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INTERNAL ASSESSMENT TEST - 11

Sub: | CRYPTOGRAPHY Code: 21EC642
Date: | 11/07 /2024 Duration: |90 mins Max Marks: |50 Sem: |VI Branch: ECE
Answer any 5 full questions
Marks| CO RBT
1 a) Use the properties of discrete logarithms and solve 3-5* = 6 (mod 23). [6] | CO3 L3
b) What is Euler’s Totient function? Find the value of ¢(144). [4]
2 | Use the matrix [17 17 521 18 21 2 2 19 ] and encrypt the message [10] [CO3 L3
PAYMOREMONEY using Hill Cipher technique.
3 | a) Briefly explain the Vernam Cipher technique. [6] |CO2 L1
b) State and Prove Fermat’s Theorem. [4] |COl L3
4 Explain the Feistel structure encryption and decryption with the neat diagram. [10] CZO L1
5 Briefly explain the DES Key generation process. Also explain initial and final [10] C20 L1
permutation boxes used in DES.
6 With the help of neat diagram, explain the AES encryption and decryption [10] | CO L2
2
process.
7 With suitable examples describe the AES MixColumn transformation. [10] SO L1
8 [lustrate the following with necessary diagrams:
(i) AddRoundKey and SubBytes in AES. [gl SO L2
(i1) Single DES encryption. 5]
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IAT-2 Solution

1. a) Use the properties of discrete logarithms and solve 3-5° = 6 (mod 23).
b) What is Euler’s Totient function? Find the value of ¢(144).

Solution:
a)
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o112 (3 |4 (5|6 |7 |89 |0|1]|2
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(a) 3- 5= 6(mod23)
Multiply both sides by 8
5% = 48(mod23) = 2 mod 23 By above lookup table x=2.

b)
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2. Use the matrix [17 17 521 18 21 2 2 19 ] and encrypt the message PAYMOREMONEY using Hill
Cipher technique.




Plain text: PAY MORE MONEY

17 17 5
Key:| 21 18 21
2 2 19

Stepl: Divide the plain text into block of 3(as here key is a 3X3 matrix)
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Ifitis not possible to make a group then add some filler letters "X’ to complete the group.

Step-2:

C = KP mod 26
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Cay Caz Cog Gyl = | B19 861 594 B49 [mod 26 = [13 3 22 1?]
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Plain Text: PAY MORE MONEY
Cipher Text: LNS HDLE WMTRW

3) a) Briefly explain the Vernam Cipher technique.
b) State and Prove Fermat’s Theorem.

Vernam Cipher The ultimate defense against such a cryptanalysis is to choose a keyword
that is as long as the plaintext and has no statistical relationship to it. Such a system was
introduced by an AT&T engineer named Gilbert Vernam in 1918.
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His system works on binary data (bits) rather than letters. The system can be
expressed succinetly as follows (Figure 2.7):

¢ =p®Dk
where

p; = ith binary digit of plaintext

k; = ith binary digit of key

¢; = ith binary digit of ciphertext
(# = exclusive-or (XOR) operation

Compare this with Equation (2.3) for the Vigenére cipher.

Thus, the ciphertext is generated by performing the bitwise XOR of the plain-
text and the key. Because of the properties of the XOR, decryption simply involves
the same bitwise operation:

Fr’=fe@ke

which compares with Equation (2.4).

The essence of this technique is the means of construction of the key. Vernam
proposed the use of a running loop of tape that eventually repeated the key, so
that in fact the system worked with a very long but repeating keyword. Although
such a scheme, with a long key, presents formidable cryptanalytic difficulties, it
can be broken with sufficient ciphertext, the use of known or probable plaintext

sequences, or both.
One-Time Pad

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the
Vernam cipher that yields the ultimate in security. Mauborgne suggested using a
random key that is as long as the message, so that the key need not be repeated. In
addition, the key is to be used to encrypt and decrypt a single message, and then is
discarded. Each new message requires a new key of the same length as the new mes-
sage. Such a scheme, known as a one-time pad, is unbreakable. It produces random
output that bears no statistical relationship to the plaintext. Because the ciphertext
contains no information whatsoever about the plaintext, there is simply no way to
break the code.



