Wide-Band Frequency Modulation

Spectral analysis of the wide-band FM wave

s(t) = A. cos[2m fot + Bsin(27 fr,t)]

or

s(t) = R[Acexplj2n ft + j8sin(2w frat)]] = R[S(t) exp(527 ft)]

where 35(t) = A.exp [jBsin(27 f,,t)] is called “complex envelope”.

Note that the complex envelope is a periodic function of time with a
fundamental frequency f,,, which means

5(t) = §(t+ kT,) = §(t + fi)

where T, =1/f,




Then we can rewrite

5(t)

Fourier series form
5(t)
where
Cp, =

= S(t+k/fm)

= AcexpljBsin2n fr(t + K/ fm))]
=  Acexp|jfBsin(27 f,t + 2km)]

= A.expljBsin(27 fit)]

(©. @]

— Z Cn, €xXp(J27n fint)

n=—aoo

1/(2fm)
fm/ 5(t) exp(—j2mn fint) dt
—1/(2fm)

1/(2fm)
fon e / expli B sin(2m ft) — j2mn font] dt
—1/(2fm)




Define the new variable: * = 27 f,,,t

Then we can rewrite

A. [T
Cn = o explj(Bsinx — nx)| dx

— T

nth order Bessel function of the first kind and argument 3

1 T
Jn(B) = 2—/ explj(Bsinx — nx)| dx
T J—x
Accordingly
Cn = Act]n(ﬁ)
which gives

= A, Z Jn(B) exp(j2mn fint)

n=—oo




Then the FM wave can be written as

s(t) = RN[5(t) exp(527 fet)]

oo

= R|A > Ja(B)expli2an(fe + fim)l]

n=—oo

o

= A Y Ju(B)cos2n(fe + nfm)l]

n=—oo

Fourier transform

_ A

S =5 D BB = fo—nfm) +0(f + fo+ nfm)]

n=—oo

which shows that the spectrum consists of an infinite number of delta
functions spaced at f = f. = nf,, for n =0, +1,+2, ...




Properties of Single-Tone FM for Arbitrary Modulation
Index [

1. For different values of n

Jn(B) = J_n(B), for n even
Jn(B) = —J_n(B), forn odd

2. For small value of 3

Jo(B) =

Ji(8) =~
Jn(B) ~ 0, n>2

N |

6. The equality holds exactly for arbitrary 5]

> JAB) =1

n=—oo




The spectrum of an FM wave contains a carrier component and and an infinite
set of side frequencies located symmetrically on either side of the carrier at
frequency separations of f,,,, 2f,,, 3 fm -

The FM wave is effectively composed of a carrier and a single pair of side-
frequencies at f. £ f,,, .

The amplitude of the carrier component of an FM wave is dependent on the
modulation index 3 . The average power of such as signal developed across a |-
ohm resistor is also constant:

1 2
Pav — §AC
The average power of an FM wave may also be determined from

1 2 . 2
PaV:iAc Z Jn(ﬁ)

n=—oo
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rectangular pulse of duration Ar and amplitude g(nT,)/At; the smaller we make At, the better 241

will be the approximation. 7.3 THE SAMPLING PROCESS
The ideal sampled signal g5(¢) has a mathematical form similar to that of the Fourier

transform of a periodic signal. This is readily established by comparing Eq. (7.1) for g;(f)

with the Fourier transform of a periodic signal given in Eq. (2.88). This correspondence

suggests that we may determine the Fourier transform of the ideal sampled signal g4(f) by

applying the duality property of the Fourier transform to the transform pair of Eq. (2.88).

By so doing, and using the fact that a delta function is an even function of time, we get

the result:

o0
ss(l)=f ) G(f~mf) (7.2)
m=—o
where G(f) is the Fourier transform of the original signal g(f), and f; is the sampling rate.
Equation (7.2) states that the process of uniformly sampling a continuous-time signal of
finite energy results in a periodic spectrum with a period equal to the sampling rate.

