CMR

INSTITUTE OF
TECHNOLOGY
Internal Assesment Test — | MAY 2022
Sub: | Network Security Code: 18EC821
Date: | 14/05/2022 Duration: 90 mins | Max Marks: 50 Sem: 8 Branch: ECE
Answer any five questions out of eight questions
SCHEME OF VALUATION

Q. Questions Marks
no

1.

Most previous computer applications had no, or at best, very little security. This continued for a number
of years until the importance of data was truly realized. Until then, computer data was considered to
be useful, but not something to be protected. When computer applications were developed to handle
financial and personal data, the real need for security was felt like never before. People realized that
data on computers is an extremely important aspect of modem life. Therefore, various areas in security 4M
began to gain prominence. Two typical examples of such security mechanisms were as follows:
e Provide a user identification and password to every user, and use that information to authenticate
a user.
@ Encode information stored in the databases in some fashion, so that it is not visible to users who
do not have the right permission.

a. Automating Attacks
b. Privacy Concerns
c. Distance Does not Matter

- I
Traditional attack: Produce coins using some machinery and bring them Into circulation. l - b - “"'"x"’”‘ M
| V NAANY o 6

Modern attack: Steal haif a dollar digitally from a million accounts in a few minutes. e ="

o> = &

/adl

2. | Confidentiality, Authentication, Integrity, Non-repudiation

B—p-ils

Confidentiality Authentication 4x2=8M

Ideal route of the message

Transfer \ ’ Transter

5100
0D $ 1000 | never sent that message,
Actual route of the message oC Hick you claim to have

—= L =) [

Integrity Non-repudiation

Confidentiality, Authentication, Integrity, Non-repudiation (Explaination) 2M

Aftacks

Passive aftacks

Active attacks

Passive attacks (Interception)

Releasa of message contents Traffic analysis 4M
Active attacks
Masguerade Maodification Denial Of Service-D0OS
Replay attacks Alterations
Explanation of passive and active attacks 6M
HTTP FTP SMTP SMIME
HTTP FTP SMTP SSL or TLS Kerberos| SMTFP | HTTP
TCP TCP e TCP 6M
IPTPSee I 13
{a) Neiwork level ih) Transpori level ic) Application level
Sockets Layer (S5L) and the follow-on Internet standard known as Transport Layer
Security (TLS). At this level, there are two implementation choices. For full general-
ity, S5L {or TLS) could be provided as part of the underlying protocol suite and 4M
therefore be transparent to applications. Alternatively, S5L can be embedded in
specific packages. For example, Netscape and Microsoft Explorer browsers come
equipped with S5L., and most Web servers have implemented the protocol.
SSL Connection:
A transient peer-to-peer communications link.
Each connection is associated with one SSL session.
2x5=10M

SSL Session:

A session is an association between client and server.
It is created by the Handshake Protocol.

It defines a set of security parameters.

It may be shared by multiple SSL connections.

It is useful to avoid expensive negotiations of security parameters for
each connection. Single session has many connections. Every
connection has a different key

Client Server
T clieng 4
—xllo Phase 1
| [Estblish security capabilities, including
protocol version, session [D, cipher suite,
ﬁ;wi_hfﬁg_———‘_____f compression method, and initial random
e numbers.
—
r/mﬁM
exchang®
server K&V Phase 2
Server may send certificate, key exchange,
ficale _;eqal&-" and request certificate. Server signals end
gertt of hello message phase.
dome "
ETY 5__hf1|'£|' -
.
£
—__ clieng g, Phase 3 . . .
— ey chang . Client sends certificate if requested. Client
e— sends key exchange. Client may send
CeRtifi TT* cenificate verification.
'flw@_lrerify
== Char i
_____’~§P;—_'-_"I-_h'i er_spec
L) T
— ___fr”‘#"l‘d
| Phased
Change cipher suite and fimish
, e i N
ch?‘lgc:'i‘fix_;—_fﬁ‘_____ handshake protocol.
— .
fmished _——
Y
Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

Handshake Protocol Action

6M

SSL Handshake Protocol Message Types

Message Type Parameters
hello request null
client halloc version, random, session id, cipher suite, compression method
server hallo version, random, session id, cipher suite, compression method
certificate chain of X_309v3 certificates
server key exchange parameters, signature
certificate regquest type, authorities
server_done null
cartificate wverify signature
client key exchange parameters, signature
finished hash value

4M

Alert Codes

TLS supports all of the alert codes defined in SSLv3 with the exception of
no_certificate. A number of additional codes are defined in TLS; of these, the
following are always fatal.