An example should illustrate our point. Suppose that we are using a
Vigenere scheme with 27 characters in which the twenty-seventh character is the
space character, but with a one-time key that is as long as the message. Consider
the ciphertext

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
We now show two different decryptions using two different keys:

ciphertext: ANKYODEYUREFPFJBYOJDSPELREREYIUNOFDOIUERFELUYTS
key: pxlmvmsydofuyrvzwe tnlebnecvgdupahfzzlmnyih
plaintext: mr mustard with the candlestick in the hall

ciphertext: ANEKEYODKYUREFFJBRYOJDSPLEEYIUNOFDOIUERFELUYTS
key: pftgpmiyvdgaxgoufhkllImhsgdgogtewbgfgyovuhwt
plaintext: miss scarlet with the knife in the library

Suppose that a cryptanalyst had managed to find these two keys. Two plau-
sible plaintexts are produced. How is the cryptanalyst to decide which is the correct
decryption (i.e., which is the correct key)? If the actual key were produced in a truly
random fashion, then the cryptanalyst cannot say that one of these two keys is more
likely than the other. Thus, there is no way to decide which key is correct and there-
fore which plaintext is correct.

: I 4
Fermat’s Theorem

Fermat’s theorem states the following: If p is prime and a is a positive integer not
divisible by p, then

a’"! = 1(modp) (8.2)
Proof: Consider the set of positive integers less than p:{1,2, ... .p — 1}
and multiply each element by a, modulo p, to get the set X = [amodp,
2amodp, ... ,(p — 1)a modp). None of the elements of X is equal to zero because

p does not divide a. Furthermore, no two of the integers in X are equal. To see this,
assume that ja = ka(modp)), where 1 = j < k = p — 1. Because a is relatively
prime? to p, we can eliminate a from both sides of the equation [see Equation (4.3)]
resulting in j = k(modp). This last equality is impossible, because j and k are both
positive integers less than p. Therefore, we know that the (p — 1) elements of X
are all positive integers with no two elements equal. We can conclude the X consists

of the set of integers 1,2, ... ,p — 1} in some order. Multiplying the numbers in
both sets (p and X') and taking the result mod p vields

axX2ax---X(p—-—1a=[(1xX2xX---X(p—1)](modp)
a” Yp — 1) = (p — 1)! (modp)



We can cancel the (p — 1)! term because it is relatively prime to p [see Equation (4.5)].
This vields Equation (8.2), which completes the proof.

a=T7p=19

77 = 49 = 11 (mod 19)

7 =121 = 7 (mod19)

7% = 49 = 11 (mod 19)

7% = 121 = 7 (mod 19)

A= =7 %7 =7 x 11 =1(mod19)

An alternative form of Fermat's theorem is also useful: If p is prime and a is a
positive integer, then

a’” = a(modp) (8.3)

Note that the first form of the theorem [Equation (8.2)] requires that a be relatively
prime to p, but this form does not.

p=5a=3 a =3 =243 = 3(mod5) = a(modp)
p=5a=10 a" = 10° = 100000 = 10(mod5) = O(mod5) = a(modp)

4) Explain the Feistel structure encryption and decryption with the neat diagram.

Feistel Cipher Structure The left-hand side of Figure 3.3 depicts the structure proposed by Feistel.
The inputs to the encryption algorithm are a plaintext block of length 2w bits and a key K. The
plaintext block is divided into two halves, LO and RO.

The two halves of the data pass through n rounds of processing and then combine to produce the
ciphertext block. Each round i has as inputs Li-1 and Ri-1 derived from the previous round, as well
as a subkey Ki derived from the overall K. In general, the subkeys Ki are different from K and
from each other. In Figure 3.3, 16 rounds are used, although any number of rounds could be
implemented.

