CBCS SCHEME

ISN			21EC642
		Sixth Semester B.E. Degree Examination, June/July 2024	
		Cryptography	
Tin	ne: 3	B hrs. Max. Max. Max. Max. Max. Max. Max. Max	arks: 100
	N	ote: Answer any FIVE full questions, choosing ONE full question from each mod	lule.
		Module-1	
1	a.	Explain the division algorithm with an example.	(07 Marks)
	b.	Define Ring. State six properties of Rings.	(07 Marks)
	c.	Explain the Euclidean algorithm. Calculate the GCD(60, -24)	(06 Marks)
		OR	
2	a.		(07 Marks)
-	b.	Explain the polynomial arithmetic. Find polynomial arithmetic over	
		$f(x) = x^7 + x^5 + x^4 + x^3 + x + 1$ and $g(x) = x^3 + x + 1$.	(07 Marks)
	c.	Develop set of tables for polynomial arithmetic modulo of $x^3 + x + 1$ over $GF(2^3)$.	(06 Marks)
		Module-2	
3	a.	Draw and explain model of symmetric encryption.	(07 Marks)
	b.	Explain the playfair cipher and its rules for the following keyword: "MOI	
		plaintext : "Cryptography".	(07 Marks)
	c.	Explain the vernam Cipher with a neat diagram.	(06 Marks)
		OR	
4	a.	1	(07 Marks)
	b.	Explain the Caesar Cipher technique Encrypt plaintext "Cryptography" with key	
	c.	Using Hill Cipher algorithm Encrypt the plaintext "paymoremoney" using the key	(06 Marks)
	C.	[17 17 5]	,
		1.777	
		$K = \begin{vmatrix} 21 & 18 & 21 \\ 2 & 2 & 19 \end{vmatrix}$	(07 Marks)
		2 2 19	
-	1	Module-3	
5		State and prove Euler's theorem. Explain the DES encryption algorithm with neat diagram.	(05 Marks)
		Explain Block Cipher with neat diagram.	(10 Marks)
		The second of th	(05 Marks)
020		OR	
6	a.	Explain Feistel encryption and decryption with neat diagram.	(10 Marks)

a. Explain Feistel encryption and decryption with neat diagram.
b. State and prove Fermat's theorem.
c. Explain Euler's Totient function. Determine (i) φ(37) and φ(35).
(05 Marks)
(05 Marks)

Module-4

7 a. Bring out differentiate between conventional encryption and public-key encryption. Explain the requirement of public-key cryptography. (10 Marks)

b. Explain RSA algorithm. Using RSA algorithm perform encryption and decryption using p = 17, q = 11, e = 7 and M = 88. (10 Marks)

OR

- 8 a. Explain the Diffie-Hellman key exchange algorithm. Evaluate a Diffie-Hellman key exchange for q = 23 and $\alpha = 9$.
 - (i) If User A has private key $X_A = 4$ What is A's public key $Y_A = ?$
 - (ii) If User B has private key $X_B = 3$ What is B's public key $Y_B = ?$

(iii) What is shared key?

(10 Marks)

b. Describe Elgamal cryptographic system.

(10 Marks)

Module-5

9 a. Write short notes on, (i) NANOTEQ (ii) A5 (iii) Linear Congruential generator.

(10 Marks)

b. Explain Additive generator.

(06 Marks)

c. With a neat diagram, explain Threshold generator.

(04 Marks)

OR

- a. Explain linear feedback shift register with a neat diagram.
 b. With a neat diagram, explain Geffe generator and Jennings generator.
 (06 Marks)
 (10 Marks)
 - c. Explain Gifford with a neat diagram.

