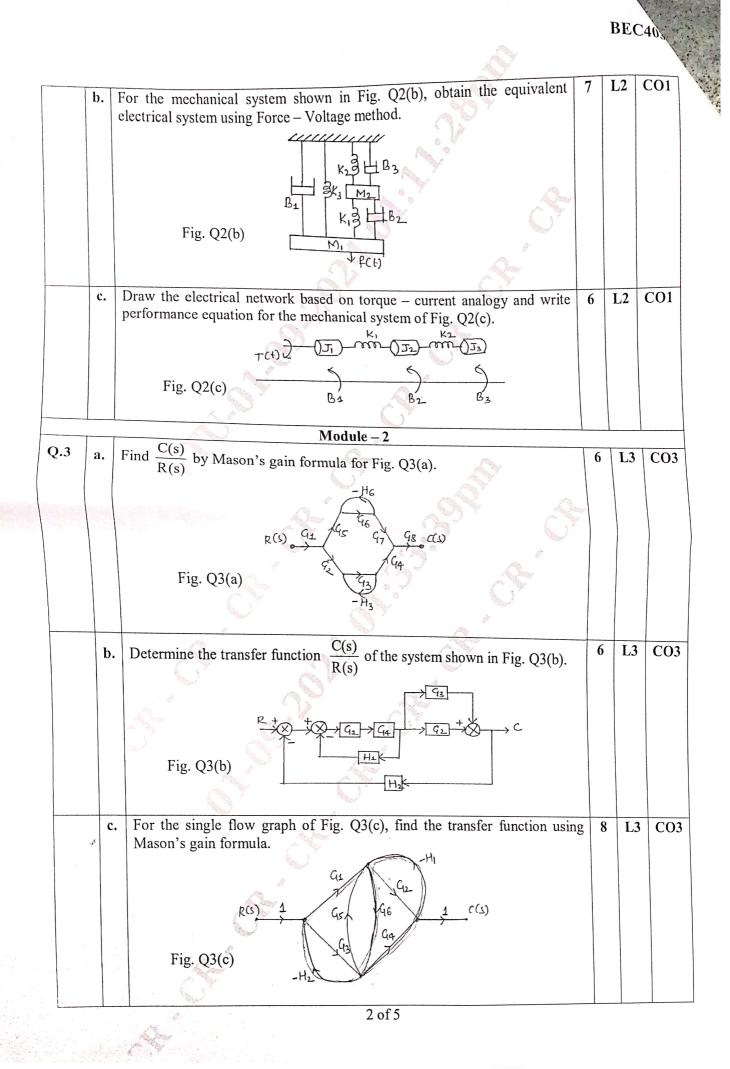


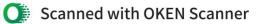
Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Control Systems

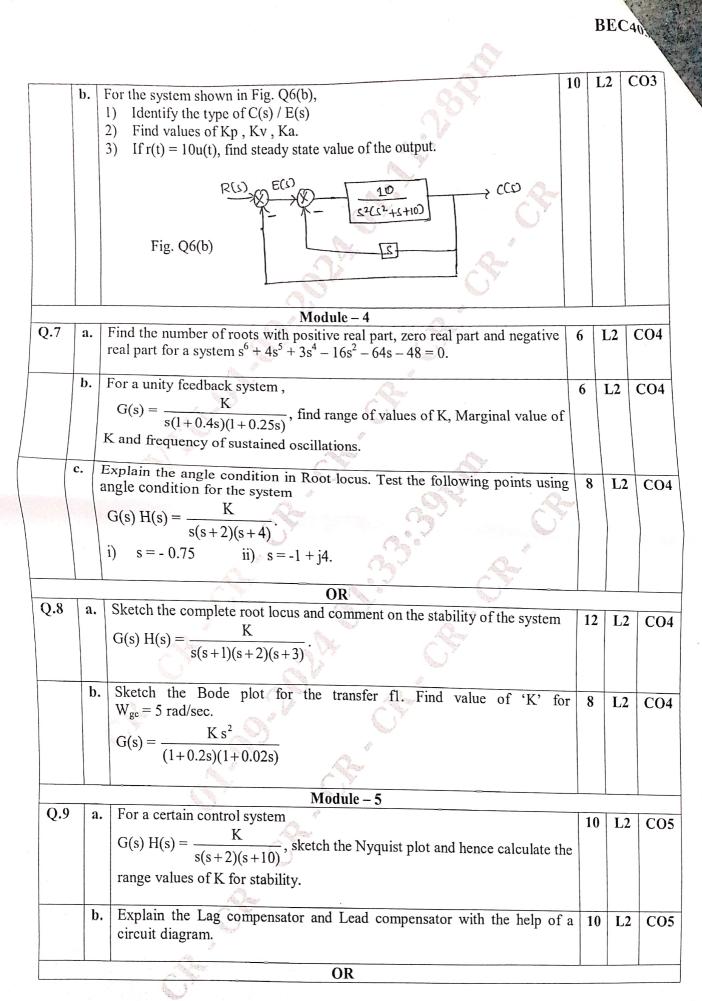

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks, L: Bloom's level, C: Course outcomes.

			,					
		Module – 1	Μ	L	С			
Q.1	a.	Define Control system. Write down any four differences between Open Loop Control System and Closed Loop Control System.	4	L2	CO1			
	b.	For the mechanical system shown in Fig. Q1(b), obtain the equivalent electrical system using Force – Voltage method.	8	L2	C01			
		Fig. Q1(b)						
		M ₁ V FC+)	an na					
	c.	For the mechanical system, shown in Fig. Q1(c), obtain the equivalent	8	L2	C01			
		electrical system using Force – Current method.						
		jk2 HB2						
		Br M2						
		Fig. Q1(c) $\mathbf{Fig.}$ Q1(c) $\mathbf{Fig.}$						
	ł	M1_ V RCtD						
		OR						
Q.2	a.	For the mechanical system shown in Fig. Q2(a), obtain the equivalent	7	L2	CO			
		electrical system using Force – Voltage method.						
		3KL PCD						
		Fig O2(a) $k_2 = 3$ k_3						
		Fig. Q2(a) $h_2 = 9$ H_3						
1		M ₂						


1 of 5



BEC403

Q.4		OR OR			
Q.4	1			1	1
	a.	Reduce the block diagram to its canonical form and obtain $C(s)/R(s)$ of the system of Fig. Q4(a). Fig. Q4(a) $\frac{R^{(s)}}{Fig. Q4(a)} \xrightarrow{R^{(s)}} (G_1 - (G_2 - (G_3 - (G$	6	L3	CO
	b.	Obtain the transfer function of the single flow graph shown in Fig. Q4(b),	6	L3	CO
		using Mason's gain formula. Fig. Q4(b) Fig. Q4(b)			
	c.	Reduce the block diagram of Fig. Q4(c) to its simple form and obtain $C(s)/R(s)$. Fig. Q4(c)	8	L3	CO3
		Module – 3			
Q.5	a.	With the help of graphical representation and mathematical expression, explain the following test signals : i) Step signal ii) Ramp signal iii) Impulse signal iv) Parabolic signal.	8	L3	CO2
	b.	Find Kp , Kv , Ka and steady state error for a system with Open loop transfer function $G(s) H(s) = \frac{10(s+2)(s+3)}{s(s+1)(s+4)(s+5)}$, where $r(t) = 3 + t + t^2$.	6	L3	CO2
	с.	The Open loop transfer function of a servo system with unity feedback is given as $G(s) = \frac{10}{s(0.1s+1)}$. Find out static error constants and obtain steady state error when an input $r(t) = A_0 + A_1t + \frac{A_2}{2}t^2$ is applied.	6	L3	CO2
		OR 64	10	L2	CO3
Q.6	a.	For a unity feedback control system with $G(s) = \frac{64}{s(s+9.6)}$, write the output response to a unit step input. Determine 1) The response at t = 0.1 set 2) Maximum value of response and the time at which it occurs.			

4 of 5

BEC403

1						005
1			Construct the state model using phase variables if the system is described	6	L2	CO5
ſ	Q.10	a.	Construct the state model using prove			
	Q.J.º	1	1:fforontial equation			
			by the differential equation $\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 2y(t) = 5u(t)$. Also draw the state diagram.			
			dt^3 dt^2 dt			
				7	L2	CO5
			The transfer function of a control system is	1		
		b .	The transfer function of a construction of a con			
			The transfer function of a control system is $\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 4}{s^3 + 2s^2 + 3s + 2}$ Obtain the State model using signal flow graph.			
			$\frac{1}{2} \frac{1}{2} = \frac{1}{3} + 2r^2 + 2r + 2$. Obtain the Simpler			
			$U(s) s^{2} + 2s + 3s + 2$			
				7	L1	CO5
			Find the state transition matrix for	1		
		c.				
			$A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$			
			[+2, -3]			

Andre La Marine ORes Ores ORes ORes ORes ORes

Q.1. Define Control Systems. Write down any four difference between open loop control systemsand closed loop control system.

Sol:

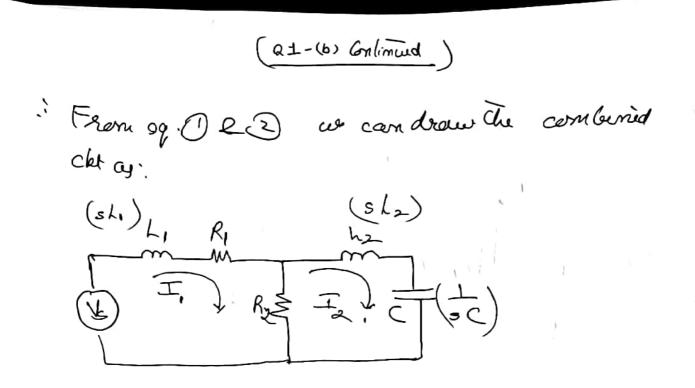
A **Control System** is a system of devices or a set of mechanisms that manages, commands, directs, or regulates the behavior of other devices or systems to achieve a desired output. Control systems are widely used in industries, engineering applications, and many automated processes.