All rounds have the same structure. A substitution is performed on the left half of the data. This is
done by applying a round function F to the right half of the data and then taking the exclusive-OR
of the output of that function and the left half of the data. The round function has the same general
structure for each round but is parameterized by the round subkey Ki. Another way to express this
is to say that F is a function of the right-half block of w bits and a subkey of y bits, which produces
an output value of length w bits: F(REi1 , Ki+1). Following this substitution, a permutation is
performed that consists of the interchange of the two halves of the data.6

This structure is a particular form of the substitution-permutation network (SPN) proposed by
Shannon.
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Feistcl Encryption and Deeryption (16 rounds)

The exact realization of a Feistel network depends on the choice of the following parameters and design
features:

* Block size: Larger block sizes mean greater security (all other things being equal) but reduced
encryption/decryption speed for a given algorithm. The greater security is achieved by greater
diffusion. Traditionally, a block size of 64 bits has been considered a reasonable tradeoff and was
nearly universal in block cipher design. However, the new AES uses a 128-bit block size.

* Key size: Larger key size means greater security but may decrease encryption/ decryption speed. The
greater security is achieved by greater resistance to brute-force attacks and greater confusion. Key
sizes of 64 bits or less are now widely considered to be inadequate, and 128 bits has become a
common size.

* Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate security
but that multiple rounds offer increasing security.

A typical size is 16 rounds.

* Subkey generation algorithm: Greater complexity in this algorithm should lead to greater difficulty of
cryptanalysis.

* Round function F: Again, greater complexity generally means greater resistance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:

» Fast software encryption/decryption: In many cases, encryption is embedded in applications or utility
functions in such a way as to preclude a hardware implementation. Accordingly, the speed of
execution of the algorithm becomes a concern.



* Ease of analysis: Although we would like to make our algorithm as difficult as possible to
cryptanalyze, there is great benefit in making the algorithm easy to analyze. That is, if the
algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for
cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength.
DES, for example, does not have an easily analyzed functionality.

Fewster Deceyerion Arcorrray The process of decryption with a Feistel cipher
is essentially the same as the encryption process. The rule is as follows: Use the
ciphertext as input to the algorithm, but use the subkeys K; in reverse order. That
is. use K, in the first round, K,,_; in the second round, and so on, until K; is used in
the last round. This is a nice feature, because it means we need not implement two
different algorithms; one for encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct
result, Figure 3.3 shows the encryption process going down the left-hand side and the
decryption process going up the right-hand side for a 16-round algorithm. For clarity,
we use the notation LE; and RE, for data traveling through the encryption algorithm
and L.D; and RD; for data traveling through the decryption algorithm. The diagram
indicates that, at every round, the intermediate value of the decryption process is
equal to the corresponding value of the encryption process with the two halves of the
value swapped. To put this another way, let the output of the ith encryption round be

LE,|RE; (LE, concatenated with RE;). Then the corresponding output of the (16 —i)
th decryption round is RE;| LE; or, equivalently, LDs_;|RDs_.

Let us walk through Figure 3.3 to demonstrate the validity of the preceding
assertions. After the last iteration of the encryption process, the two halves of the
output are swapped, so that the ciphertext is RE 4| LE 4. The output of that round
1s the ciphertext. Now take that ciphertext and use it as input to the same algorithm.
The input to the first round is RE¢| LE . which is equal to the 32-bit swap of the
output of the sixteenth round of the encryption process.

Now we would like to show that the output of the first round of the decryption
process is equal to a 32-bit swap of the input to the sixteenth round of the encryption

process. First, consider the encryption process. We see that

LEs = RE;s
RE s = LEs @ F(RE;s, Kig)

On the decryption side,
LD1 = RDQ = LEM - RE15
RD, = LD, ® F(RD,, K3)
= REy; @ F(RE;s, Kig)
= [LE;s @ F(RE;s, Ki5)] @ F(RE;s, Kig)



The XOR has the following properties:

[A@B®C=A®[B®C]
DeHD=10
E®O0=E
Thus, we have LDy = REs and RDy = LE;s. Therefore, the output of the first
round of the decryption process is RE;s|LE;s, which is the 32-bit swap of the input
to the sixteenth round of the encryption. This correspondence holds all the way
through the 16 iterations, as is easily shown. We can cast this process in general
terms. For the ith iteration of the encryption algorithm,
LE,‘ = REI'_|
RE; = LE;  ® F(RE;_, K))

Rearranging terms:
REJ:_| = LEE
LE; ; = RE;® F(RE;_,, K;) = RE; ® F(LE;, K})

Thus, we have described the inputs to the ith iteration as a function of the outputs, and
these equations confirm the assignments shown in the right-hand side of Figure 3.3.