Another useful expression for the Fourier transform of the ideal sampled signal gs(f)
may be obtained by taking the Fourier transform of both sides of Eq. (7.1) and noting that
the Fourier transform of the delta function d(¢ — nT;) is equal to exp(—j2nfT;). Let
Gs(f) denote the Fourier transform of gs(f). We may therefore write

[0¢]
Gs(f)= Y g(nTy)exp(—j2nnfTy) (7.3)
n=—o0
This relation is called the discrete-time Fourier transform and was briefly discussed in
Chapter 2. It may be viewed as a complex Fourier series representation of the periodic
frequency function Gs(f), with the sequence of samples {g(nT;)} defining the coeffi-
cients of the expansion.

The relations, as derived here, apply to any continuous-time signal g(f) of finite en-
ergy and infinite duration. Suppose, however, that the signal g(z) is strictly band-limited,
with no frequency components higher than W Hertz. That 1s, the Fourier transform G(f)
of the signal g(r) has the property that G(f) is zero for | f| = W, as illustrated in Figure
7.2a; the shape of the spectrum shown in this figure is intended for the purpose of illus-
tration only. Suppose also that we choose the sampling

period T;=1/2W. Then the corresponding spectrum 6if)
Gs(f) of the sampled signal gs(#) is as shown in Figure
7.2b. Putting T, = 1/2W in Eq. (7.3) yields G(0)
3 jnnf
Gs(f) = 74
5(f) n_z_wg(zw)exp( W) (7.4)
From Eq. (7.2), we readily see that the Fourier trans- W o w
form of gs(f) may also be expressed as @
Gs(f) =£G(f) +£. Z G(f-mf,)  (1.5) G )
o 2WG(0)
Hence, under the following two conditions: \/\/\/ \/\/\/
1.G(f) =0 for |f|=W | | | | )
2.f,=2W -2f; S+ W0 W 2fs
we find from Eq. (7.5) that e
FIGURE 7.2 (a) Spectrum of a strictly band-limited signal g(f).
G(f) = 1 Gs(f), —W<f<W (7.6) (b) Spectrum of sampled version of g(#) for a sampling period

2W =1/2W.
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Substituting Eq. (7.4) in Eq. (7.6), we may also write

G(f) = 2:4/ i g(;;v)exp(—ﬁ;;f), —W<f<W (1.7)

n=—00

Therefore, if the sample values g(n/2W) of a signal g(¢) are specified for all time, then the
Fourier transform G(f) of the signal is uniquely determined by using the discrete-time
Fourier transform of Eq. (7.7). Because g(¢) is related to G(f) by the inverse Fourier
transform, it follows that the signal g(¢) is itself uniquely determined by the sample
values g(n/2W) for —oo <n<co. In other words, the sequence {g(n/2W)} has all the

information contained in g(7).

Consider next the problem of reconstructing the signal g(f) from the sequence of
sample values [g(n/2W)]. Substituting Eq. (7.7) in the formula for the inverse Fourier
transform defining g(f) in terms of G(f), we get

f0= [ Glpesp(oanar

—a0

Voo ;
Ly Zesla)or (3ot

n=—uo

Interchanging the order of summation and integration:

The Whittakers, Father and Son

The exact origin of the sampling theorem
has an intriguing history of its own. The
earliest and most highly cited paper is that
of E. T. Whittaker, published in 1915. In
that paper, Whittaker described an idea that
he termed the cardinal function, which was
subsequently, in 1929 renamed the cardinal
series by his son, J. M. Whittaker. In his
1915 paper, the senior Whittaker showed
(among other findings) that if a function of
time is band-limited, then the cardinal
series is applicable to that function.

The sampling theorem, under that
very name, is mentioned (perhaps for the
first time) in Shannon’s 1949 paper on infor-
mation theory. For the derivation of the the-
orem, the reader is referred to another
Shannon paper written in 1949 on “Com-
munication in the presence of noise.” In this
latter paper, Shannon does make reference
to a book by J. M. Whittaker on Inter-
polation Function Theory, published in 1935.