Differences between Open Loop and Closed Loop Control Systems

	Open Loop Control System	Closed Loop Control System
Feedback	No feedback mechanism is used	Feedback is used to compare output with the desired setpoint
Accuracy	Less accurate due to lack of feedback	More accurate as feedback helps correct deviations
Complexity	Simpler in design and generally easier to implement	More complex, requires sensors and additional components
Response to Disturbances	Cannot automatically correct for disturbances or changes	Automatically adjusts to disturbances to maintain desired output

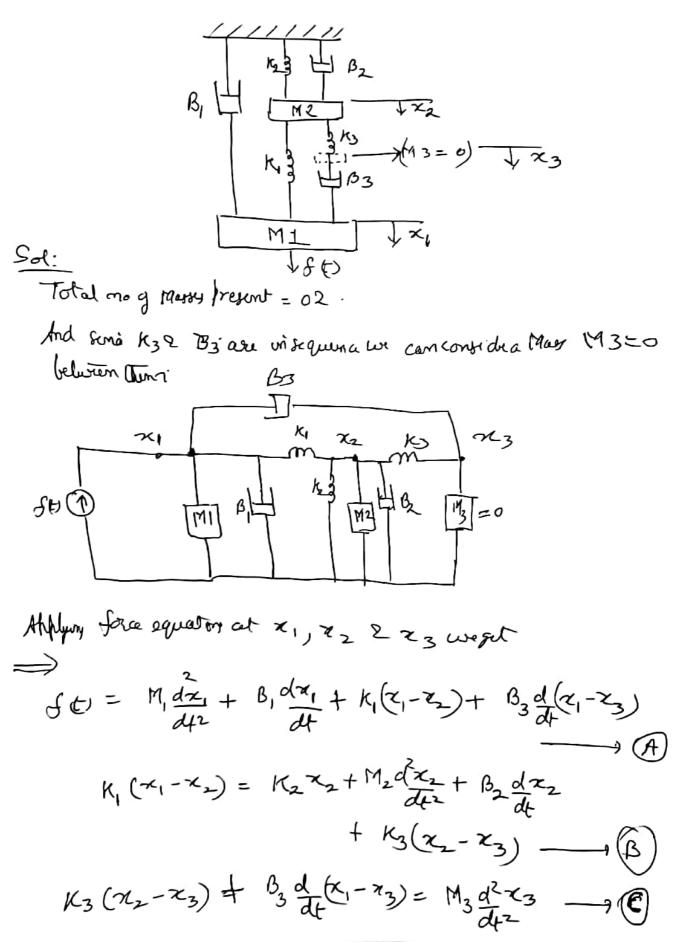
Examples:

- **Open Loop**: Washing machine, toaster.
- **Closed Loop**: Thermostat-controlled heating system, cruise control in cars.


QI - [b] For the nucleanical system shown, Obtain
the squivalent electural system shown, Obtain
method.
Sof:

$$\frac{1}{2}$$

 $\frac{1}{2}$
 $\frac{1}{2$


Ĩ

 $B_{2} \frac{d}{dt} (x_{1} - x_{2}) = M_{2} \frac{d}{dt^{2}} + K x_{2} \longrightarrow B$

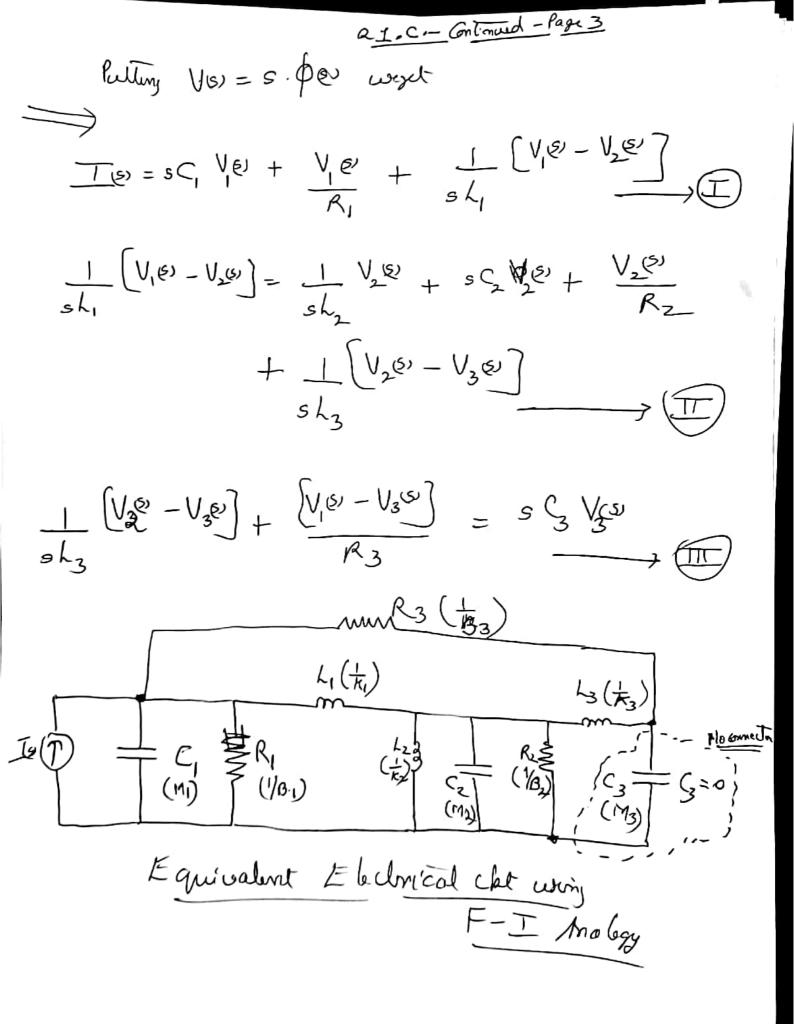
Taking Laftbace Thereform of so
$$\mathcal{O} \in \mathcal{O}$$
 we get
For = $3^{2}M_{1}X_{1}\otimes + sB_{1}X_{1}\otimes + B_{2}s[X_{1}\otimes - X_{2}\otimes] \longrightarrow (\mathbb{D})$
 $\mathcal{E} = sB_{1}X_{1}\otimes - X_{2}\otimes] = s^{2}M_{2}X_{2}+ KX_{2}\otimes \longrightarrow (\mathbb{D})$
Now we right FV and by we have $ag(\mathbb{O} \otimes \mathbb{D}) \cong$
 $[I \rightarrow V, M \rightarrow h, B \rightarrow R, K \rightarrow \underline{1}, X \rightarrow g, sq(\mathbb{O}) \rightarrow \mathbb{I}_{s})$
 $V_{0} = s^{2}L_{1}q_{1}\otimes + sB_{1}q_{1}\otimes + sB_{2}[2_{1}\otimes - g_{2}\otimes]$
 $\mathcal{V}_{0} = s^{2}L_{1}\frac{T_{1}\otimes}{s} + sB_{1}q_{2}\otimes + sB_{2}[2_{1}\otimes - g_{2}\otimes]$
 $V_{0} = sL_{1}\frac{T_{1}\otimes}{s} + s\cdot R_{1}\cdot \frac{T_{1}\otimes}{s} + s\frac{R_{2}[T_{1}\otimes - T_{2}\otimes)}{s}$
 $V_{0} = sL_{1}\frac{T_{1}\otimes}{s} + s\cdot R_{1}\cdot \frac{T_{1}\otimes}{s} + s\frac{R_{2}[T_{1}\otimes - T_{2}\otimes)}{s}$
 $V_{0} = sL_{1}\frac{T_{1}\otimes}{s} + \frac{R_{1}}{s} \frac{T_{1}\otimes}{s} + \frac{R_{2}[T_{1}\otimes - T_{2}\otimes]}{s}$
 $2III_{1}V$
 $sB_{2}[q_{1}\otimes - q_{2}\otimes] = s^{2}M_{2}q_{2}\otimes + K q_{2}\otimes$
 $\Rightarrow g_{1}[T_{1}\otimes - T_{2}\otimes] = s^{2}M_{2}T_{2}\otimes + \frac{K_{1}}{s}T_{2}\otimes$
 $\Rightarrow R_{1}[T_{1}\otimes - T_{2}\otimes] = s^{2}M_{2}T_{2}\otimes + \frac{L}{s}T_{2}\otimes$
 $\Rightarrow R_{1}[T_{1}\otimes - T_{2}\otimes] = sL_{1}^{2}M_{2} + \frac{L}{s}T_{2}\otimes$

At (): For the muchanical system, shown, obtain the equivalent electrical system cering to za - Current Method

Scanned by CamScanner

$$\frac{2 \pm C - Gritmad - Ray 2}{Taking L.T. g (B) (B) (C) we get}$$

$$F_{EV} = s^{2} M_{1} X_{1}^{(EV} + s B_{1} X_{1}^{(EV} + K_{1} [X_{1}^{(EV} - X_{2}^{(EV})] + s B_{3} [X_{1}^{(EV} - X_{3}^{(EV})] = K_{2} X_{2}^{(EV} + s^{2} M_{2} X_{2}^{(EV} + s B_{2} X_{2}^{(EV}) + K_{3} [X_{2}^{(EV} - X_{3}^{(EV})] = K_{2} X_{2}^{(EV} + s^{2} M_{2} X_{2}^{(EV} + s B_{2} X_{2}^{(EV}) + K_{3} [X_{2}^{(EV} - X_{3}^{(EV})] \rightarrow (B)$$


$$K_{3} [X_{2}^{(EV} - X_{3}^{(EV})] + s B_{3} [X_{1}^{(EV} - X_{3}^{(EV})] = s^{2} M_{3} X_{3}^{(EV} \rightarrow (C)$$

$$Wrig F - I analogy we hav,$$

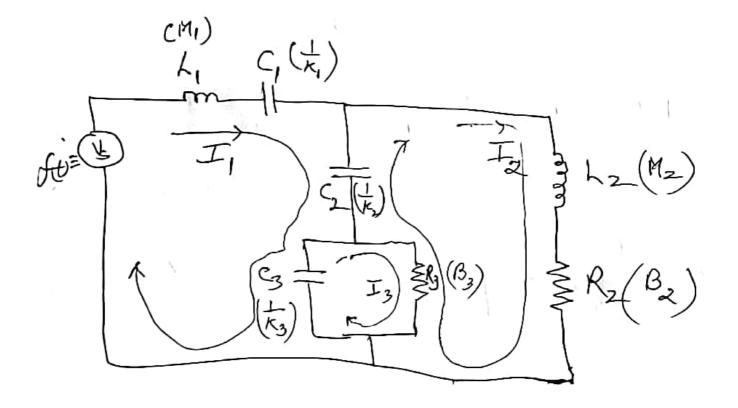
$$F \rightarrow I, M \rightarrow C, B \rightarrow \frac{1}{K}, K \rightarrow \frac{1}{L}, X \rightarrow \phi, Vev = s \cdot \phi(e)$$