Finally, we see that the output of the last round of the decryption process is

REy| LE,. A 32-bit swap recovers the original plaintext, demonstrating the validity
of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To

see this, take a limiting case in which F produces a constant output (e.g., all ones)
regardless of the values of its two arguments. The equations still hold.
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12DES2 (L
T 12DES2

03A6  F(03A6, 12DES2) ®DETF F(03A6, 12DES2) @DETF  03A6

Round 2

gure 3.4 Feistel Example

To help clarify the preceding concepts, let us look at a specific example
(Figure 3.4 and focus on the fifteenth round of encryption, corresponding to the sec-
ond round of decryption. Suppose that the blocks at each stage are 32 bits (two 16-bit
halves) and that the key size is 24 bits. Suppose that at the end of encryption round
fourteen, the value of the intermediate block (in hexadecimal) is DE7TF03A6. Then
LE,, = DEJF and RE;; = 03A6. Also assume that the value of K5 is 12DE32.

After round 15, we have LE,s = 03A6 and RE,s = F(03A6, 12DE52) @ DETF.

Nowlet'slook at the decryption. We assume that LDy = REsand RDy = LEq;s,
asshowninFigure 3.3, and we wanttodemonstrate that LD> = REjand RD; = LE,.
So, we start with LDy = F(03A6, 12DE52) & DE7F and RD, = 03A6. Then,
from Figure 3.3, LD, = 03A6 = RE,, and RD, = F(03A6, 12DE52) @ [F(03A6,

12DES52) @ DET7F] =DE7F = LE14.



5) Briefly explain the DES Key generation process. Also explain initial and final permutation boxes
used in DES.

64-bit plaimtext 64-hit key
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Figure: General Depiction of DES Encryption Algorithm

64 bit key is used but every 8% bit is the parity bit hence it is taken as 56 bit key. Initially the key is
passed through the permutation function. For each 16 round, a sub key K| is produced by the
combination of left circular shift and permutation. The same permutation function is used in each
round.
The plain text are processed through these phases

a) Initial Permutation

b) 16 rounds of same function

] Swap

d)} Final Permutation
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The input is 64 bit. These inputs are permuted according to a predefined rule. The permutation
table contains a permutation of the number from 1 to 64. These permutation table and inverse
permutation table can be designed such that the original bits can be restored.

Initial Permutation

Final Permutation

585042342618 1002
6052443628201204
625446383022 1406
4 5648 40 32 24 1608
5749413325170901
5051433527 191103
6153453729211305
6355473931231507

4004 48 1656 24 64 32
39074715552363 31
3R0646 1454226230
3705451353216129
3604441252206028
3503431151 195927
340242105018 58 26
3014109491757 25

DES Encryption:

a] In DES Encryption, there are two inputs to the encryption function:



i the plaintext to be encrypted
ii. Key
b] Inthis case, the plaintext must be 64 bits in length and the key is 56 bits in length.
c) The processing of the plaintext proceeds in three phases.
i.  First, the 64-bit plaintext passes through an initial permutation (IP) that
rearranges the bits to produce the permuted input.

ii. This is followed by a phase consisting of sixteen rounds of the same
function, which involves both permutation and substitution functions.

iii. The left and right halves of the output are swapped to produce the
preoutput.

iv. Finally, the pre-output is passed through a permutation [IP™!] that is the
inverse of the initial permutation function, to produce the 64-bit
ciphertext.

d) With the exception of the initial and final permutations, DES has the exact structure
of a Feistel cipher.
Key Generation:
a] In DES, 56-bit key is used.
b) Initially, the key is passed through a permutation function.
a] Then, for each of the sixteen rounds, a subkey (K;) is produced by the combination
of a left circular shift and a permutation.
b) The permutation function is the same for each round, but a different subkey is
produced because of the repeated shifts of the key bits.
DES Decryption:
a]l Aswith any Feistel cipher, decryption uses the same algorithm as encryption,
except that the application of the subkeys is reversed.
b] Additionally, the initial and final permutations are reversed.