For a more detailed account of the his-
tory of the sampling theorem, see Chapter 1
of the book by Marks (1991), which, inter-
estingly enough, is entitled Introduction
to Shannon Sampling and Interpolation
Theory.

g(t) = i g(ﬁ) ﬁjivw exp [jZEf (t— ﬁﬂ af  (78)

n=—

The integral term in Eq. (7.8) is readily evaluated, yielding the final result

_ = [ n\sin2nWt—nn)
8l)= Z g(ZW) (2nWt — nr)

n=—00
o (7.9)
n
= — )si —~ —0 <1<
"_ng(zw)smc(ZWt n), 0 <t<o0

Equation (7.9) provides an interpolation formula for reconstructing the orig-
inal signal g(¢) from the sequence of sample values {g(n/2W)}, with the sinc
function sinc(2W¢) playing the role of an interpolation function. Each sample
is multiplied by a delayed version of the interpolation function, and all the re-
sulting waveforms are added to obtain g(#). Looking at Eq. (7.9) in another
way, it represents the convolution (or filtering) of the impulse train gs(f) given
by Eq. (7.1) with the impulse response sinc(2W¢). Consequently, any impulse
response that plays the same role as sinc(2Wr) is also referred to as a recon-
struction filter.

We may now state the sampling theorem for strictly band-limited signals
of finite energy in two equivalent parts:

1. A band-limited signal of finite energy, which only has frequency com-
ponents less than W Hertz, is completely described by specifying the
values of the signal at instants of time separated by 1/2W seconds.

2. A band-limited signal of finite energy, which only has frequency com-
ponents less than W Hertz, may be completely recovered from a knowl-
edge of its samples taken at the rate of 2W samples per second.

The sampling rate of 2W samples per second, for a signal bandwidth of
W Hertz, is called the Nyquist rate; its reciprocal 1/2W (measured in seconds)
is called the Nyquist interval.



The derivation of the sampling theorem, as described herein, is based on the
assumption that the signal g() is strictly band limited. In practice, however, an informa-
tion-bearing signal is not strictly band limited, with the result that some degree of
undersampling is encountered. Consequently, some aliasing is produced by the sampling
process. Aliasing refers to the phenomenon of a high frequency component in the
spectrum of the signal seemingly taking on the identity of a lower frequency in the
spectrum of its sampled version, as illustrated in Figure 7.3. The aliased spectrum shown
by the solid curve in Figure 7.3b pertains to an “undersampled” version of the message
signal represented by the spectrum of Figure 7.3a. To combat the effects of aliasing in
practice, we may use two corrective measures, as described here:

1. Prior to sampling, a low-pass pre-alias filter is used to attenuate those high-frequency
components of the signal that are not essential to the information being conveyed by
the signal.

2. The filtered signal is sampled at a rate slightly higher than the Nyquist rate.

The use of a sampling rate higher than the Nyquist rate also has the beneficial effect of
easing the design of the reconstruction filter used to recover the original signal from its
sampled version. Consider the example of a message signal that has been pre-alias (low-
pass) filtered, resulting in the spectrum shown in Figure 7.4a. The corresponding spec-
trum of the instantaneously sampled version of the signal is shown in Figure 7.4b, assum-
ing a sampling rate higher than the Nyquist rate. According to Figure 7.4b, we readily see
that the design of the reconstruction filter may be specified as follows (see Figure 7.4c):

® The reconstruction filter is low-pass with a passband extending from —W to W,
which is itself determined by the pre-alias filter.

® The filter has a transition band extending (for positive frequencies) from W to
fs — W, where f; is the sampling rate.

The fact that the reconstruction filter has a well-defined transition band means that it is
physically realizable. This is to be compared to the implementation of the ideal recon-
struction filter corresponding to sinc(2Wt) that would be necessary if the signal was not
oversampled.

