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1. Derive Maxwell’s first equation of electrostatics. Also obtain the expression for  [10] CO2 L2
Gauss’s Divergence theorem.
2.(a) Derive an expression for the work done in moving a point charge Q in the [04] CO3 L2
presence of an electric field E.
2.(b) Define electric potential. Prove that electric field intensity is negative potential [06] CO3 L2

gradient for electrostatics.

3.(a) Define current and current density. Derive the expression for equation of [06] CO3
continuity of current.

3.(b) Calculate volume charge density at the point P(3, —45°,5) , given [04] CO2  L:

D = 5z2a, + 10pza, —.

A cube is defined byl < x,y,z < 1.2. If D = 2x?ya, + 3x? yzay%, [10] co2 L3

Evaluate both sides of divergence theorem.

5. Using Laplace’s equation, derive an expression for capacitance of a coaxial [10] CO3 L3
cylindrical capacitor.

6.(a) Starting from the Gauss’s law deduce Poisson’s and Laplace’s equations. Write  [07] CO3 L
the equations in Cartesian, Cylindrical and Spherical coordinate systems.

6.(b) Given potential function V = x2yz + Ay3z. Find A so that Laplace’s equationis  [03] CO3 L3

satisfied.
7.(a) State and prove the Uniqueness theorem. [07] CO3 L2
7.(b) Determine whether or not the given potential field satisfy the Laplace equation: [03] CO3 L3
V=p%+22.
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Application of Gauss's law to differential volume element: 1. Derive Maxwell’s first equation of electrostatics. Also obtain the expression for ~ [10]
Derive Maxwell's First Equation of electrostatics from Gauss's law. Gauss’s Divergence theorem.
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Equating the two
sides of Gauss's
Law:
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This equation is also called
Point (Differential) form of
Gauss's law

Maxwell's First
Equation of
Electrostatics
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The divergence of the vector flux density A is the outflow of flux from a small closed surface

per unit volume as the volume shrinks to zero.
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Gauss's Maxwell's First This equation is also called

Equation of
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Gauss's law

Divergence Theorem:

This theorem applies to any vector field for which the appropriate partial derivatives exist.
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This theorem can be derived from Gauss's law.
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2.(a) Derive an expression for the work done in moving a point charge Q in the [04] CO3
presence of an electric field E.

e

&

Force on the point charge in the electric field,

If we attempt to move the
test charge against the -7-; Q?

electric field, we have to

exert a force equal and

opposite to that exerted

by the field, and this Force applied to move the charge against

requires us to expend P
eniszgy or dowork. electric field,

E:nmu' - a?

Work Done, y = _ ﬂgﬂ

a2
The line integral : ‘ oh\J z —0QE-. dl

Addition of vectors N s - Q

4 63
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Work done remains same irrespective of the path chosen in
moving the charge from A to B

,) Work done around a closed path is zero

We -ag2dl - o

% In general, vectors whose line 1ntegral does not depend
on the path of integration are called conservative.
Thus, E is conservative field.



2,(b) Define electric potential. Prove that electric field intensity is negative potential ~ [06]
gradient for electrostatics.

POTENTIAL GRADIENT
Show that electric field is the negative gradient of potential for electrostatics = “A v - a’v
(or) Derive the relation between electric field intensity and electric potential E e ﬂ =
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=
. =) 1
‘[ /
dv = —-?E %
Av: .—‘E”ﬂ'm& df :Bz‘ﬂ' £

ol\)" - Ecotb gkg-.'fl} ws®= |
£z - v . €
mox * A‘I M -
:l; ::a?:r:uﬁon, ? L %\ia Electric field is in the direction of decreasing potential.

4
?__ 17‘) l‘ - - vv Electric field is negative potential gradient

For example, ‘E.; - ﬂg

Electric field is in the direction of decreasing potential.

i g
o) o\
X
:In Rteclangular “U"‘J ’%) - “l :
: system, A i
? WA 4 WG+ QE%J:"VV:’T Y :
__ A R
 mCyindrical 0

i system, \ G’ /

CO3



3(2) Define current and current density. Derive the expression for equation of [06] (O3 L2
continuity of current.

Current and Current Density

The current is defined as a rate of movement of charge passing a given reference point
(or crossing a given reference plane) of one Coulomb per second.
Current is symbolized by |.

. de
IZEA

The current density, measured in Amperes per square meter, is a vector flux density
represented by J. It is defined as the current per unit cross sectional area.
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Continuity Equation of current (or) Equation of continuity of current
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3.(b) Calculate volume charge density at the point P(3,—45°,5) , given (04 CO2 L3
D = 5za, + 10pza, %
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A cube is defined byl < x,y,z < 1.2. If D = 2x%*ya, + 3x? yzay%. [10] CO2
Evaluate both sides of divergence theorem.

Divergence Theorem:
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Using Laplace’s equation, derive an expression for capacitance of a coaxial [10] O3
cylindrical capacitor.

2) Coaxial Cylindrical Capacitor:
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6.(a) Starting from the Gauss’s law deduce Poisson’s and Laplace’s equations. Write

the equations in Cartesian, Cylindrical and Spherical coordinate systems.

Poisson's and Laplace's Equations:

Starting from Maxwell's first equation of electrostatics ( Point form of Gauss's Law):

—
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Poisson's and Laplace's Equations in spherical system:
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6.(b) Given potential function V = x%yz + Ay3z. Find A so that Laplace’s equation is
satisfied.
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7.(a) State and prove the Uniqueness theorem.

Uniqueness Theorem:

If a solution to Laplace's equation can be found that satisfies the boundary
conditions, then the solution is Unique.

The theorem applies to any solution of Poisson's or Laplace's equation in a given
region or closed surface.

Proof:

The theorem is proved by contradiction.

We assume that there are two solutions V1 and V2 of Laplace's equation (or Poisson's
equation) both of which satisfy the prescribed boundary conditions.
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If V1 and V2 are two
different solutions:

Differential operator is
distributive and hence
we can write the above =

equation as follows: v ( | _'-t) =D

Considering the v vl\a = VJL
boundary conditions b
with atleastone  conductor Vv o
Eﬁﬂﬂﬁg‘,‘;‘f’ surface is v ib~ab
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Integrating the above expression over the volume 'V enclosed by the closed surfacs
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$ © From eqn (6) as Integration is around the closed surface, which is the boundary itself.
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But the integrand is a square function, which

cannot be odd.
Hence Integrand must be zero.

For equipotential surface (i.e. at the

boundary),
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\D:L i Thus V1 and V2 are not two different solutions. They are both same.
i Hence Uniqueness Theorem is proved.




7.(b) Determine whether or not the given potential field satisfy the Laplace equation:

V=p*+z%.
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