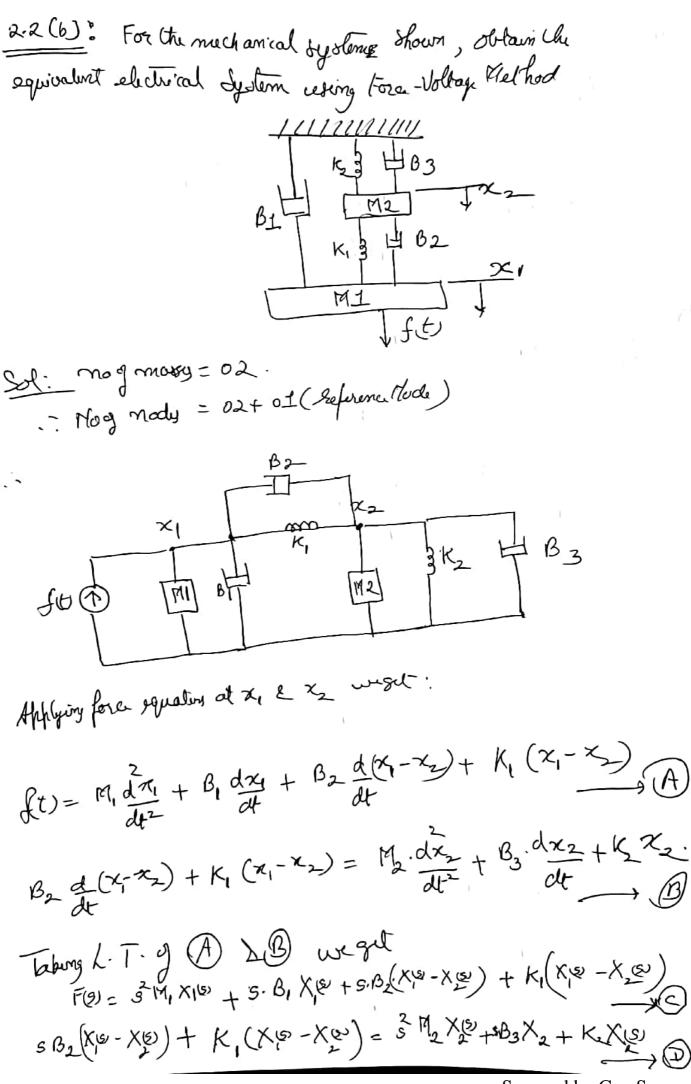
$$J [\phi_{1}^{(EV} - \phi_{2}^{(EV})] = \frac{1}{K_{2}} \phi_{1}^{(EV} + \frac{1}{L_{1}} [\phi_{1}^{(EV} - \phi_{2}^{(EV})] - (C)]$$

$$\frac{1}{L_{1}} [\phi_{1}^{(EV} - \phi_{2}^{(EV})] = \frac{1}{K_{2}} \phi_{1}^{(EV} + s^{2} C_{2} \phi_{1}^{(EV} + s \times \frac{1}{K_{3}} \kappa_{2}^{(EV} - \frac{1}{K_{2}} \phi_{2}^{(EV}) - \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(EV} + \frac{1}{K_{3}} (\phi_{1}^{(EV} - \phi_{3}^{(EV})] = s^{2} C_{3} \phi_{2}^{(E$$

22.(a) : For the mechanical dystern shown, obtain the equivalent electrical System using Fora-Voltage method. Kig 15(5) $\begin{array}{c} 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 8 \\ 3 \end{array} \rightarrow (M_3 = 0)^{-1}$ 1 22 172 Sol: Soma K32 B3 are in Sequence, we construe mars M3=0 between then at node "x3". . Total no of Marsy = 03 - Total Nody reg = 03+1 = 04. вз K2 x2 K3 ふ()()() Mil M3 ≈0 1/2 Applying fore squetory at x, x2 & X3 west K3 $M_3 = 0.$

H)O


$$\begin{split} S(t) &= M_{1} \frac{d^{2}x_{1}}{dt^{2}} + K_{1} \frac{x_{1}}{dt} + K_{2}(x_{1} - x_{2}) + K_{3}(x_{1} - x_{3}) \\ & \longrightarrow & A \end{split}$$


$$\begin{split} & H_{1} K_{2}(x_{1} - x_{2}) &= M_{2} \frac{d^{2}x_{2}}{dt^{2}} + B_{3} \frac{d(x_{2} - x_{3})}{dt} \xrightarrow{A} B \\ & H_{2} \left(x_{2} - x_{3}\right) \xrightarrow{A} K_{3}(x_{1} - x_{3}) &= M_{3} \frac{d^{2}x_{3}}{dt^{2}} \\ & H_{2} M_{3} = 0 \\ & H_{2} M_{3} M_{3} H_{3} H$$

$$\frac{a2\cdot(a)-hag-3}{V(a) = s^{2}\lambda_{1}R_{1} + \frac{1}{c_{1}}P_{1}(b) + \frac{1}{c_{2}}P_{1}(b) - \frac{1}{c_{2}}b) + \frac{1}{c_{3}}P_{1}(b) - \frac{1}{c_{3}}b) + \frac{1}{c_{3}}P_{2}(b) + \frac{1}{c_{3}}P_{1}(b) - \frac{1}{c_{3}}b) + \frac{1}{c_{3}}P_{1}(b) - \frac{1}{c_{3}}b) + \frac{1}{c_{3}}P_{1}(b) - \frac{1}{c_{3}}b) + \frac{1}{c_{3}}P_{2}(b) + \frac{1}{c_{3}}P_{1}(b) - \frac{1}{c_{3}}b) + \frac{1}{c_{3}}P_{1}(b) + \frac{1}{c_{3}}P_{2}(b) +$$

22. (a) Grimmed (Page 4)

Scanned by CamScanner

$$\begin{split} & \text{uppig } F-V-\text{analogy, we have:} \\ & F \rightarrow V, \quad M \rightarrow L, \\ & \theta \rightarrow R, \quad K \rightarrow \frac{1}{2}, \\ & X \rightarrow P, \quad S \\ & \varphi \\ & \varphi \\ & \varphi \\ & \Psi \\ & \Psi$$

$$\begin{aligned} & \text{Illy} \quad \text{s } R_2 \Big[\begin{array}{c} q(s) - q_2 \\ r_2 \\ \end{array} \Big] + \underbrace{1}_{C_1} \Big[\begin{array}{c} q_1 \\ r_2 \\ \end{array} \Big] - \begin{array}{c} q_1 \\ c_1 \\ \end{array} \Big] \\ = \frac{2}{s} L_2 \begin{array}{c} q_1 \\ r_2 \\ \end{array} \Big] + \begin{array}{c} \text{s } R_3 \begin{array}{c} q_2 \\ r_2 \\ \end{array} \Big] + \begin{array}{c} q_2 \\ r_2 \\ \end{array} \Big] \\ = \begin{array}{c} q_1 \\ q_2 \\ \end{array} \Big] \\ \\ \end{array}$$

using
$$s, qe = Ies$$

$$R_{2}[Ie^{2} - I_{2}e^{2}] + \frac{1}{s} [Ie^{2} - I_{2}e^{2}]$$

$$= sh_{2}I_{2}e^{3} + R_{3}I_{2}e^{3} + \frac{1}{s} I_{2}e^{2}$$

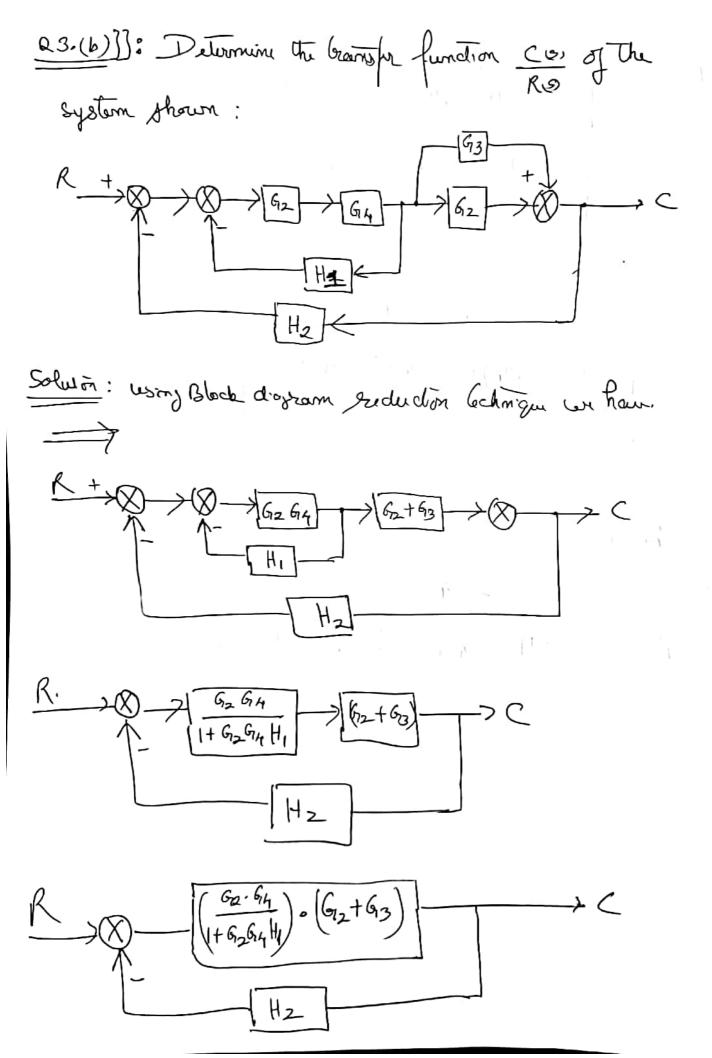
$$= sh_{2}I_{2}e^{3} + R_{3}I_{2}e^{3} + \frac{1}{s} I_{2}e^{2}$$