G(f)
0 !
(a)
Gs(f)
/i N \ /7 N A \ / \
/ vV vV \Y V \
/ /\ /N N /\ \
/ /N /N A % /N \
7 7 N | N | o NS N N f
¥2fs 7f§ 0 f_g 2f5

(b)
FIGURE 7.3 (@) Spectrum of a signal, (b) spectrum of an undersampled version of the signal
exhibiting the aliasing phenomenon.
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(e)
FIGURE 7.4 (a) Pre-alias filtered spectrum of an information-bearing signal. (b) Spectrum of

instantaneously sampled version of the signal, assuming the use of a sampling rate greater than the

Nyquist rate. (¢) Amplitude response of reconstruction filter.

7.4 PULSE-AMPLITUDE MODULATION

0
T—=|
T,

FIGURE 7.5 Flat-top samples.

Now that we understand the essence of the sampling process, we are ready to formally
define pulse-amplitude modulation, which is the simplest and most basic form of analog
pulse modulation. In pulse-amplitude modulation (PAM), the amplitudes of regularly
spaced pulses are varied in proportion to the corresponding sample values of a continuous
message signal; the pulses can be of a rectangular form or some other appropriate shape.
Pulse-amplitude modulation as defined here is somewhat similar to natural sampling, where
the message signal 1s multiplied by a periodic train of rectangular pulses. However, in natu-
ral sampling the top of each modulated rectangular pulse varies with the message signal,
whereas in PAM it 1s maintained flat; natural sampling is explored further in Problem 7.1.

The waveform of a PAM signal 1s illustrated in Figure 7.5. The dashed curve in this

figure depicts the waveform of a message signal m(f), and the sequence of amplitude-

modulated rectangular pulses shown as solid lines represents the cor-
responding PAM signal s(f). There are two operations involved in the
generation of the PAM signal:

1. Instantaneous sampling of the message signal m(f) every T,
seconds, where the sampling rate f; = 1/T; is chosen in accordance
with the sampling theorem.

2. Lengthening the duration of each sample so obtained to some con-
stant value 7.
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Superheterodyne Receiver

One type of receiver that can provide the capability and performance required for the modern
communication systems is the superheterodyne receiver. Superheterodyne receivers convert all incoming
signals to a lower frequency, known as the intermediate frequency (IF), at which a single set of amplifiers
and filters provides a fixed level of sensitivity and selectivity. Most of the gain and selectivity in a
superheterodyne receiver are obtained in the IF amplifiers. The key circuit is the mixer, which acts as a
simple amplitude modulator to produce sum and difference frequencies. The incoming signal is mixed with
a local oscillator signal to obtain this conversion. The below figure shows a general block diagram of a
superheterodyne receiver.

IF amplifiers
RF amplifier Mixer ‘ I

> DD

Selective
filter
Dﬂ—/~—

Speaker  Audio amplifier

Antenna

Local oscillator
or
trequency synthesizer

Superheterodyne Receiver
RF Amplifiers:

The antenna picks up the weak radio signal and feeds it to the RF amplifier, also called a low-noise amplifier
(LNA). Because RF amplifiers provide some initial gain and selectivity, they are sometimes referred to as
preselectors. Tuned circuits help select the desired signal or the frequency range in which the signal
resides. The tuned circuits in fixed-tuned receivers can be given a very high Q, excellent selectivity can be
obtained. For receivers that must be tuned over a broad range of frequencies, selectivity is mostly
compromised. The tuned circuits must resonate over a wide frequency range. Therefore, the Q,
bandwidth, and selectivity of the amplifier change with frequency.

Mixers and Frequency Conversion:

The output of the RF amplifier is applied to the input of the mixer. The mixer also receives an input from a
local oscillator or frequency synthesizer. The mixer output is the input signal, the local oscillator signal, and
the sum and difference frequencies of these signals. Usually, a tuned circuit at the output of the mixer
selects the difference frequency, or intermediate frequency (IF). The sum frequency may also be selected
as the IF in some applications. The mixer may be a diode, a balanced modulator, or a transistor. MOSFETs
and hot carrier diodes are preferred as mixers because of their low-noise characteristics.



