illustrate with neat sketch, explain the DC transfer characteristics of CMOS inverter (Include the condition for all five regions).	[10]	CO1	L2


CI CCI HOD


1. Explain the operation of an n-channel enhancement mode MOSFET with neat diagrams. a. The thansistors consists of Candwich of P-substrate material, insulating layer and metal layer. b. The source and drain are created by diffusing two nt regions on p-type silicon. c. The region blu source and dearn is called channel.


Source hate metallization Dearn: 5:02 dielectric lay No service | Not be to b P-Type substrate d. The mosfet is vay efficient Switch. e. The Switch is normally open in enchancement MosfET. f. When no positive voltage is applied blusoner and draw (Vds) to gate voltage Vgs = OV then least me of the PN junction is reverse biased. 9 There is no cultent flow in the substrate and region under the gate, the MOSFET is in OFF Condition. h. At this condition, if the voltage is increased then the gate changes from p-type to n-type. i. The minimum voltage that should be applied to gate is called I Based on the applied voltage on Vgs, thereare threemodes of specations are as follows: Threshold Voltage - Vt) (a) A comulation Mode (b) Depletion Mode (c) Invusim Mode. Scanned with OKEN Scanner

(c) Invusim Mode: (?) When the gate to some voltage is raised above 14, the electrons are attracted towards the substrate. (in) And the holes are repelled towards the beginn under the (111) Under this condition the surface of p-type is inverted to m-type which provides unduction. ED ED ED ED ED ED EDECE @00000000 Inversion layel program
Dep betten Region 2. Derive the expression for Drain to some werent for an n-channel MOSFET in all three regions. (8) Cut - off region. where the current flow is zero: Ids = Ov and Vgs = 1/4 Ids = 0. P-type body

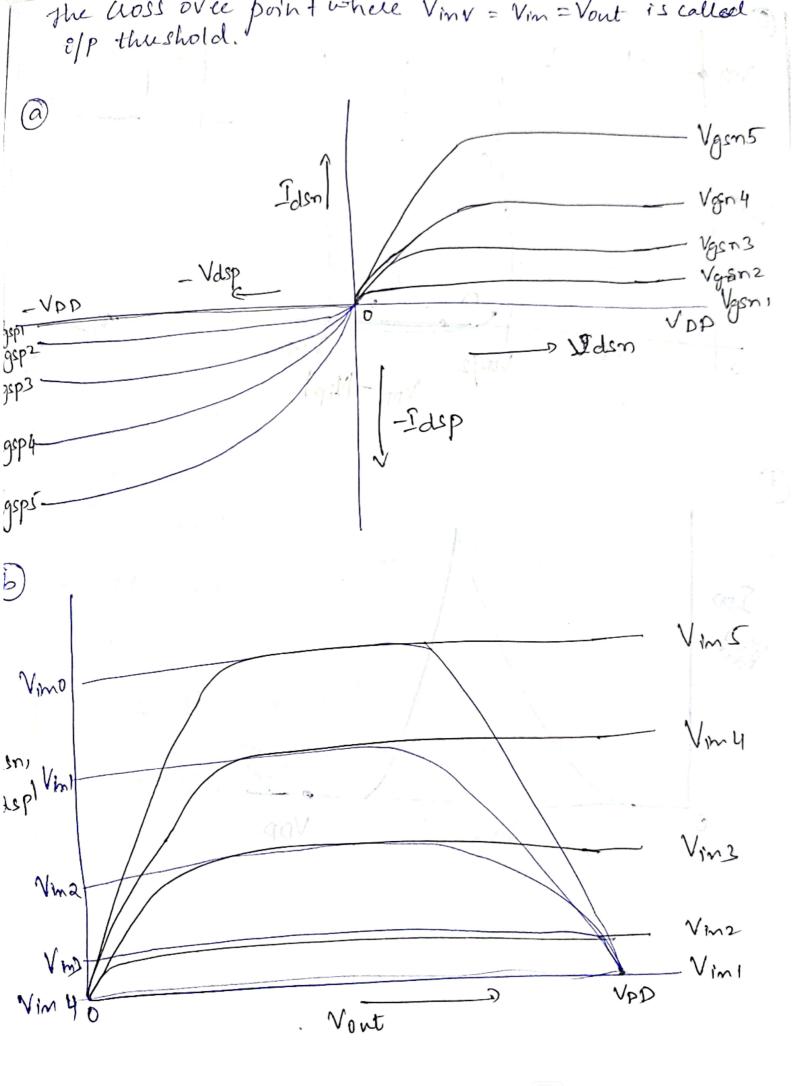
clock input is called a registers. & A register is often deawn as a flip-flop with multi-bit D and Q buses. Shite neat diagrams explain the De transfer characters
shis of cmos invertee.