$$= sh_{2}I_{2}e^{3} + R_{3}I_{2}e^{3} + \frac{1}{s} I_{2}e^{2}$$

$$= sh_{2}I_{2}e^{3} + R_{3}I_{2}e^{3} + \frac{1}{s} I_{2}e^{3}$$

$$= sh_{2}I_{2}e^{3} + \frac{1}{s} I_{2}e^{3} + \frac{1}{s} I_{2}e^{3}$$

R2(c): Draw The electrical network based on torque-current analogy and write The performance equation for the mechanical system shown below: KI $(t) \rightarrow$ BI B3 B2 02 K2 02 KI 61 店件B2 T. 2 We have the Torque equation at displacence O, Oz & Oz a. $T \psi = J_1 \frac{d\theta_1^2}{dt} + B_1 \frac{d\theta_1}{dt} + K_1 \frac{g}{g} (\theta_1 - \theta_2) =$ (B3+B3dB3 $B_2 \cdot d\theta_2 + k_2 \left(\theta_2 \cdot \theta_3\right) + \overline{J_3}$ $K_1(\theta_1 - \theta_2) = J_2 \frac{d^2 \theta_2}{dt^2} + B_2 \frac{d \theta_2}{dt} + K_2(\theta_2 - \theta_3)$ $K_2(\theta_1 - \theta_3) = \overline{J}_3 \frac{d^2 \theta_3}{dt^2} + B_3 \frac{d \theta_3}{dt}$


Q. Q. (c) Continued

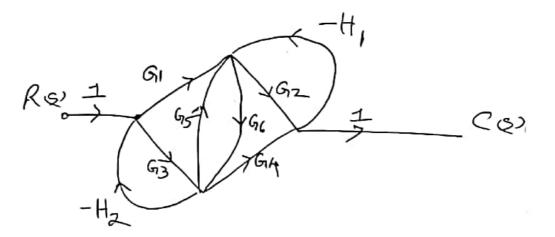
Taking L.T. of a, b, & c weget $T(s) = s^2 J_1 \theta_1 s + s \beta_1 \theta_1 s + k_1 (\theta_1 s - \theta_2 s)$ $\kappa_1(0,0) - \theta_2(0) = \overline{5} \overline{5}_2 \theta_2(0) + s \cdot B_2 \theta_2(0) + \kappa_2(\theta_2(0) - \theta_3(0))$ $K_2\left(\theta_2^{\nu}-\theta_3^{\nu}\right) = s^2 J_3 \theta_3^{\nu} + s B_3 \theta_3^{\nu}$ wrong T- V eque calmet an have $T \rightarrow V, \ J \rightarrow h, \ B \rightarrow R, \ K \rightarrow L,$ 5.9(5)=丁(5) $V(y) = s^2 h_1 g(y) + s R_1 g(y) + \frac{1}{c} \left(g_1 (y) - g_2 (y) \right)$ Putting soque I & >> $V (v) = sL, I (v) + R, I (v) + \frac{1}{sC} (T (v) - T_{v} (v))$ $\frac{1}{C_{1}}\left(9, \vartheta - 9, \vartheta\right) = s^{2}h_{2}P_{1} \vartheta + s \cdot R_{2}P_{1} \vartheta + k_{2}(9, \vartheta - 9, \vartheta)$ Putting 9. 9.5 = I a we have. $\underbrace{\bot}_{sC_{i}} \left(\underbrace{\Box}_{i} \underbrace{v}_{j} - \underbrace{\Box}_{2} \underbrace{v}_{j} \right) = \frac{sL_{2}}{2} \underbrace{v}_{2} + R_{2} \underbrace{\Box}_{2} \underbrace{v}_{j} + \underbrace{\bot}_{sC_{i}} \left(\underbrace{\Box}_{i} \underbrace{v}_{j} - \underbrace{\Box}_{i} \underbrace{v}_{j} \right) \\ sC_{i}$ Conclusion: Equatory A, B, O-represent The Mechanical equatory white apparton ()

Illy from og @ we law : $\begin{array}{c} - \left[\begin{array}{c} q_{2} \otimes - q_{3} \otimes \end{array} \right] = \begin{array}{c} s^{2} L_{3} q_{3} \otimes + s R_{3} q_{3} \end{array} \\ C_{2} \end{array} \\ \begin{array}{c} P_{u} \\ \end{array} \\ \begin{array}{c} P_{u} \\ \end{array} \end{array} \begin{array}{c} g_{1} \otimes - q_{3} \otimes \end{array} \end{array} = \begin{array}{c} s^{2} L_{3} q_{3} \otimes + s R_{3} q_{3} \end{array} \\ \begin{array}{c} q_{1} \otimes q_{2} \\ \end{array} \end{array} \\ \begin{array}{c} P_{u} \\ \end{array} \end{array} \begin{array}{c} g_{1} \otimes q_{2} \otimes \end{array} = \begin{array}{c} q_{1} \otimes q_{2} \otimes q_{3} \end{array}$ $= \frac{1}{sC_2} \left[I_2 e^{j} - I_3 e^{j} \right] = \frac{z}{s} \int_{3} I_3 e^{j} - R_3 I_3 e^{j}$ €, € Thus equation A B C represent the Mechanical performance aquation while equation D, 223 represent the Performance equation in electrical Jermy .

$$\frac{23.(2)}{f_{13}} \text{ Find } \frac{(23)}{R(5)} \text{ by Masons } \text{pain formula for the prime
figure:
H 6
Re $\frac{G_{11}}{G_{2}}$ $\frac{G_{2}}{G_{3}}$ $\frac{G_{4}}{G_{4}}$ $\frac{G_{4}}{G_{5}}$ $C = 0$
 $F_{1} = G_{1} G_{5} - G_{6} - G_{7} - G_{8}$ $F_{2} = -G_{1} - G_{2} - G_{3} - G_{4} - G_{8}$
Plit 2: Total man of obrigh loops:
 $L_{11} = G_{3} - G_{5} - G_{3} - G_{3} - G_{3} - G_{3} - G_{6} - G_{6$$$

For Fi, loop (
$$L_{21}$$
) downot louch it.
:. $A_{\perp} = 1 - (L_{21}) = 1 + G_3 H_3$
For F2, loop (L_{11}) downot lough
:. $A_2 = 1 - (L_{11}) = 1 + G_6 H_6$.
Slip 7: Oblain T-F.:
T.F. = $\frac{C}{R} = \frac{F_1 A_1 + F_2 A_2}{\Delta}$
T.F. = $G_1 G_5 G_6 G_7 G_8 (1 + G_3 H_3) + G_1 G_2 G_3 G_4 G_8 (1 + G_6 H_6))$
 $1 + G_3 H_3 + G_6 H_6 + G_3 G_6 H_3 H_6$.

Scanned by CamScanner


$$R = \frac{\left(\frac{G_{2} \cdot G_{4}}{1 + G_{2} G_{4} H_{1}}\right) (G_{2} + G_{3})}{(1 + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} G_{4} H_{1})} - 2C$$

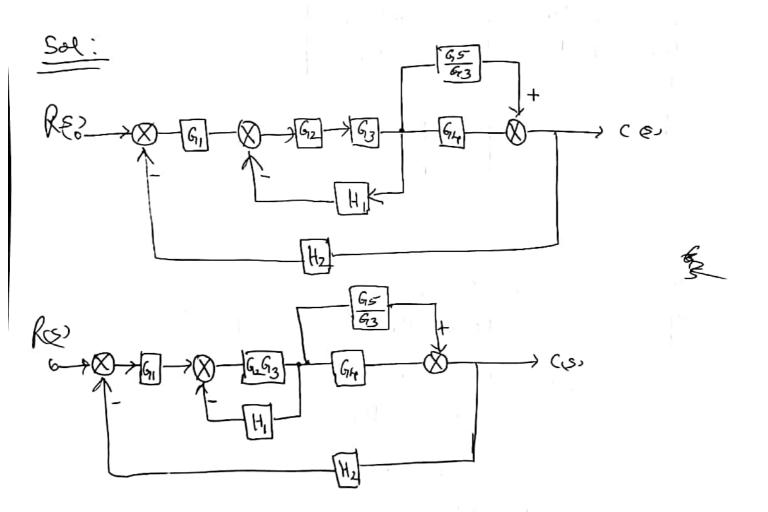
$$R = \frac{G_{2} \cdot G_{4}}{(1 + G_{2} \cdot G_{4} H_{1})} + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4} H_{1}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (1 + G_{2} \cdot G_{4}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (G_{2} - G_{4}) + (G_{2} \cdot G_{4}) + (G_{2} \cdot G_{4})(G_{2} + G_{3}) \cdot H_{2} \cdot (G_{2} - G_{4}) + (G_{2} \cdot G_{4})$$

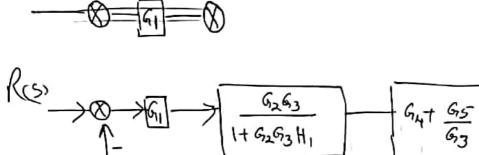
: Ute T.F. is $\frac{G_{12}G_{14} \cdot (G_{2} + G_{13})}{(1 + G_{12}G_{14}H_{1}) + G_{12}G_{14}(G_{2} + G_{13}) \cdot H_{2}}$ C \$% R

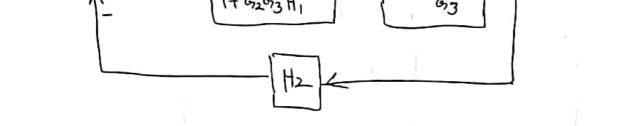
١

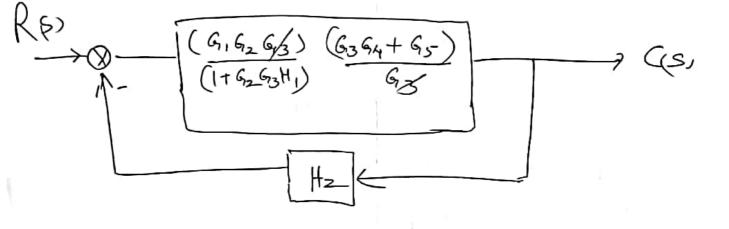
Q3. (C) For the Signal flow graph shown below, find the brancher function using Mosor's Gram formula.