The function performed by the mixer is called heterodyning. Mixers accept two inputs. The signal fs, which
is to be translated to another frequency, is applied to one input, and the sine wave from a local oscillator
f, is applied to the other input. The signal to be translated can be a simple sine wave or any complex
modulated signal containing sidebands. Like an amplitude modulator, a mixer essentially performs a
mathematical multiplication of its two input signals. The output of the mixer, therefore, consists of signals
fo, fs , fs+foand fs-f, . The filter takes the required combination of the signal frequency.

The process is also termed as frequency translation or conversion, f;+f, is up-conversion and f-f, is termed

as down-conversion

Concept of a mixer.
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The AM and FM specification for IF is given in the table below

AM Radio FM Radio
RF carrier range 01.535-1.605 MHz 88-108 MHz
Mid-band frequency of IF section 0.455 MHz 10.7 MHz
IF bandwidth 10 kHz 200 kHz

a) JFET Mixer:

FETs make good mixers because they provide gain, have low noise, and offer a nearly perfect
square-law response. The FET mixer is biased such that, it operates in the nonlinear portion of its
range. The input signal is applied to the gate, and the local oscillator signal is coupled to the source.
Again, the tuned circuit in the drain selects the difference frequency. The circuit diagram of a JFET

mixer is given below.
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Local Oscillators:

The local oscillator is made tunable so that its frequency can be adjusted over a relatively wide range. As
the local oscillator frequency is changed, the mixer translates a wide range of input frequencies to the
fixed IF. There are no set rules for deciding which of these to choose. However, at lower frequencies, say,
those less than about 100 MHz, the local oscillator frequency is traditionally higher than the incoming
signal’s frequency, and at higher frequencies, those above 100 MHz, the local oscillator frequency is lower
than the input signal frequency.

IF Amplifiers

The output of the mixer is an IF signal containing the same modulation that appeared on the input RF
signal. This signal is amplified by one or more IF amplifier stages, and most of the receiver gain is obtained
in these stages. Selectively tuned circuits provide fixed selectivity. Since the intermediate frequency is
usually much lower than the input signal frequency, IF amplifiers are easier to design, and good selectivity
is easier to obtain.

Demodulators:

The highly amplified IF signal is finally applied to the demodulator, or detector, which recovers the original
modulating information. The demodulator may be a diode detector (for AM), a quadrature detector (for
FM), or a product detector (for SSB). In modern digital superheterodyne radios, the IF signal is first digitized
by an analog-to-digital converter (ADC) and then sent to a digital signal processor (DSP) where the
demodulation is carried out by a programmed algorithm. The recovered signal in digital form is then



converted back to analog by a digital-to-analog converter (DAC). The output of the demodulator or DAC is
then usually fed to an audio amplifier with sufficient voltage and power gain to operate a speaker.

AM and FM superheterodyne receiver block diagram is given below
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Amplifier — lifi W Limiter (DizcriminatorDe-emphasis{s Audio
amplifier amplifier

+

Local
oscillator
AGC

AGC | detector Speaker
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Block diagram of FM Receiver
Automatic Gain Control:

The output of a demodulator is usually the original modulating signal, the amplitude of which is directly
proportional to the amplitude of the received signal. The recovered signal, which is usually ac, is rectified
and filtered into a dc voltage by a circuit known as the automatic gain control (AGC) circuit. This dc voltage
is fed back to the IF amplifiers, and sometimes the RF amplifier, to control receiver gain. AGC circuits help
maintain a constant output voltage level over a wide range of RF input signal levels; they also help the
receiver to function over a wide range so that strong signals do not produce performance-degrading
distortion.
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7b Carsons rule Transmission bandwidth = 2(frequency deviation + modulating frequency )
= 2(300+15) = 630kHz
Universal Curve method
Transmission bandwidth = 2nmaxfm = 50 x 15k = 750kHz.