6) With the help of a neat diagram, explain the AES encryption and decryption process.

AES encryption and decryption with block diagram

AES doesn’t use the Feistel structure. Feistel structure, half of the data block is used to modify the
other half of the data block and then the halves are swapped. AES instead processes the entire data
block as a single matrix during each round using substitutions and permutation. The key that is
provided as input is expanded into an array of forty-four 32-bit words, w[i]. Four different stages are
used, one of permutation and three of substitution:

a) Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block

b) ShiftRows: A simple permutation

¢) MixColumns: A substitution that makes use of arithmetic over GF(28)

d) AddRoundKey: A simple bitwise XOR of the current block with a portion of the

expanded key

The cipher begins with an AddRoundKey stage, followed by nine rounds that each includes all
four stages, followed by a tenth round of three stages. AddRoundKey stage makes use of the
key.The cipher begins and ends with an AddRoundKey stage. Each stage is easily reversible. For
the Substitute Byte, ShiftRows, and MixColumns stages, an inverse function is used in the
decryption algorithm. For the AddRoundKey stage, the inverse is achieved by XORing the same
round key to the block, using the

result that A $ B $ B = "ﬁ"'In AES, the decryption algorithm is not identical to the
encryption algorithm.
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As all stages are reversible, it is easy to perform decryption to recover the plain text. Encryption and
decryption going in opposite vertical directions. The first N - 1 rounds consist of four distinct
transformation functions:

* Sub Bytes,

* Shift Rows,

* Mix Columns,

* Add RoundKey

The final round contains only three transformations; those are SubBytes, ShiftRows and
AddRoundKey, and there is an initial single transformation (AddRoundKey) before the first
round, which can be considered Round 0.

7) With suitable examples describe the AES MixColumn transformation.

MixColumns Transformation

Forwarp ann InveErse Travsrorvations The forward mix column transformation.
called MixColumns, operates on each column individually. Each byte of a column
is mapped into a new value that is a function of all four bytes in that column. The
transformation can be defined by the following matrix multiplication on State
(Figure 5.7b):
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=11 1 23
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Fpo | Sga | oz | Sos a0 | %o | Foz | Sos
Spg 10 | 512 [ B13 S10 [ S| 512 | Sia
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Sag | 30 | S5z | Saa $in | 830 | §52 | a3

(b} Mix column transformation

Figure 5.7  AES Row and Column Operations
02 03 01 01| s So1 o2 o3 Soo  Sba Sb2 S
M 02 03 01|50 S0 %2 53| _ | Sie S Si2 Sis 5.3)
01 01 02 03| s 51 52 53 sho Shy Shy sha |
03 01 01 02] | s 51 532 53 So 1 82 W3

Each element in the product matrix is the sum of products of elements of one row
and one column. In this case, the individual additions and multiplications” are

performed in GF(2%). The MixColumns transformation on a single column of State
can be expressed as

S0,j = (2-50,;) @ (3-51,;) D 52, ;D 53
$,; =50, @25 ;) DB 5D,

. _ (5.4)

5= 5,05 ;D2 5;)D03 5)

53, =B 5) D5 D5 ;D25

The following is an example of MixColumns:

87 F2 | 4D 97 47 40 | A3 | 4C
6E 4C 90 EC 37 D4 70 9F
46 E7 | 4A | C3 — 04 E4 | 3A | 42
Ab 8C D8 3 ED | AS Ab BC

Let us verify the first column of this example. In

GF(2"), addition is the bitwise XOR operation and that multiplication can be per
formed according to the rule established in Equation (4.14). In particular, multipli
cation of a value by x (i.e., by {02}) can be implemented as a 1-bit left shift followe«
by a conditional bitwise XOR with (0001 1011) if the leftmost bit of the origina
value (prior to the shift) is 1. Thus, to verify the MixColumns transformation on the
first colimn. we need to show that



It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit
left shift followed by a conditional bitwise XOR with (00011011), which represents
(x* + x* + x + 1). To summarize,

_ (bgbsbsbsbabby0) ifb, =0
X Jx) = 4.14
* X ) {(b&bgﬁ4b3bgb1b[;ﬂ) @ (00011011) ifb; =1 @19
Multiplication by a higher power of x can be achieved by repeated application

of Equation (4.14). By adding intermediate results, multiplication by any constant
in GF(2%) can be achieved.