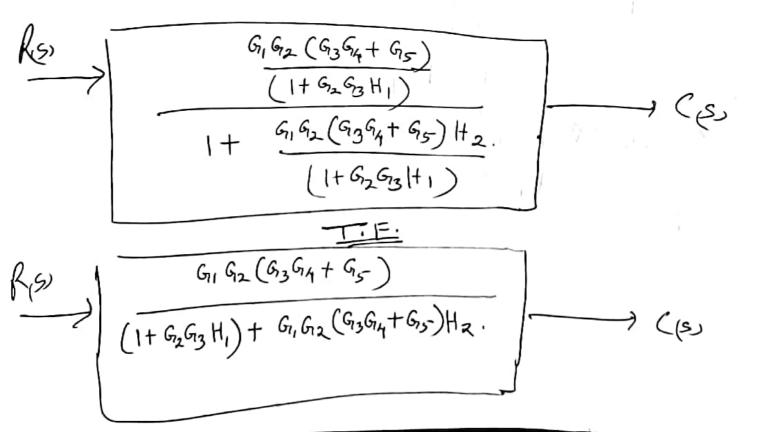
- $F_{1} = G_{1} G_{2}$ $F_{2} = G_{3} G_{4}.$ $F_{3} = G_{1} G_{6} G_{4}$ $F_{4} = G_{3} G_{5} G_{2}$ $L_{11} = -G_{2} H_{1}$ $L_{21} = -G_{3} H_{2}$ $L_{31} = G_{5} G_{6}$ $L_{41} = G_{4} H_{1} G_{6} = -G_{4} G_{6} H_{1}$ $L_{51} = -H_{2} G_{1} G_{6} = -\frac{1}{3} G_{1} G_{6} H_{2}.$
 - $L_{12} = G_2H_1G_3H_2 = G_2G_3H_1H_2.$ There are not 3-non lowerhang Looks. $T\cdot F\cdot = \frac{C(s)}{R(s)} = \sum_{i=1}^{n} \frac{F_i \cdot A_i}{\Delta}$


$$\Delta \eta = 1 - (L_{11} + L_{21} + L_{31} + L_{41} + L_{5-1}) + (L_{12})$$

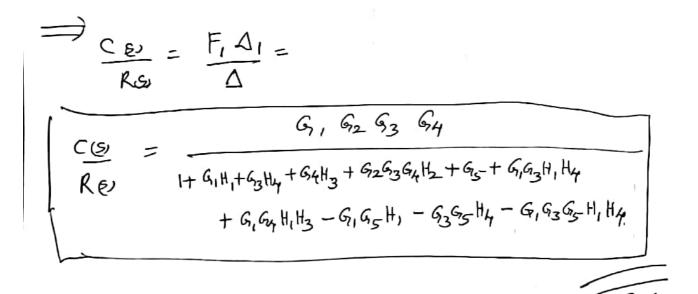

$$\Delta = 1 - (-G_2 H_1 - G_3 H_2 + G_5 - G_6 - G_7 + G_6 H_1 - G_7 + G_6 H_2)$$

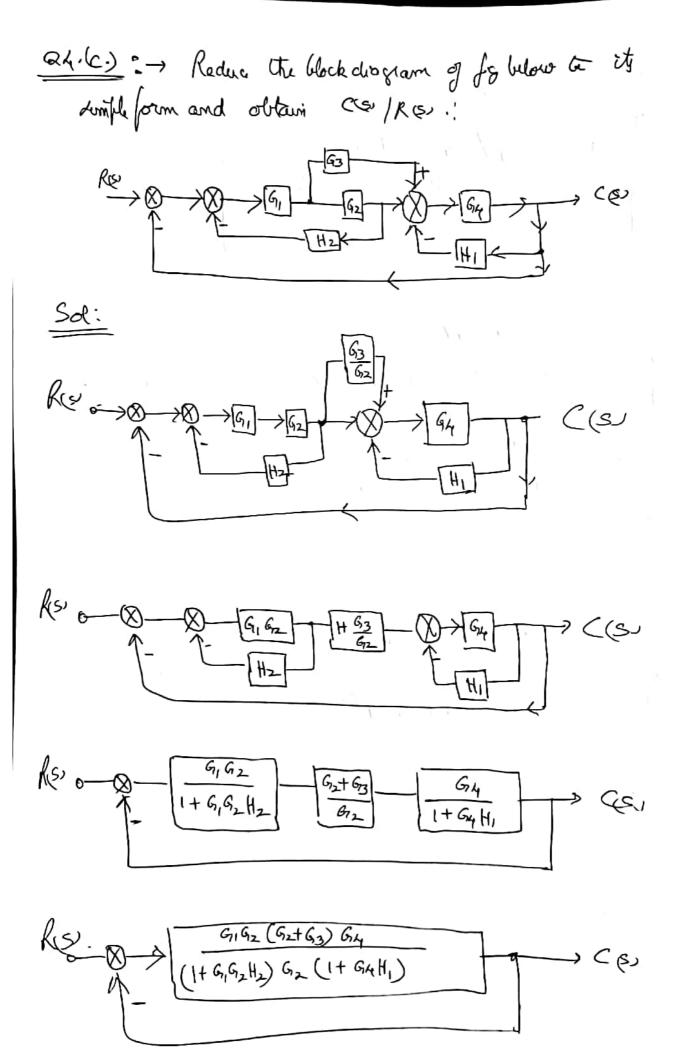

$$\Delta = 1 + G_2 H_1 + G_3 H_2 - G_5 - G_6 + G_4 - G_6 H_1 + G_6 - G_6 H_2$$


 $\Rightarrow \Delta = 1 + G_2 H_1 + G_3 H_2 - G_5 - G_6 + G_4 - G_6 - H_1 + G_1 - G_6 H_2.$: Ap= 1) Tor FI (G, G2) 41 = 1 += 63#2 2) For F2 (G3 GA) Az=1 11 1 1 3) For F3 (G, G6 G4) $\Delta_3 = -$ 4) For Fy (G3 G5 G2) $\Delta_{\chi} = \pm$ G1 G2 + G3 G4+ G1 G6 G2 + 5 $T = \sum_{i=1}^{n} F_i A_i =$ + 63 65-612 1+ G2H1+ G3H2-G5-G6+G4G6H1 + 9, G6H2 $T - F = \frac{G_1 G_2 + G_3 G_4 + G_1 G_6 G_4 + G_3 G_5 G_2}{1 + G_2 H_1 + G_3 H_2 - G_5 G_6 + G_4 G_6 H_1 + G_1 G_6 H_2}$


and obtain Car / RBS of the System given below o Rev × 61 1+1

رى)


Q4. (6) and Obtain the bransfer function of the singhal flow graph shown in figure lelow: - H2 ଜ୍ୟ ے د وب 62 -(12 Sol: No of forward paths = 1 - 1. T.F = F.A.By Mason's gain formula. F1 = G1 G2 G3 G4. Individual feedback loops: $\lambda_{11} = -G_1H_1$ 2) hai = - G3H4 3) Ge L31 = - G14H3 4) LAI = - G2 G3 G4 H2 5) L_51 = G15 . Tues Non-Couching Loops : 4) Lyz = - Gy Gy Hy D L12= GIG3H1H4 Three Non-Touching Loops. L22= G, Gy H, H3 シ (has his = 6, 63 63 - H, H, 3) L32 = - GIHBG5-


 $\therefore \Delta = 1 - \left[k_{11} + k_{21} + k_{32} + k_{41} + k_{51} \right] + \left[k_{12} + k_{22} + k_{32} + k_{42} \right]$ L13

 $\Delta_1 = \mathbf{I}$.

1 I I

 $= 1 + G_{1}H_{1} + G_{3}H_{4} + G_{4}H_{3} + G_{2}G_{3}G_{4}H_{2} + G_{5} + G_{1}G_{3}H_{1}H_{4}$ $+ G_{1}G_{4}H_{1}H_{3} - G_{1}G_{5}H_{1} - G_{3}G_{5}H_{4} - G_{1}G_{3}G_{5} - H_{4}H_{4}$

Scanned by CamScanner

$$\frac{R_{\xi^{2}}}{(1+G_{1},G_{2}H_{2})(1+G_{4}H_{1})+G_{1}G_{4}(G_{2}+G_{3})} \longrightarrow C_{\xi^{2}}$$

$$(1+G_{1},G_{2}H_{2})(1+G_{4}H_{1})+G_{1}G_{4}(G_{2}+G_{3})$$

$$(1+G_{1},G_{2}H_{2})(1+G_{4}H_{1})+G_{1}G_{4}(G_{2}+G_{3})$$

$$(1+G_{1},G_{2}H_{2})(1+G_{4}H_{1})+G_{1}G_{4}(G_{2}+G_{3})$$

Some of the standard test signals that are used are :

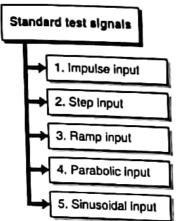
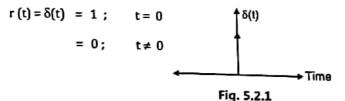



Fig. C5.1 : Standard test signals

1. Impulse input

Impulse represents a sudden change in input. An Impulse is infinite at t = 0 and zero everywhere else. The area under the curve is 1. A unit impulse has magnitude 1 at t = 0

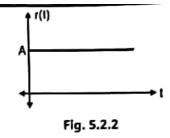
In the Laplace domain we have

 $L[r(t)] = L[\delta(t)] = 1$

Impulse inputs are used to derive a mathematical model of the system.