(04 Marks)

* * * *

Cryptography (21EC642) June/July 2024- VTU Question Paper Scheme and Solutions

Question Number	Solution	Marks Allocated
1.a	The Division algorithm Degn - LM -	110
	a=qn+8 040 <n; q="[a/n)-:</td"><td>-2M</td></n;>	-2M
	crenesal galationship an a (q+1)n/	2M)
	Example: $70 = (4 \times 15) + 10$. 0 15 45 60 70 75 } 2×15 3×15 60 70 75 }	2M
1 b.	Ring \Rightarrow Deb ⁿ $\{R, +, x\}$ is set of elements with 2 bimasy operation. Properties:	1M
	1) closure under multiplication a (be) = (bb) c) 2) Associative or multiplication a (be) = (bb) c) 3) Distributive laws: a (b+c) = ab + ac for all - (a+b)c = ac+bc in R 4) commutativety or multiplication ab = ba 5) multiplicative identitity as = 1a	≥ 6 M
	6) NO zero division $ab=0$. Hen $extends a=0$ or $b=0$	

Subject Title: Cry Pho Haphy

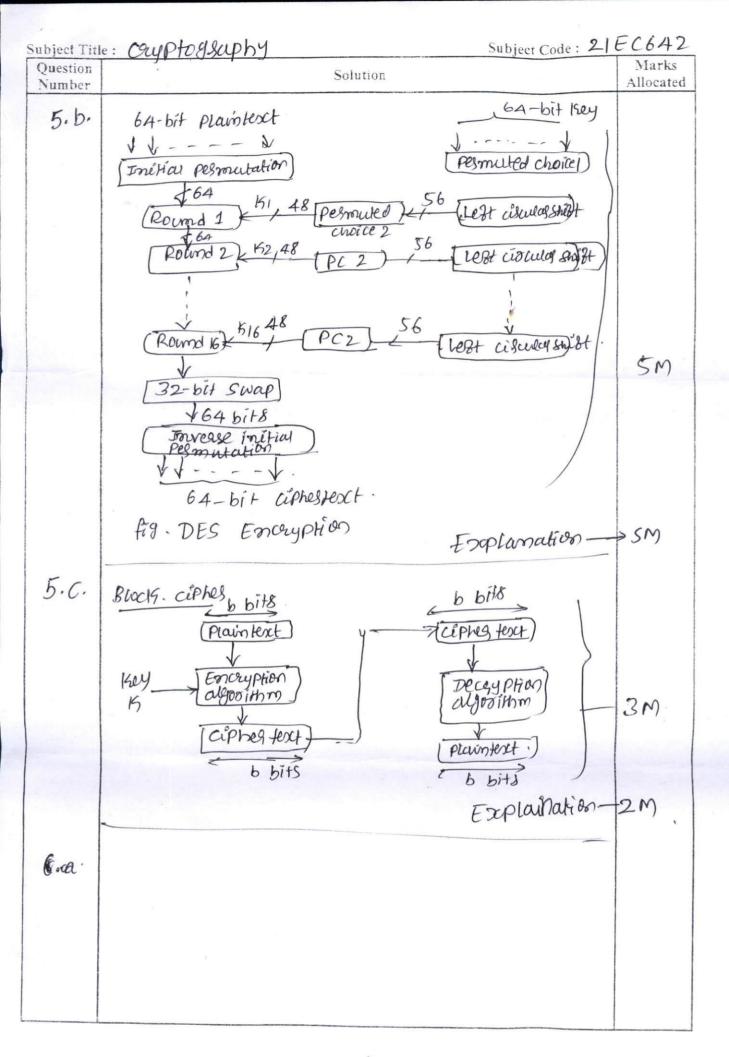
Marks Question Solution Allocated Number 1. C. Euclidean algorithm 1. c is a divisor of a f of b. 2. Any divisor of at b 18 a divisor of C. Euclidiaib) gcd (a.b) = max[K, such that K/a & K/b] Preturn A = gcd (a, b) gcd (60, -24) = 12 3 R= A mod B modulas arithmetic peroperties 2 a. Expression8 1) commutative laws + (N+X) mod n = (X+W) mod n ?

