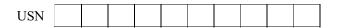
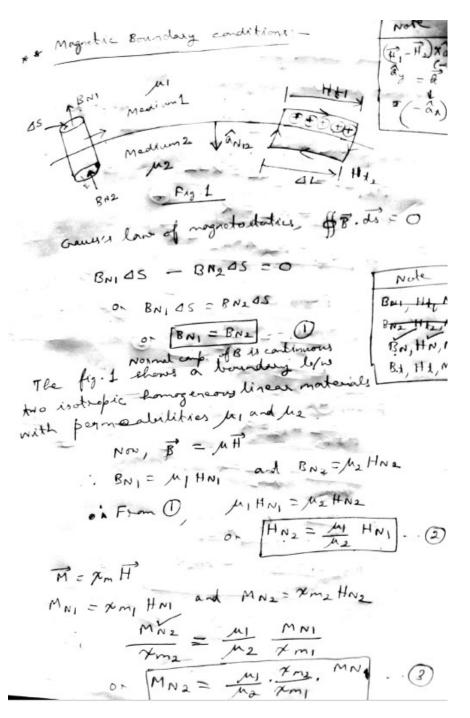
CMR INSTITUTE OF TECHNOLOGY



Internal Assesment Test-III									
Sub:	ab: Electromagnetic Theory						Code:	BEC401	
Date:	06/08/2024	Duration:	90 mins	Max Marks:	50	Sem:	4th	Branch:	ECE(A,B,C,D)
Answer any FIVE FULL Questions									

 $\begin{array}{c}
\textbf{Marks} & \textbf{OBE} \\
\textbf{Morks} & \textbf{CO} & \textbf{RBT} \\
\textbf{.} & [07] & \texttt{CO4} & \texttt{L2}
\end{array}$

1.(a) Obtain the boundary conditions at the interface between two magnetic materials.



(b) Find magnetization in magnetic material where:

[03] CO4 L3

- μ = 1.8x10⁻⁵H/m, **H** = 120A/m i.
- $\mu_r=22$ there are $8.3x10^{28}$ atoms/m 3 and each atom has a dipole moment of $4.5x10^{-27}A\text{-m}^2.$ ii.

$$M = \frac{1.3 \times 10^{5} \text{ H/m}}{M} \text{ and } H = 120 \text{ A/m}$$

$$M = \frac{1.3 \times 10^{5} \text{ H/m}}{M} \text{ or } \frac{1.8 \times 10^{5}}{4\pi \times 10^{-7}} = 14.32$$

$$M_{\lambda} = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 14.32$$

$$M_{\lambda} = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 14.32$$

$$M_{\lambda} = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 14.32$$

$$M_{\lambda} = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

$$M = (1 + \frac{1.3 \times 10^{-7}}{4\pi \times 10^{-7}} = 15.98.8 \text{ A/m}$$

2.(a) Derive an expression of differential force on differential current element.

[06] CO4 L2

Very Biot-Sovert law, the mig. field of point 2 die to covert element at point 1, and point 2 die to covert element at point 1, and the second covert element of the second covert element
$$\frac{1}{4\pi} \frac{1}{R_{12}} \frac{1}{4\pi} \frac$$

(b) Write the equations to compare electric circuit and magnetic circuit parameters.

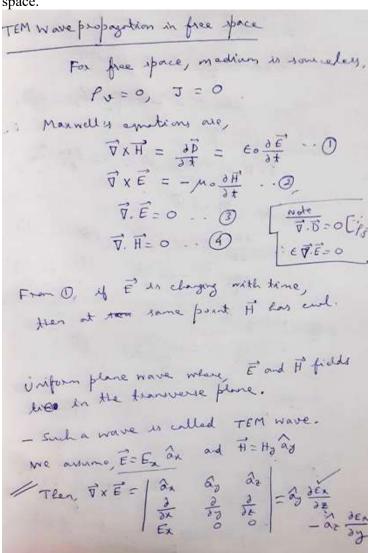
lectric Circuit	Magnetic Circuit						
$\mathbf{E} = -\nabla V$	$\mathbf{H} = -\nabla V_{m}$						
$V_{AB} = \int_A^B \mathbf{E} \cdot d\mathbf{L}$	$V_{mAB} = \int_A^B \mathbf{H} \cdot d\mathbf{L}$						
$J=\sigmaE$	$B = \mu H$						
$I = \int_{S} \mathbf{J} \cdot d\mathbf{S}$	$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$						
V = IR	$V_m = \Phi \Re$						
$R = \frac{d}{\sigma S}$	$\Re = \frac{d}{\mu S}$						
$\oint \mathbf{E} \cdot d\mathbf{L} = 0$	$\oint \mathbf{H} \cdot d\mathbf{L} = I_{\text{total}}$ $\oint \mathbf{H} \cdot d\mathbf{L} = NI$						