2. Step input

A step input represents a constant command such as position. The input given to an elevator is a step input. Another example of a step input is setting the temperature of an air conditioner.


A step signal is given by the formula.

If A = 1, it is called a unit step.

In the Laplace domain, we have

$$L[r(t)] = R(s) = \frac{A}{s}$$

In case of a unit step, we get L [r(t)] = R(s) = $\frac{1}{s}$

3. Ramp input

The ramp input represents a linearly increasing input command. It is given by the formula.

$$r(t) = At \quad t \ge 0$$
; Here A is the slope.
= 0 $t < 0$

If A = 1, it is called a unit ramp.

In the Laplace domain we have,

$$L[r(t)] = R(s) = \frac{A}{s^2}$$

In case of unit ramp, we have $R(s) = \frac{1}{r^2}$

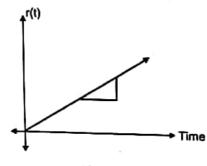


Fig. 5.2.3

Systems are subjected to Ramp inputs when we need to study the system behaviour for linearly increasing functions like velocity.

4. Parabolic input

Rate of change of velocity is acceleration. Acceleration is a parabolic function. It is given by the formula,

$$\mathbf{r}(\mathbf{t}) = \frac{\mathbf{A}}{2}\mathbf{t}^2 ; \quad \mathbf{t} \ge \mathbf{0}$$
$$= \mathbf{0} ; \quad \mathbf{t} < \mathbf{0}$$

If A = 1, it is called a unit parabola. In the Laplace domain we have,

$$L[r(t)] = R(s) = \frac{A}{s^3}$$

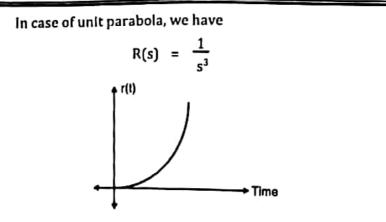


Fig. 5.2.4

5. Sinusoidal input

There are applications where we need to subject the control system to sinusoidal inputs of varying frequencies and study the system frequency response. A typical example is when we want to check the quality of speakers of a music system. In this we play different frequencies (sinusoidal waves) and study their attenuations.

- It is given by the equation, $r(t) = A \sin(\omega t)$

 This chapter involves using inputs that are a function of time and hence sinusoidal inputs which are functions of frequencies will not be discussed here. We will discuss it in the chapter Frequency Response Analysis. Hence the inputs required for time response analysis are

s required for time response analysis are,							
	Input	Laplace domain					
	Impulse	1					
	Step	A/s					
	Ramp	A/s ²					
	Parabola	A/s ² A/s ³					
		Sleady sta	te error				
F	— c _t (t) —	$c_{ss}(t) \longrightarrow t$					

We had stated in the earlier section that the entire time response is made up of two parts viz; transient response $c_t(t)$ and steady state response $c_s(t)$.

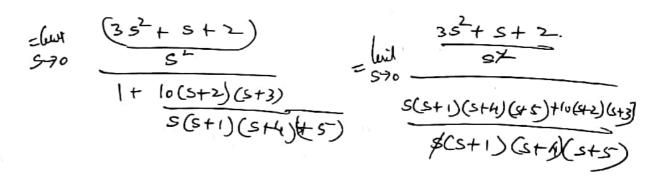
i.e. $c(t) = c_t(t) + c_{ss}(t)$

We shall discuss the steady state response first as it is easier and then follow it up by transient response.

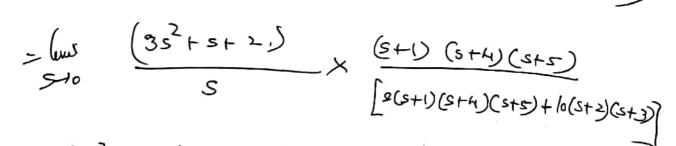
$$\frac{RS(5)}{a} = \text{Find } K_{p} / K_{v} / K_{a} \text{ and obtaily fall strater for a system switch Open had $T = F$. Give it is $= 10 \text{ (S+2)(S+3)}$
where $\lambda(t) = 3t t + t^{2}$.
State solar call is an T and $T = F$. Give it is $S(t+1)(S+4)(S+5)$
 $S(t+1)(S+4)(S+5) = S(t+1)(S+4)(S+5)$
 $\Rightarrow K_{p} = K^{2}$
 $R_{v} = lowed Give it is = \frac{lowed}{s \to 0} = \frac{l(s+1)(S+4)(S+5)}{S(S+1)(S+4)(S+5)}$
 $= \frac{lox2\times3}{1\times4\times5} = \frac{3\phi}{2\phi} = 1 \cdot 5^{-2}$
 $R_{v} = 1 \cdot 5^{-2}$$$

,

$$R = \frac{3}{5} + \frac{1}{2} + \frac{2}{5}$$


$$e_{95} = finut \le x \frac{R_{(5)}}{1 + G_{(5)} + H_{(5)}}$$

$$= finut \le x \frac{3}{1 + G_{(5)} + H_{(5)}}$$


$$= finut \le x \frac{3}{1 + G_{(5)} + H_{(5)}}$$

$$= finut = f(x) + \frac{3}{1 + G_{(5)} + H_{(5)}}$$

$$= f(x) + \frac{3}{1 + G_{(5)} + H_{(5)}}$$

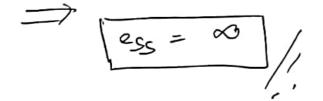
) 5

$$\frac{(3s^{2}+s+2)}{s} \times \frac{(s+1)(s+4)(s+5)}{(s+5)(s+4)(s+5)(s+4)(s+2)(s+3)}$$

$$\Rightarrow e_{SS} = \lim_{S \to 0} S \times \left[\frac{A_0}{S} + \frac{A_1}{S^2} + \frac{A_2}{S^2} \right]$$

$$= \lim_{S \to 0} S \times \left[\frac{A_0 \cdot S^2 + A_1 \cdot S + A_2}{S^{02}} \right]$$

$$= \lim_{S \to 0} S \times \left[\frac{A_0 \cdot S^2 + A_1 \cdot S + A_2}{S^{02}} \right]$$


$$= \lim_{S \to 0} \left(\frac{A_0 \cdot S^2 + A_1 \cdot S + A_2}{S(0 \cdot (S + 1))} \right)$$

$$= \lim_{S \to 0} \frac{(A_0 \cdot S^2 + A_1 \cdot S + A_2)}{S^2}$$

$$= \int_{S \to 0} \frac{S(0 \cdot (S + 1) + 10}{S(0 \cdot (S + 1))}$$

$$= \int_{S \to 0} \frac{(A_0 \cdot S^2 + A_1 \cdot S + A_2)}{S(0 \cdot (S + 1))} \times \frac{(0 \cdot (S + 1))}{S(0 \cdot (S + 1)) + 10}$$

5

•

$$\frac{@6\cdot a_1}{G(S)} : \text{ Force unity fudback contrad System with} \\ G(S) = \frac{64}{S(S+a_{1}-6)}, \text{ write the output sations} \\ (a wint 8th i/p - Determined \\ (v) The reactions at the t=0.1 set \\ (v) The reactions walk of sections and the time at which it occurs. (3) Settleingteine . Sol:
$$\frac{Sol:}{G(S)} = \frac{64}{S(S+9.6)}, \text{ inty f/b is given.} \\ \vdots . Top = \frac{G(S)}{1+6S} = \frac{64}{S(S+9.6)} = \frac{64}{S(S+9.6)+64} \\ \frac{1+ \frac{64}{S(S+7.6)}}{S(S+7.6)} = \frac{64}{S(S+7.6)+64}$$$$

$$T_{(s)} = \frac{64}{s(s+9.6)+64}$$

Ribles Continued - Pase 2
Tigs = 64

$$s^2 + 9.65 + 64 = \frac{C(s)}{R_{S}} - \frac{9}{10}$$

We compare the equation with the shandowl and order
equate i.p. \mathcal{D}_{n}^{2}

$$s_{+2}^{2}s_{+}\omega_{n}s + \omega_{n}^{2} = s_{+7}^{2}+7.65464.$$

$$\implies \omega_{n}^{2} = 64$$

$$\implies \omega_{n}^{2} = 64$$

$$\implies \omega_{n}^{2} = 8.7ad/sc_{-}$$

$$\implies 2.5 \times 8 = 9.6$$

$$\implies 2.5 \times 8 = 9.6$$

$$\implies 3 = -\frac{9.6}{2 \times 8} = 0.6$$

$$\implies 3 = -\frac{9.6}{2 \times 8} = 0.6$$

$$\frac{\mathcal{R}_{6} \cdot (\mathcal{Q}) - \mathcal{C}_{onl} \cdot \mathcal{M}_{ode} 3}{\mathcal{M}_{aximum} \mathcal{O}_{vushoof}} = \mathcal{M}_{p} :$$

$$= \underbrace{\mathcal{M}_{p}}_{I - \underline{g}^{2}} \times \mathcal{I}_{00}$$

$$= \underbrace{\frac{-0.6 \times \Pi}{1 - 0.6^{2}}}_{\mathcal{Q}} \times \mathcal{I}_{00}$$