(NXX) mod n = (XXW) mod n 2) Associative todis. $-\sqrt{(w+x)+y}$ mad $n = \sqrt{(w+x)}$ mod n(wxx) xy modn = wx(xxy) modn 3) Distributive law - Nx (x+4) mod n = (Wxx) +(Wxy) mod ng 4) Identifies - (0+w) modn = w modn (IXW) mod n = w mod n. 5) Additive Inverse (-w) - for each wezn, these exists a 2 such that W+Z=0 modif 26) polynomial arithmetic: A polynomial of degree n > 0. is an expression fix)= anx + an-1 xn-1 + --+a1x+a0 = 3aixi 3M. Explanation f(x) x7+ x5+x4+x3 +x+1 $\frac{-1(x^{3} + x + 1)}{x^{7} + x^{5} + x^{4} = addition = x^{7} + x^{5} + x^{4} - 1M}$ Substruction = x2+x5+x4-1M multiplication = x 10+x +x+1-1m Division Bution - 20+1) IM Remainder - 0)

Subject Code: 21EC642

Subject Title: Cryphogsaphy

Subject Code: 21EC 642 Ouestion Solution Allocated Number modulo. [x3+x+1 polynomial 2. C. 101 110 100 110 010 000 001 22+x x+x+1 202+1 22 0 X 20+1 x2 /x2+1 x+11x2+x+1 20 0 0 22+1 x2+x+1 >c2+x x2 2+1 X 22+1 x2+x 22+x+1 20+1 6 M 0 1 20 X 22 x2+x χ^2+1 x2+x+1 0 x+12+1 T 2+1 x^2+x+1 22+1 x2+x 20 22 0 22 x^2+1 20+1 22+2+1 0 $\chi^2 + \chi$ 22+1 x χ^2 x2+x x2+xH 22+1 72+X 1 x x+1 0 22+2+1/22+2+1/22+26 x2+1 oc. 0 x+1 X 7= D(K,4) SK 3.a) Transmetted plain text ciphestest Y=E(K,X) 3 M input Plainleset Encryption Debyption Algorithm algorithm. fig. model of consymmetric concryption Each bit Explanation. with necessory equations, The best-known multiple- letter encryption is the 3.6) 和初 It is based on use of sxs makeix Play fair. 08 letter constaucted using a negwood. Rules Keywood: MONARCHY 3 M 0 B 2M H C 07 巧岩 F 8 P 5 CA YP to gaaphy 2 M Ciphel leset: DM HB PR KNOSYB