3. Using Maxwell's equation derive an expression for a uniform plane wave in free [10] CO5 L2 space.

[04]

CO4

L2



From eyes
$$\textcircled{3}$$
 $\overrightarrow{\nabla} \times \overrightarrow{\epsilon} = \frac{\partial E_{\lambda}}{\partial z} \stackrel{\triangle}{\partial} = -\mu \circ \frac{\partial H_{\lambda}}{\partial z} \stackrel{\triangle}{\partial} = -\mu \circ \circ \circ \frac{\partial H_{\lambda}}{\partial z$

4. Discuss the uniform plane wave propagation in a good conducting medium. [10] CO5 L2 Explain skin effect and skin depth.

Propogration in good conductors (shin effect)

For a conductors,
$$\frac{\epsilon''}{\epsilon'} > 1$$

i. The general expression for propagation constant,

 $jk = j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega \sqrt{\mu \epsilon'} \left(1 - \frac{j \epsilon''}{\epsilon'}\right)$
 $= j \omega$

5. State and prove Poynting's theorem. Define Poynting's vector.

Poyntages Theorem: Define Toyling 3 vector.

Poyntages Theorem: Define Toyling 3 vector.

For a conductive medium, $\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{T} + \frac{\partial \overrightarrow{D}}{\partial t}$ Tolong det product of \overrightarrow{E} on both aides, $\overrightarrow{E} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{E} \cdot \overrightarrow{J} + \overrightarrow{E} \cdot \frac{\partial \overrightarrow{D}}{\partial t}$ or $\overrightarrow{E} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{E} \cdot \overrightarrow{J} + \overrightarrow{E} \cdot \frac{\partial \overrightarrow{D}}{\partial t}$ or $\overrightarrow{E} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{E} \cdot \overrightarrow{J} + \overrightarrow{E} \cdot (\overrightarrow{E} \cdot \overrightarrow{J} + \overrightarrow{E}) - \overrightarrow{D}$ According to vector identity, $\overrightarrow{\nabla} \cdot (\overrightarrow{E} \times \overrightarrow{H}) = \overrightarrow{E} \cdot (\overrightarrow{\nabla} \times \overrightarrow{E}) - \overrightarrow{\nabla} \cdot (\overrightarrow{E} \times \overrightarrow{H}) - \overrightarrow{D}$ or $\overrightarrow{E} \cdot (\overrightarrow{\nabla} \times \overrightarrow{E}) = -\overrightarrow{E} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{E} \cdot \overrightarrow{J} + \overrightarrow{E} \cdot (\overrightarrow{E} \cdot \overrightarrow{J} + \overrightarrow{E})$ or $\overrightarrow{H} \cdot (\overrightarrow{\nabla} \times \overrightarrow{E}) = -\overrightarrow{D} \cdot (\overrightarrow{E} \times \overrightarrow{H}) = \overrightarrow{E} \cdot \overrightarrow{J} + \overrightarrow{E} \cdot (\overrightarrow{E} \cdot \overrightarrow{J} + \overrightarrow{E})$ or $\overrightarrow{H} \cdot (\overrightarrow{\nabla} \times \overrightarrow{E}) = -\overrightarrow{D} \cdot (\overrightarrow{E} \times \overrightarrow{H}) = \overrightarrow{E} \cdot \overrightarrow{J} + \overrightarrow{E} \cdot (\overrightarrow{E} \cdot \overrightarrow{J} + \overrightarrow{E})$ Foreday's have $\overrightarrow{F} = \overrightarrow{F} \cdot \overrightarrow{F}$

[10]