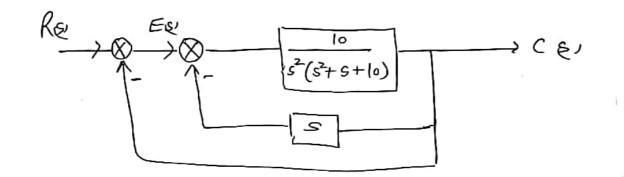
$$= 9.47\%$$
Peak Time Tp:

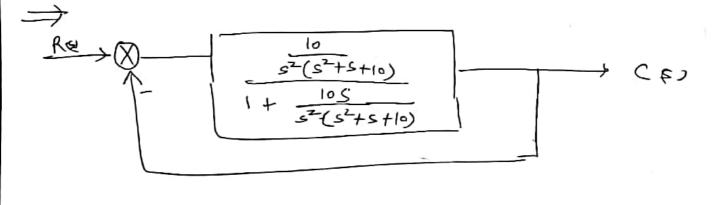
$$Tp = \frac{11}{i2d} = \frac{11}{i2}$$

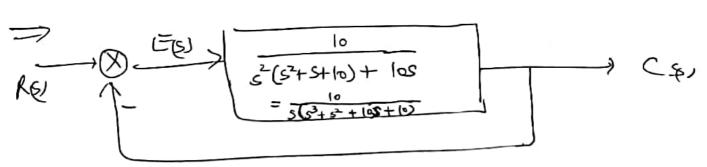
$$= \frac{11}{i2d} = \frac{11}{i2}$$

$$= \frac{11}{8\sqrt{1-0.6^{2}}}$$

$$= \frac{11}{1}$$
There is not for a which sty i/p:


$$= \frac{-5i2}{\sqrt{1-5^{2}}} \times Sin(i24+0)$$


$$\frac{RG(a) - Gn(\frac{mud}{bas}, 4)}{\Box_{a}} \Rightarrow \Box_{a} = \Box_{m} \sqrt{1-s^{2}} = \frac{6 \cdot 4 \cdot 72 \cdot cd/kc}{\Box_{a}}$$


$$\frac{\Theta = \int_{a} \int_{a}^{-1} \left[\sqrt{1-s^{2}} \right]$$

$$\frac{\Theta = \int_{a} \int_{a}^{-1} \left[\sqrt{1-\sigma \cdot s^{2}} \times Sn(6 \cdot 4t + 53 \cdot 13^{\circ}) \right]$$

$$\frac{\Theta = \int_{a}^{-1} \int_{a}^{0} \int_{a}$$

For
$$Cis/E(s)$$
, we have $Gis/H(s) = \frac{10}{s^2}(s^2+s+10)$
 $\Rightarrow Gis/H(s) = \frac{10}{s(s^2+s+10)}$
 \therefore the Typeg System for Cis/s is Type-T, dence
there is one follocated at $S = 0$.

State Error Grietant:

$$K_{p} = linut Gris His = linut \frac{10}{S(s^{3}+s^{2}+10S+10)}$$

$$R_{p} = linut Gris His = linut \frac{1}{S(s^{3}+s^{2}+10S+10)}$$

$$R_{p} = linut S \cdot Gris His = linut \frac{1}{S(s^{3}+s^{2}+10S+10)}$$

$$= \frac{10}{10} = -\frac{1}{10}$$

$$K_{0} = 1$$

$$K_{0} = 0$$

$$K_{0} = 0$$

ï

We mow that the system is a Type - I System 2 here

$$e_{SS} = \frac{A}{1 + \kappa_{b}} = \frac{A}{1 + \kappa_{b}} = 0$$

$$\frac{1}{C(t)} = 10 \mu(t)$$

$$C(t) = 10 \mu(t)$$

Q. +(a): → Find the no of loots with positive real part, zoro real part, and negative real part for a system St+45+354 - 1652 - 645 -48=0 ، اگی 4 - 48 3 -16 S Now y Zero. ο -64 0 : Acs = 354-48=0 ST 3 -48 0 0 z 0 0 0 2و 'و $\Rightarrow \frac{dA}{ds} = 12s^3$ → 5⁶ 1 -16 -48 s⁵ 4 0 -64 Ò s¹ 3 -48 О Ο s³ $\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\frac{576}{\varepsilon} \right) = +\infty$ 12 Ð 0 O(E) -48 0 σ s' **8**576 5° -48 O Ø Only one sign change 2 honce one root in right-half of sellone. How get delicit about the roots supresented by furchy equar-1. for Ales = 354-48=0 \implies 351 = 48 \implies $S^{\frac{1}{2}}$ 16 \$=4 ip 5= ±2 2 s2=-4 ie 5= ±2j Honce two roots (ai) are on ju aris 2 remaining of : Root with + ve heal Part = 01 (one) Root with garon Root with - ve heal Part = 03 (Thrue) Root with -ve heal Part = 7 wo (02). left-halfg s-plane.

Example 8.9.1 For unity feedback system, $G(s) = \frac{K}{s(1+0.4s)(1+0.25s)}$, find range of values of K, marginal value of K and frequency of sustained oscillations.

Solution : Characteristic equation, 1 + G(s)H(s) = 0 and H(s) = 1

 $1 + \frac{K}{s(1+0.4s)(1+0.25s)} = 0$. . . $s [1 + 0.65s + 0.1s^{2}] + K = 0$ $0.1s^3 + 0.65s^2 + s + K = 0$... s³ From s^0 , K > 00.1 1 s² From s^1 , 0.65 Κ $\frac{0.65 - 0.1 \mathrm{K}}{0.65}$ s1 0.65 - 0.1 K > 00 ∴ 0.65 > 0.1 K s⁰ Κ ∴ 6.5 > K

:. Range of values of K, 0 < K < 6.5

The marginal value of K' is a value which makes any row other than s^0 as row of zeros.

To find frequency, find out roots of auxiliary equation at marginal value of `K'.

$$A(s) = 0.65 s^2 + K = 0$$

:. $0.65 s^2 + 6.5 = 0$:: $K_{mar} = 6.5$ $s^2 = -10$

 $s = \pm j 3.162$

Comparing with $s = \pm j\omega$, $\omega =$ Frequency of oscillations = 3.162 rad/sec

9.3 Angle and Magnitude Condition

For a general closed loop system the characteristic equation is, .

1 + G(s)H(s) = 0

i.e. G(s)H(s) = -1

As s-plane is complex we can write above equation as,

G(s)H(s) = -1 + j0

All s-values can be expressed as ' σ + j ω ' i.e. G(s)H(s) term is also complex one. So for any value of `s' if it has to be on the root locus, it must satisfy the above equation.

As both sides of the above equations are in rectangular form, we can convert both sides in polar form and then we can equate angle and magnitude of both sides. This gives us two conditions of root locus called i) Magnitude condition and ii) Angle condition.

9.3.1 Angle Condition

G(s)H(s) = -1 + j0

Equating angles of both sides,

 $\angle G(s)H(s) = \pm (2q + 1) \ 180^{\circ} \quad q = 0, 1, 2 \dots$ Key Point $-1 + j0 = 1 \angle \pm 180^{\circ}$ but the point -1 + j0 is a point on negative real axis which can be traced as magnitude 1 at an angle $\pm 180^{\circ}, \pm 540^{\circ}, \pm 900^{\circ} \dots \pm (2q + 1) \ 180^{\circ}.$

If any point in s-plane has to be on the root locus then it has to satisfy above angle condition. The angle of G(s)H(s) calculated at that point must be an odd multiple of $\pm 180^{\circ}$.

Key Point Any point in s-plane which satisfies the angle condition has to be on the root locus of the corresponding system.

9.3.2 Use of Angle Condition

As all the points on the root locus must satisfy the angle condition, we can use the angle condition to test any point in s-plane for its existence on the root locus of the given system. This can be explained by taking an example.

CONTROL Systems

Example 9.3.1 Consider the system with $G(s)H(s) = \frac{K}{s(s+2)(s+4)}$. Find whether s = -0.75 is on the root locus or not, using angle condition.

Solution : Let us test whether s = -0.75 is located on the root locus of above system i.e. whether s = -0.75 is a root of the characteristic equation 1 + G(s)H(s) = 0 or not. Use Angle condition,

$$\angle G(s)H(s) \Big|_{at \text{ point } s = -0.75} = \pm (2q+1) \, 180^{\circ} \quad q = 0, 1, 2, \dots$$

Substituting s = -0.75 in all the terms of G(s)H(s),

$$\angle G(s)H(s) \Big|_{at \, s \, = \, -0.75} = \frac{\angle K + j0}{\angle -0.75 + j0 \cdot \angle 1.25 + j0 \cdot \angle 3.25 + j0}$$

Converting to polar form and considering angles, (use calculator to obtain polar form from rectangular form and consider angle.)

$$= \frac{0^{\circ}}{180^{\circ} \cdot 0^{\circ} \cdot 0^{\circ}} = -180^{\circ}$$

That is $\angle G(s)H(s) = -180^{\circ}$ at s = -0.75 which satisfies angle condition and we can conclude that point s = -0.75 is on the root locus of the given system.

Let us test, s = -1 + j4 for its existence on the root locus of the same system,

$$\angle G(s)H(s) \Big|_{at \ s = -1 + j4} = \frac{\angle K + j0}{\angle -1 + j4 \cdot \angle 1 + j4 \cdot \angle 3 + j4}$$
$$= \frac{0^{\circ}}{104.03^{\circ} \cdot 75.963^{\circ} \cdot 53.13^{\circ}} = -233.123^{\circ}$$
$$\angle G(s)H(s) \Big|_{at \ s = -1 + j4} = -233.123^{\circ}$$

As this is not satisfying the angle condition, the point (-1 + j4) cannot be on the root locus of the given system.