({02} - {87}) © (103} - {6E}) D {46) @ (A6} = {47l
{87) D (102} - [6E}) @ ({03} - [46}) © {A6) = {37
{87) @ {6E} @ ({02} - {46}) @ ({03} - {AG}) = {94]

({03} - {87}) @ [6E} @ {46} @ ({02} - {A6]) = [ED}

For the first equation, we have [02} |87} = (0000 1110) & (0001 1011) =
(0001 0101) and {03} - |6E} = {6E} @ (]02} - [6E}) = (0110 1110) & (1101 1100) =
(10110010). Then,

{02 {87) = 00010101

{03} -{6E} = 10110010
146) — 01000110
[A6) = 10100110

01000111 = {47}

The other equations can be similarly verified.
The inverse mix column transformation, called InvMixColumns, is defined by
the following matrix multiplication:

OE OB 0D 09 ||s0 So1 So2 So3 Soo  So1 S0z 803
09 OE OB OD||sp su $12 Si3|_| S Sl Sz Sia| oo
0D 09 O0E OB || Sy &1 Sy %3 Si0 831 §i2 833
OB 0D 09 OE ||sp S S2 #3 S3p Sa1 Sz Sia



It is not immediately clear that Equation (5.5) is the inverse of Equation (5.3).

We need to show

OE OB 0D 09 02 03 01 01 So0 So1 Soz Soa
09 OE OB 0D |[ 01 02 03 01 || s, 81 $15 515
0D 09 OE OB || 01 01 02 03 || s3 %1 S22 521
OB 0D 09 0OE 03 01 o1 02 F10 S31 32 Ja1a

which is equivalent to showing

OE OB 0D 09 |02 03 01 O
09 OE OB 0D 01 02 03 01
0D 09 OE OB | 01 01 02 03
0B 0D 09 OE | 03 01 01 02

1
0
0
0

S
310
$20
330

0

1
0
0

o= o0

fo1 S S
f1 %12 13
§11 522 21

Fi1 §32 §33

(3.6)

_——— o 2

That is, the inverse transformation matrix times the forward transformation
matrix equals the identity matrix. To verify the first column of Equation (5.6), we

need to show

({0E}-102}) @& {0B} @ {0D] @ ({09} - {0
(109} - {02}) © {OE} @ {0B} & ({0D} - {0
(10D} - {02}) @ {09} @ {OE} @ ({0B} - {0
({0B} - {02}) @ {0D} @ {09} © ({0E} - {0

[0
l
l
l

(L]
O
L

1

For the first equation, we have {OE}-{02] = 00011100 and |09}- {03} =

(09} @ (J09} - {02}) = 00001001 (B 00010010 = 00011011. Then

[OE} - {02} = 00011100

|0B) = 00001011
[0D) = 00001101
[09}-{03] = 00011011

00000001

The other equations can be similarly verified.

8) Illustrate the following with necessary diagrams:
(1) AddRoundKey and SubBytes in AES.

(1) Single DES encryption.
Solution:
1) AddRoundKey and SubBytes in AES.

AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded key

Detailed Structure



AddRoundKey Transformation

Forparp axp Ivverse Teavsromeirioss In the forward add round key transfor-
mation. called AddRoundKey, the 128 bits of State are bitwise XORed with the 128
bits of the round key. As shown in Figure 5.5b, the operation is viewed as a colum-
nwise operation between the 4 bytes of a State column and one word of the round
key: it can also be viewed as a byte-level operation. The following is an example of

AddRoundKey:
47 | 40 | A3 | 4C AC | 19 | 28 | 57 EB | 59 | 8B | 1B
37 (D4 | 70 | 9F 77 | FA | DI | 53C 40 | 2E | Al | O3
94 | E4 | 3A | 42 @ 66 (DC| 29 | 00 | = | F2 | 38 | 13 | 42
ED | AS | A6 | BC F3 | 21 41 | 6A 1E | 84 | E7 | D&

The first matrix is State, and the second matrix is the round key.
The inverse add round key transformation is identical o the forward add
round key transformation, because the XOR operation is ils own inverse.

Farmonare The add round key transformation is as simple as possible and affects
every bit of State. The complexity of the round key expansion, plus the complexity
of the other stages of AES, ensure security.

Figure 5.8 is another view of a single round of AES, emphasizing the mecha-
nisms and inputs of each transformation,

State matrix
at beginming
of Fowmd
“‘I SuhBytes
Seho
' ShiftRows
0r 03 o1 ol )
01 02 03 0 R
il o1 02 03 it
s 01 ol 02 .
MixColumns matrix
Rusuid
key
N
|.hldl-lﬂiz! =+
N
State matrix
al e
¥ ol roamad Y
Constanl inpuis Variahle inpast

Figure 5.6 Inputs for Single AES Round

(i1) Single DES encryption.



Figure below shows the internal structure of a single round. Again, begin by focusing on the left-hand
side of the diagram. The left and right halves of each 64-bit intermediate value are treated as separate
32- bit guantities, labelled L (left) and R (right). As in any classic Feistel cipher, the overall processing
at each round can be summarized in the following formulas:

Li=Ry,

R = L{!—u & F{nu-u- H!}

e e AL i 15 s—- — I blis—

Expansion: The round key K| is 48 bits, and the R is 32 bits. The R is first expanded to 48 bits by using
permutation plus expansion table as shown below.
3z|1 | 2|3 |45
4 |5 |86 |7 |8 |85
B |9 10|11 |12 13
12113 (14|15 |16 (17
16 |17 |18 |19 |20 |21
20|21 |22 |23 |24 |28
24 |25 |26 (27|28 |29
28|29 |30|31 32| 1

Froam big 32 32-bit input From kit |
LA, |-._L _!I_:I ||-.{ -F!l_lllln{ _.-I'“III'-!__ _!I_;II.I.J _,IH‘IIIJ\,_ _'__II"IIII".IL_\_ _F!I.-.I.III
’lil 1 |E_ﬁ7FFFm=HF|§§I F F%ﬁl Jid| |;T-ﬁ7ﬁ"’ﬁﬂ$|$;—§|il ¥ |ﬁuﬁl [+#] [+]3
Af-bit output

XOR: The resulting 48 bits are XOR with K;



Substitution Table: These 48 bits are passed through the substitution function that produces a 32
bits output which is permuted based on predefined rule as shown in table below.

The round key K; is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by
using a table that defines a permutation plus an expansion that involves duplication of 16 of the R bits.
The resulting 48 bits are X0ORed with K;. This 48-bit result passes through a substitution function that
produces a 32-bit output. The role of the 5-boxes in the function is illustrated in figure shown below.
The substitution consists of a set of eight 5-boxes, each of which accepts 6 bits as input and produces 4
bits as output.

The substitution consists of 8 5-Boxes, which accepts 6 bits as input and produces 4 bits as
output. The 1% and last bit of the input to 5-Box §; forms the row and the remaining 4 bits represents
the column.

E.g.In §,, for the input 011001, the row is 01 ie. 1* row and 1100 i.e. 12t polumn, the value at 1% row
and 12t column is 9 i.e 1001,
The output of the 5-Boxes is again permuted as

T3 o7 0 ] 19 12 1% 7 Half Block (32 bits) Subkey (48 bits)
o 15 23 2% 05 18 3 10 l |
02 L] 24 14 2 ) 03 L]
19 13 30 (L5} 22 1 04 5 E
il s
A
A
51 52 53 54 55 56 57 58

[ T T TI0T 170711