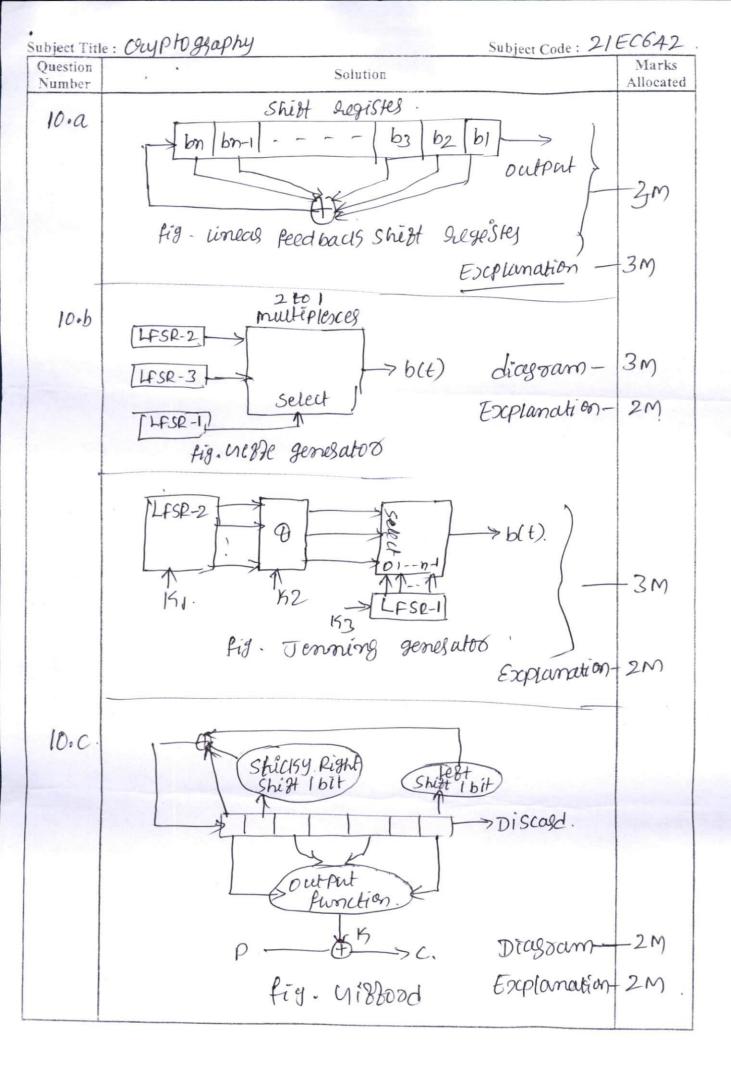

Subject Title: Cryptogsaphy

Subject Code: 21EC642

Question Number	Subject Code: 21888 Solution	Marks Allocated
3.c	Vesnam ciphes [Key Stream Genesator) [Cayptogsaphic bitsbeam (ki) bitsbeam hi Plaintext (Pi) [Pi) [Ciphestext (Pi) [Pi) [Pi] [P	3M
	Explanation: $\vec{a} = Pi \oplus ki - iH$ bisnavy digit ciprel part exor $\frac{\text{decryption}}{Pi = Gi \oplus ki}$	3M
4a.	Toughton X Decryption X Destination Sousce Secure Channel,	3M
	fig. model of symmetric cayprosystem Explanation ——	AM.
46)	Caesas ciphes: involves supracing each letter of the aupha bet with the letterstanding those place fulthers down auphabet.	IM
	Plaintext: $a \ b \ c - z = E(K,P) = (P+K) \mod 26$. CIPHESTEX $D \ E \ f - C = E(3,P) = P+3 \mod 26$ $P = D(K \cdot C) = (C-K) \mod 26.$ $P = D(3,C) = (C-3) \mod 26.$	3M

Subject Title: Ory Prography Subject Code: 21EC642

Question Number	Solution	Marks Allocated
	Example: "plain teset: Coupto graphy ciphes teset: "FUBSWRJUDSKB"	2M
4.0	Hill ciphes: $C = E(K,P) = P15 \mod 26.$	IM.
	Step 1; pay mox emo Ney [15 04] [12,14,17] [4 12 14] [13,4,24]	2M
	$C = \begin{bmatrix} 17 & 17 & 5 \\ 21 & (8 & 21) \\ 2 & 2 & 19 \end{bmatrix} \begin{bmatrix} 15 & 92 & 4 & 13 \\ 20 & 14 & 12 & 4 \\ 24 & 17 & 14 & 24 \end{bmatrix} $ mod 26	
	$= \begin{bmatrix} 2 & 2 & 19 \end{bmatrix} \begin{bmatrix} 24 & 17 & 14 & 24 \end{bmatrix}$ $= \begin{bmatrix} 375 & 527 & 342 & 409 \\ 819 & 861 & 594 & 849 \\ 486 & 375 & 298 & 490 \end{bmatrix} \mod 26.$	2 M
	$ = \begin{bmatrix} 11 & 7 & 4 & 19 \\ 13 & 3 & 22 & 17 \\ 18 & 11 & 12 & 22 \end{bmatrix} = \begin{bmatrix} L & H & E & T \\ N & D & W & R \\ S & L & M & W \end{bmatrix} $	2 M
	plain test: pay more money ciphes text: LNS HOLE WMTRW	
5.a	Euleo's theorem: states that for every a and n? That are relatively prime: $a^{\phi(n)} = I(mod n)$	1M .
	phoof: $R = \{ \chi_n, \chi_2 - \chi_{\phi}(n) \}$ $S = (\alpha \chi_1 \mod n), \text{ asca mod }\text{act of } n)^{\text{mod } n} \}$	
	$a^{\phi(n)} \times \begin{bmatrix} \phi(n) \\ \uparrow \uparrow \chi_i \end{bmatrix} = \begin{bmatrix} \phi(n) \\ \vdots = i \end{bmatrix}$	AM
	$\left(a^{0(n)} = 1 \mod n\right)$	