CO5

The total power flowing out of the volume is,

$$f(\vec{E} \times \vec{H}) \cdot d\vec{x} \quad \text{Wortt}$$
The was product, $(\vec{E} \times \vec{H}) = \vec{S} \times \sqrt{m^2}$

Positing's vector

In case of uniform plane wave,

$$\vec{E} \times \hat{a}_{\lambda} \times H_{y} \hat{a}_{y} = S_{z} \hat{a}_{z}$$

$$\vec{E} \times = \vec{E} \times c \cdot c \times (\omega t - \beta z)$$

$$Hy = \frac{\vec{E} \times c}{\eta} \cos (\omega t - \beta z)$$
The time - average power density, $(\vec{S} \times \vec{x})$

For losy dielectric, $(\vec{S} \times \vec{x}) = \frac{1}{2} \cdot \frac{\vec{E} \times \vec{c}}{\eta} e^{-2\kappa z}$

where, $(\vec{\eta} = |\eta| < \theta \eta)$

6.(a) What is the inconsistency of Ampere's law with the continuity of the current [07] CO5 L2 equation? Derive a modified form of Ampere's law for time-varying fields.

Amperers circuital law for time-vorying magnetic field:

According to Amperers law,

$$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J}$$
 . \overrightarrow{D}
 $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{O}$ identically)

 $\overrightarrow{\nabla} \cdot \overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{O}$ identically)

E.: $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{O}$ identically)

8. It According to continuity of convert equal $\overrightarrow{\nabla} \cdot \overrightarrow{J} = -\frac{\partial f_0}{\partial x}$. $\overrightarrow{\nabla} \cdot \overrightarrow{J} = -\frac{\partial f_0}{\partial x}$. $\overrightarrow{\nabla} \cdot \overrightarrow{J} = -\frac{\partial f_0}{\partial x}$. $\overrightarrow{\nabla} \cdot \overrightarrow{J} = \overrightarrow{J} + \overrightarrow{D}$. $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times \overrightarrow{H}) = \overrightarrow{\nabla} \cdot \overrightarrow{J} + \overrightarrow{\nabla} \cdot \overrightarrow{G}$

or $\overrightarrow{\nabla} \cdot (\overrightarrow{\nabla} \times$

Point form of Maxwell agretions

V. B = Po Grand law of electrostatics

V. E =
$$-\frac{\partial B}{\partial T}$$
 - Forestay s have

VXF = $\overline{J} + \frac{\partial \overline{D}}{\partial T}$ - Amfercia law

D - Electric flux density

They of for electrostaticas

(Aussis law for electrostaticas

(Find = || Po do || Frence || Williams

Causes have for my netostatics

(Find = || Po do || Frence || Po do ||

Forestay have for my netostatics

(Find = || Po do || Forestay || Po do ||

Forestay have for my netostatics

(Find = || Po do || Forestay || Po do ||

Forestay have for my netostatics

(Find = || Po do || Forestay || Po do ||

Forestay have for my netostatics

7. A 9.375 GHz uniform plane wave is propagating in polyethylene εr = 2.26. If the amplitude of E is 500 V/m and the material is assumed to be lossless, find (a) Phase constant, (b) wavelength, (c) velocity of propagation, (d) intrinsic impedance, and (e) magnetic field intensity.

CO₅

L3

solution For Soulest maxim,
$$E''=0$$

$$B = \omega \sqrt{\mu_0}E' = \omega \sqrt{\mu_0}E_0 \sqrt{\mu_0}E_0$$

$$= \frac{2\pi f}{C} \sqrt{\mu_0}E_0 = \frac{2\pi \times 9.375 \times 10^9}{3\times10^8} \sqrt{2.26}$$

$$= 295 \text{ pool/m}$$

$$E = \frac{2\pi f}{C} \sqrt{\mu_0}E_0 = \frac{2\pi \times 9.375 \times 10^9}{3\times10^8} \sqrt{2.26}$$

$$= 295 \text{ pool/m}$$

$$A = \frac{2\pi}{\beta} = \frac{2\pi}{295} = \frac{2\pi}{295}$$

$$A = \frac{2\pi}{\beta} = \frac{2\pi}{295} = \frac{2\pi}{250.7} = \frac{2\pi}{377.11} = \frac{250.7}{250.7} = \frac{250.7}{25$$