» record_overflow: ATLS record was received with a payload (ciphertext)
whose length exceeds 2'4+2048 bytes. or the ciphertext decrypted to a length
of greater than 2'*+1024 bytes.

* unknown_ca: A valid certificate chain or partial chain was received, but the
certificate was not accepted because the CA certificate could not be located or
could not be matched with a known, trusted CA.

* access_deniled: A valid certificate was received, but when access control
was applied. the sender decided not to proceed with the negotiation.

* decode_error: A message could not be decoded, because either a field
was out of its specified range or the length of the message was incorrect.

» protocol_wersion: The protocol version the client attempted to negoti-
ate is recognized but not supported.

* insufficient security: Returned instead of handshake failure
when a negotiation has failed specifically because the server requires ciphers
more secure than those supported by the client.

*» unsupported extenslon: Sent by clients that receive an extended server
hello containing an extension not in the corresponding client hello.

* internal_error: An internal error unrelated to the peer or the correct-
ness of the protocol makes it impossible to continue.

* decrypt_error: A handshake crvptographic operation failed, including
being unable to verifv a signature, decrypt a kev exchange, or validate a fin-
ished message.

* user canceled: This handshake is being canceled for some reason unre-
lated to a protocol failure.

* no_renegotlatlion: Sent by a client in response to a hello request or by
the server in response to a client hello after initial handshaking. Either
of these messages would normally result in renegotiation, but this alert
indicates that the sender is not able to renegotiate. This message is always a
warning,

10M

HTTPS (HTTP over 55L) refers to the combination of HI'TP and S5L to imple-
ment secure communication between a Web browser and a Web server. The HT'TPS
capability is built into all modern Web browsers. Iis use depends on the Web server
supporting HTTPS communication. For example, search engines do not support
HTTPS.

The principal difference seen by a user of a Web browser is that URL (uni-
form resource locator) addresses begin with https:/ rather than http/. A normal
HTTP connection uses port 80. If HTTPS is specified. port 443 is used, which
invokes 55L.

When HTTPS is used, the following elements of the communication are
encrypted:
» URL of the requested document
» Contents of the document
» Contents of browser forms (filled in by browser user)
+ Cookies sent from browser to server and from server to browser
+ Contents of HTTP header

2M

Connection Initiation

For HTTPS, the agent acting as the HT'TP client also acts as the TLS client. The
client initiates a connection to the server on the appropriate port and then sends the
TLS ClientHello to begin the TLS handshake. When the TLS handshake has fin-
ished, the client may then initiate the first HT'TP request. All HTTP data is to be
sent as TLS application data. Normal HTTP behavior, including retained connec-
tions, should be followed.

We need to be clear that there are three levels of awareness of a connection in
HTTPS. At the HTTP level, an HTTP client requests a connection to an HI'TP
server by sending a connection request to the next lowest layer. Typically, the next
lowest layer is TCP, but it also may be TLS/SSL. At the level of TLS, a session is
established between a TLS client and a TLS server. This session can support one or
more connections at any time. As we have seen, a TLS request to establish a con-
nection begins with the establishment of a TCP connection between the TCP entity
on the client side and the TCP entity on the server side.

Connection Closure

An HTTP client or server can indicate the closing of a connection by including the
following line in an HTTP record: Connection: clos=e. This indicates that the
connection will be closed after this record is delivered.

The closure of an HI'TPS connection requires that TLS close the connection
with the peer TLS entity on the remote side, which will involve closing the underly-
ing TCP connection. At the TLS level, the proper way to close a connection is for
each side to use the TLS alert protocol to send a close_notify alert. TLS imple-
mentations must initiate an exchange of closure alerts before closing a connection.
ATLS implementation may, after sending a closure alert, close the connection with-
out waiting for the peer to send its closure alert, generating an “incomplete close™.
Note that an implementation that does this may choose to reuse the session. This
should only be done when the application knows (typically through detecting HTTP
message boundaries) that it has received all the message data that it cares about.

HTTP clients also must be able to cope with a situation in which the underlying
TCP connection is terminated without a prior close_notify alert and without a
Connection: close indicator. Such a situation could be due to a programming

4M

4M