Subject Tit	le: Oupplography Subject Code: 21	EC642
Question Number	Solution	Marks Allocated
6·a)	Flistel Endyption & Decryption Input plaintext output (plaintext)	
	LEO REO. ROUND LEI REI ROUND LDIS=REO. RDIS=LEO. LDIS=REO. RDIS=LEO. LDIS=REO. RDIS=LEO. LDIS=REI. RDIS=LEI	
	LEIG! REIS OUTPUT (Ciprestent) Pound! DEK K16	SM
6.6).	Escaptornation— Felsmat's theorem: If p is prime & a is positive integes not divisible by p then ap-1 = (1 (modp)	5M 2M
6 · Co	$\phi(n) = \frac{1}{23466} \phi(22) = 2(1)$	3M

Subject Titl	e: Cryptogsaphy Subject Code: 218	EC642
Question Number	Solution	Marks Allocated
7a.	1. same key is used 7. sepesate key for for encryption of Decryption & Encryption of decryption. 2. sender & risk must share (pair of key) 3. they must be kept secret 3. one of the matched pair of key 4. algorithm plus ciphertext to determine 4. to determine the hey. 5. It must be impossible to other key of one of key other key decipher a msg if the key is secret 5. If one of key is secret.	SM
7.6	Requisement of public-Kuy Chyptogocophy 1. public Kuy pub, Private Kuy PRb. 2. $C = E(PVb, M)$ 3. $M = D(PRb, C) = D[PRb, E(PVb, M)]$ 4. It is computionally infeasible for Knowing the public Key PVb to determine the phivate Key, PRb 5. Knowing the public Key pvb, & ciphestext C to grecoves the Ohiginal msg. M 6. $M = D[PVb, E(PRb, M)] = D[PRb, E(PVb, M)]$ RSA algorithm.	6 5M
	1. $\rho.q$. two prime number 1. $\rho.q$. two prime number 1. $\rho.q$.	SM
	$f = 17, q = 11$ $n = pq = 11x17 = 187$ $4(n) = (p-1)(q-1) = 16x = 160.$ $c = 7.$ $c = 887 \mod 187 = 11$ $M = 11^{23} \mod 187 = 88.$ $d = 23.$	SM.

Subject Title	: Cayptoglaphy Subject Code: 21 E	C642
Question Number	Solution	Marks Allocated
8.ai	Alice 1 Bob Should a Prisme number 9 and an integer a such that of 29 s Alice generate a pairate Key XA such that XA 9. Alice generate a pairate Key XA such that XA 9. Alice accurates a public try XB = a xB mod 9 Public Key YB in plaintent Alice calculates shaled Secret Key XB = (YB) x mod 9 YB = a xB mod 9 Alice a xB mod 9 Alic	SM -3M
01	Elgamal Crypto & Saphic System	
8.6.	The is used in Digital signature standard. Utobal public elements q > prime no. & Leq & d a primitive regulation to by. Sender side Select Private XA XA29-1. Calculate 4A YA = XAMONDY. Public Key & q, X, YA;	3M

Subject Title	e: Cryptoglaphy. Subject Code: 2/t	C642
Question Number	Solution	Marks Allocated
	Encrypt by Receives with Send public Key. plainteset $m < q$, select sandom integes 15.29 $K = (Y_A)^K \mod q$, $C_1 = a \mod q$, $C_2 = KM \mod q$ ciphestiset C_1, C_2 .	->2M
	Debuyption $C1, C2$ $Calculate K = (C_1)^{\times A} \mod 9$ Plain text $M = C_2 I S^{-1} \mod 9$	-2M
	Explanation—	3M
9.a.	i) Nanotegr - It use 127-bit LFSR withou] fixed \$16 polynomial., the 15 is initial states. of the \$16 sugistes. explanation.	-3m ² M
	ii) A5 -> - Steam ciphes used to encrypt usm (Explanation)	AM
	-> Pseudo sandom & sequence genesalos. }- ×n = { a.xn-1+b) mod M Explanation)	4M.
9.6.	Additive genesative	
	The ith gen wood of the generator is $Xi = \begin{cases} Xi - a + Xi - b + Xi - c + + Xi - m \end{pmatrix} \text{ mod } Z$ Explanation	SM 6H
9·C.	Threshold genesator [LFSR-2] majority function >b(t) [LFSR-n] Explanation?	2M -2M.