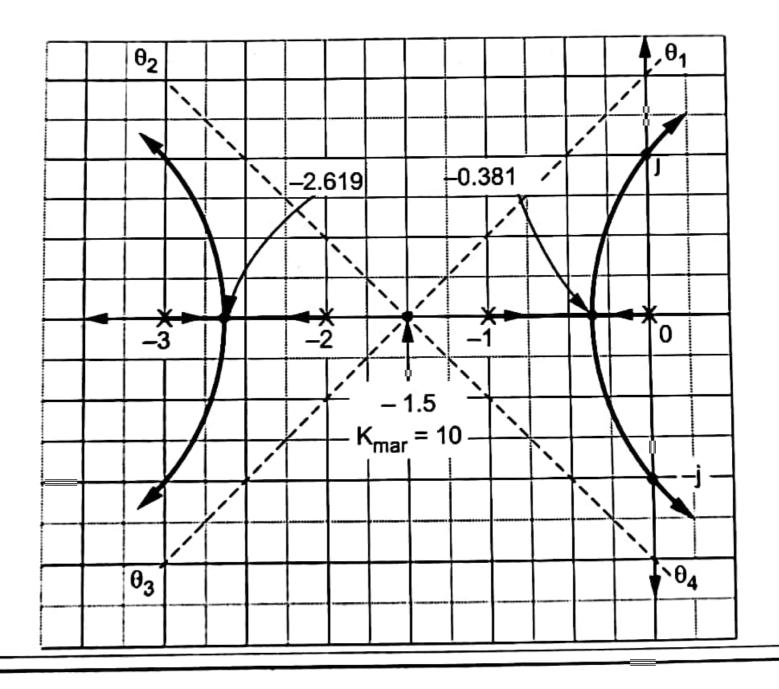
08.(a): -> Shetch the complete roothocus and comment on the stability of the system Gus Hus = K. s(s+1)(s+2)(s+3) sd: Styl: No g Locci 2 Here p = 4 & Zeroy (Z) = 0. -: Mogloci anding atal = p-Z=4. Sty 2: Draw the Poly 2 Zeros to scal! 1- jon (a ij-Step 3: Theread any have is present at (2) -3 < 6 < -2 1) -1<6<0 sty 4: No y asymptoti = p-2 = 4. Angley asymptote = $\beta_2 = \frac{(2x+1)|80}{p-2}; \frac{[x=0,1,2,3]}{[x=0,1,\cdots,b-2-1]}$ $\beta = 45^{\circ}, \beta = 135^{\circ}$ P2 = 2250, B3=315

$$\frac{84}{6} \frac{5!}{5!} (antibiotd : [6])$$

$$\frac{1}{6} = \sum \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{5} \frac$$

Solving the above squation we get three root

$$S_{1} = -1.5, S_{2} = -2.618, S_{3} = -0.382$$
How $S_{1} = -1.5$ does not be on the bai.
While $S_{2} = -2.618$ & $S_{3} = -0.382$ by on the book have.
2 hence are valid brabalway from to


$$S_{2} = -2.618 \quad 2 - 0.382$$

It 7: Hot required as there are no complex poly and zeros.

Styp: Intersection of Imaginary fix:
Char equals is: I+650 Hiss.=0

$$\Rightarrow s^{4}+6s^{3}+11s^{2}+6s + R=0$$

: Use howly arry: s_{1}^{1} IP K
 s_{3}^{3} 6 6 0
 s_{2}^{2} 10 K.
 s_{1}^{1} 10 K.
 s_{2}^{1} 10 K.
(Junce for marginal station of K.
 10 K.
 K .

 $\frac{\mathbb{Q} \mathcal{B} \cdot \mathbb{Q} : \operatorname{Gritimud} - \operatorname{Par} 2}{\operatorname{Hima} \operatorname{atkman}}, S' \operatorname{row} \operatorname{if all } \operatorname{gerses}.$ Hima we conside the Auxilian aquals for S' row $\implies A \leq 2 = |0 S^{2} + k = 0:$ $\implies A \leq 2 = |0 S^{2} + k = 0:$ $\implies -K_{mal} = |0 S^{2}$ $\implies -K_{mal} = |0 S^{2}$ $\implies -10 = |0 S^{2}$ $\implies S^{2} = -1 \implies S = \pm \sqrt{-1} = \pm 3$ $\implies S = (\pm 3) \mathbb{Q} (-3)$ Here the root locus intersect the imaginary axis at $S = \pm 3$ and the value $g \in A$ at crossoure is |0|.

Example 11.7.3 Sketch the bode plot for the transfer function

$$G(s) = \frac{\kappa s^2}{(1+0.2s)(1+0.02s)}$$

Determine the value of K for the gain cross-over frequency to be 5 rad/sec. Solution : Step 1 : G(s) is in the time constant form.

Step 2 : Analysis of factors

- 1. K is unknown and its effect is to shift the entire magnitude plot by 20 Log K dB.
- 2. Two zeros at origin, so straight line of slope + 40 dB/decade passing through intersection point of $\omega = 1$ and 0 dB.
- 3. Simple pole, 1/1 + 0.2 s, $T_1 = 0.2$

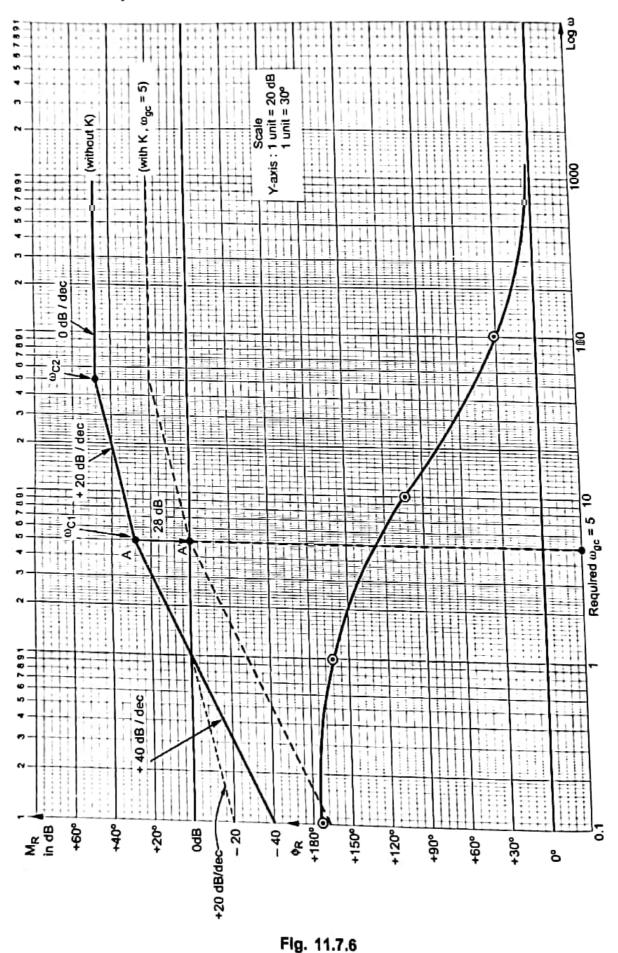
$$\therefore \quad \omega_{C1} = \frac{1}{T_1} = \frac{1}{0.2} = 5 \text{ rad/sec}$$

So straight line of slope – 20 dB/dec for $\omega \ge 5$.

4. Simple pole, 1/1 + 0.02s, $T_2 = 0.02$

$$\therefore \quad \omega_{C2} = \frac{1}{T_2} = \frac{1}{0.02} = 50 \text{ rad/sec}$$

Resultant slope table :


Starting slope	+ 40 dB/dec
0<ω<5	+ 40 dB/dec
5 < ω < 50	+ 20 dB/dec
50 < ω < ∞	0 dB/dec

Step 3	:	Phase	angle	table
--------	---	-------	-------	-------

$$G(j\omega) = \frac{K(j\omega)^2}{(1+0.2 j\omega) (1+0.02 j\omega)}$$

ω	(jω) ²	- tan ⁻¹ 0.2ω -	- tan ⁻¹ 0.02 ω	¢ κ
0.1	+ 180°	- 1.14°	- 0.11	+ 178.74°
1	+ 180°	– 11.3°	- 1.14	+ 167.55°
10	+ 180°	+ 63.4°	- 11.3°	+ 105.29°
100	+ 180°	- 87.1°	- 63.43°	+ 29.46°
∞	+ 180°	- 90°	– 90°	0°

TECHNICAL PUBLICATIONS" - An up thrust for knowledge

Step 4 : The Bode plot is shown in the Fig. 11.7.6.

TECHNICAL PUBLICATIONS - An up thrust for knowledge

From the Bode plot to get $\omega_{gc} = 5$, the plot must intersect 0 dB line at $\omega = 5$ rad/sec.

But at $\omega = 5$, the point on plot without K is 28 dB away from the 0 dB line. This is point A as shown. It should be on 0 dB at A' as shown for $\omega_{gc} = 5$. So shift A to A' must be contributed by 20 Log K, which remains constant for all the frequencies, to get $\omega_{gc} = 5$. The shift must be treated negative as it is downwards.

 $\therefore 20 \text{ Log K} = -28 \text{ dB}$

...

 $K = 0.0399 \approx 0.04$ to get

 $\omega_{gc} = 5 \text{ rad/sec}$

b) Norking the by Comparison with
$$ch + drag row - 5$$

Norking the bad Comparison with $ch + drag row - 5$
(article (12)) 2
(article (1

10 c). State transition matriz

$$A: \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix}$$

$$SI-A: \begin{bmatrix} S & 1 \\ -2 & S+3 \end{bmatrix}$$

$$(SI-A): \begin{bmatrix} S+3 & -1 \\ 2 & S \end{bmatrix}$$

$$S(S+3)+2$$

$$\phi(T): \begin{bmatrix} 2 \in T & -2T \\ 2 \in T & -2 \in T \\ 2 \in T & -2 \in T \end{bmatrix}$$

$$e^{T} + 2e^{2T}$$