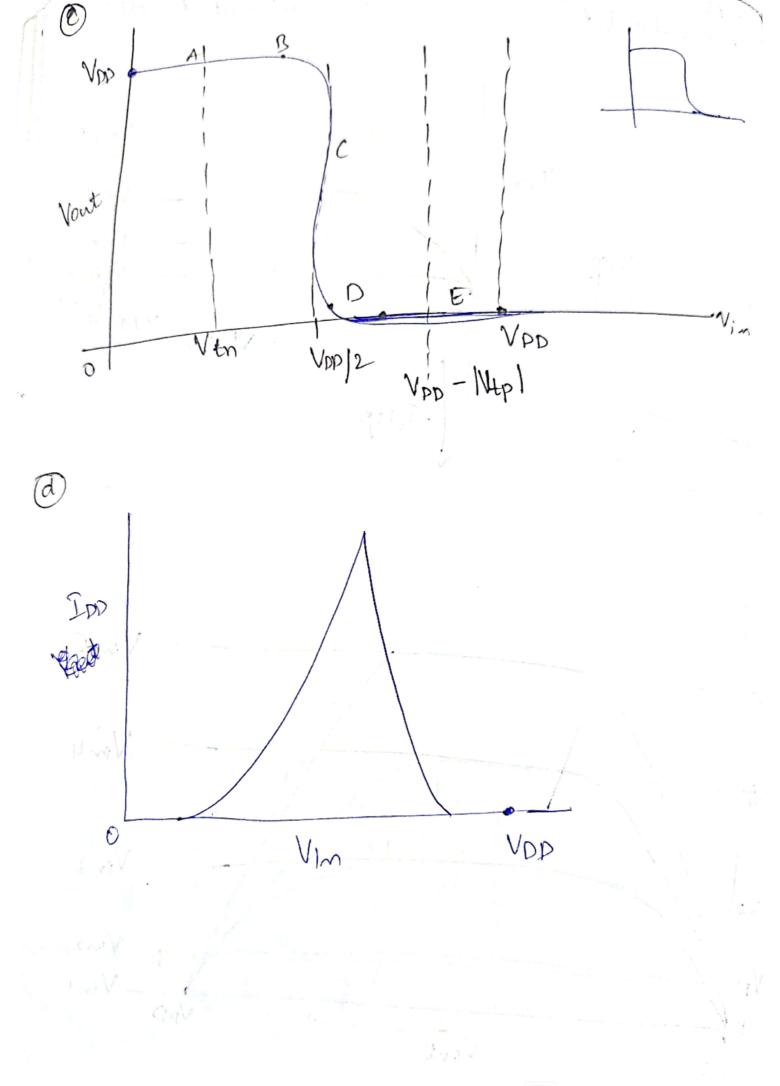
Various hegions of operation to he the n-analy
transistors. Vin - is the threshold voltage of the n-channel device. Vtp - is the threshold voltage of the p-channel device. Note that April negative. The equations are given both in terms of Vgs/Vds Vin Nont. and As the source of wmos transistor is glounded, Vgsn = Vin and Valsn = Vout. As the some of PMOS transistor is tied to VDD, Vgspi=V=Vint VDD and Vdspi= Vout - VDD.

Alcos invelter.

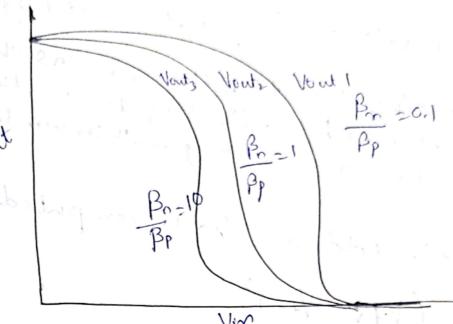
Jago Vont

Slag Vout


Slag Vout and > miv > eleav Cust Wiser Work - D 195V - 00V 2 20V


divided into five legions. The state of each transistor in each regim. In region A, the WMOS teansistor is OFF so the pmos transistor perlls the output to VDD. In region B, the NMOS transistor starts to trun on, pulling the output down. In region c, both transistors are in Saturation. Notice that ideal transistors are only in region c for VIM = VIDD/2 and the shope of the transfer were is - 0 in this region, corresponding to infinite gain. In region D, the pmos transistor is partially on. In legion E, it is completely off, leaving the Nmoston isted to pull the output blown to GAD. Also notice that the invertee's when the 1/pis within the thresh zero, neglecting leakage, when the 1/pis within the thresh voltage of 1/2 rail and sails roltage of VDD (a) AND heirls
Noltage of VDD (a) AND heirls
This feature is important for low-power operation.

Pegin | P-device | n-device | 0/P


Region | Condition | P-device | cutoff | Vont=VDD

A | 0 \le Vin \(\text{Vin} \(\text{Vin} \) \(\text{Vin} \) O & Vim L Vtn Uneal Saturated Vout > Vpp/2 saturated Saturated Vont drops stay Vtn & Vin & VDD/2 Saturated lineal Vout LVDD/2 Vin =VDD 12 VDD 2 KVin EVDD-IVEDI cutoff | linear | Vont = 0 E Vin > VDD - | Vtp |

q. Explain the effects of Bn / Bp latio varitime in the diagram.

We know that $\beta_p = \beta_n$, the inverter threshold voltage Vinv is VDD/2.

Inverter with different beta ratios

 $r = \frac{\beta_p}{\beta_n}$ are called skewed in verter [sutherland

If R> 1, the invuter is HI- Skewed.

If RL 1, the inverter is LO-skewed.

If R=1, the invertee has normal Skew (DE) is unskewed.

A HI - skew inverter has a stronger PMOS transistor.

Therefore, Pf the PPIS VPP 12, the OPP will be greated than VPP 12.

In other words, the ? Ip threshold must be higher th

Similarly, a LO-skew inveller has a weaker prince transmitor and thus a lower dwitching threshold As the better ratio is changed, the switching threshow However, the ofp voltage transition remains sharp. Rate are usually skewed by adjusting the widths of transistors while maintaining minimum length to speed. The inverter threshold can also be computed analytics Idn = Br (Vinv-Ven)2 Idp = Bp (Vim - VDD - Vtp)2. By setting the aments to be equal fopposite. Vinn = VDD + Vtp + Vtn Ja transispors are fully velocity saturated. Idn = Wn Cox Vsat-n (Vinv-Vtn) Idp = Wp Cox Vsat-p (Vinv-VDD-V40). Redefining 2 = Wp Neat-p

Wandsat-n ele thateld must be higher than