VTU Question Paper Solution

Microcontroliers

F

BEC405A

ester B.E./B.Tech. Degree Exanﬁﬁ_ﬂ&ﬁn, June/July 2024

«_...::: W Max. Marks: 100

Note: 1. Answer any FIVE full questions, chooﬁm ONE Jull guestion from em:k module.

2. M : Marks , L: Bloom’s level , C: Cam:s*ea tcomes.

=

Vodule= 1 ; : MIL]| C
Q.1 L Bring out the difference between M.lcrnproccssur and Mmiocuntmlfer 6 | L2 |CO1
b. | With a neat Architecture dxagram explain the Architecture of 8051 | 10 | L2 } Ccol1
Microcontroller. e
= c. | Explain : (i) RST (ii) INT Pins of 8051 4 |L1|CO1|
% OR :
Q2 | Differentiate between CISC and RISC. ot gLy oot
b, | With a neat dlagram, explain the Internal Memory Structure and | 10| L2 Co1
Pro grammmg Madel of 8051 Mlcmcontrollar
¢. | List out specm} features of 8051 Mc;acomroller : 4 |L2|CO1
"\ Mﬂllu’[e 2 o
Q.3 | a. | Define Addressing Mode. Explam different addregs;ng modes with | 10 L2 | co2
example. &% & '1_;3 .
b. | Write an ALP to add two" 16hb1t numbers loadqd_ln R.Ru and RgR« ‘Store | 10 | L3 | CO2
| the result in ReRs and Ry from MSB to LSB. &,
o OR e s ¥ -_.;--'f" —

Q.4 Define Stack. Expla:m the operatm;_t_}f,,StaLk using Stack "Pointer, PUSH [10 | L2 | CO2 |
and POP Instructions. ,h i 1 &
Write an M.,P to find largest of Nnumbcrs Fo wd 10 | L3 | CO2
= “?‘ T Module - 3
Q5 |a | Explam +(1) TMOD Ln IC(}N register of 8051 10| L2 | CO3
: Q ume XTAL = 22 MHz, Wnte an AIP to geu:ratc a square of frequency | 10 | L2 | CO3
on Pin P'1. 2 _l':_ .-Jh = 3
1 e]
! OR °
Q.6 Explain : (1) S”‘\I‘ rcgister (if) Importance of TI Flag 10 | L2 | CO3
Write a C program to transfer “YES” serially at 9600 baud rate, 8 bit data, | 10 | L3 | CO3
] stop bit, do this continuously. * |
o~ Module - 4 o
Q.7 Define Interrupt. List the steps involved in Executing an Interrupt. 10 | L2 | CO4
. | Explain Interrupt Vector table of 8051 Microconiroller. 5 | L2 | CO4
Explain Intermp:;'&tjaﬁie register. 5 [L2]CO4
OR
Q.8 |a. | Explam Intem.lpt Control used in 8051. [10] L2 | CO4
b. | Explain [hg steps involved in programming serial communication Interrupt. | 5 | L2 | CO4
+ lLof2
BEC405A
i C. ’ Explain how multiple Interrupts are handled in 805 I 14;,2 " 5 F 12 [CO4
i
Q.9 Explain DA Module =3
.9 |a, plain DAC Interface with a neat diagram so write
e gra ﬂﬂﬂ; }J write a program to | 10 | L3 | CO5
B 23
b. | With a neat diagram, write a program to Intdﬁfacc Stepper Motor tq;sq?; 10| L3 | COs
Microcontroller. s :
2 =k
G 2 _

Q.10 | a. | Explain the Interfacing of DC m@t%uﬁng C programming. ' 10| L3 | COs
With a neat diagram, m;fé‘ " ALP to Interface].;Cf[fl to 8051 |10 L3 | COS5
Microcontroller. ¢

LIBRARY l

%%{‘_; LB B B K %& HEvﬁﬁﬂm
-

Solution

1. a.Bring out the difference between Microprocessor and
Microcontroller.

Microprocessor

Microcontroller

Microprocessor contains ALU, General purpose
registers, stack pointer, program counter, clock
timing circuit, interrupt circuit

Microcontroller contains the circuitry of
microprocessor, and in addition it has built in
ROM, RAM, 1/0 Devices, Timers/Counters etc.

It has many instructions to move data between
memory and CPU

It has few instructions to move data between
memory and CPU

Few bit handling instruction

It has many bit handling instructions

Less number of pins are multifunctional

More number of pins are multifunctional

Single memory map for data and code
(program]

Separate memory map for data and code
[program)

Access time for memory and [0 are more

Less access time for built in memory and 10.

Microprocessor based
additional hardware

system requires

It requires less additional hardwares

More flexible in the design point of view

Less flexible since the additional circuits which is
residing inside the microcontroller is fixed for a
particular microcontroller

Large number of instructions with flexible
addressing modes

Limited number of instructions with few
addressing modes

b. With a neat Architecture diagram explain the architecture of 8051

Microcontrollers.

8051 Block Diagram

Arithmetic Speceal- a b— o
ard PEW Function % E — AD-AT
Lagic LUnit Registers — D0-07
- [___ RA&M —
B.Bi1 Data and —
& B —_ =
Address Bus =
I * - i E, — |/
OPTR
R DPH RO |
DPL 1-_.} B =
10
" E [AB-ALS
| 6-Bit Adress Bus
— — 0
—_— pecial- m f— Interrugt
E* = Eﬂtem *mem“ Fumition g "E — Canter
ALE — Timing EEEEE Fegisters 2 b~ Serial Data
PSEN — — HO-WH
NTALL — System Repiziar L |
ETALZ — Interrupls Bark 3 P
RESET — Timers PLON I
Data ByHars ERUF |
Yo —4 Regsier
r
G —] ey Cantrn Bank 2 SCoM I
— TCON |
Hepgigtar TMOD '
l Bans) L ‘
I THI I
| F’;rfg Ll
A
| TH1 I
I Pritesngd RAM Structure ‘
I [
i oy G S S S R S |
Introduction

Salient features of 8051 microcontroller are given below.

« Eight bit CPU

* On chip clock oscillator

* 4Kbytes of internal program memory (code memory) [ROM]
* 128 bytes of internal data memory [RAM]

* 64 Kbytes of external program memory address space.

* 64 Kbytes of external data memory address space.

* 32 bi directional 1/0 lines (can be used as four 8 bit ports or 32 individually
addressable I/0 lines)

* Two 16 Bit Timer/Counter :T0O, T1

* Full Duplex serial data receiver/transmitter

* Four Register banks with 8 registers in each bank.

« Sixteen bit Program counter (PC) and a data pointer (DPTR)

* 8 Bit Program Status Word (PSW)

« 8 Bit Stack Pointer

* Five vector interrupt structure (RESET not considered as an interrupt.)

* 8051 CPU consists of 8 bit ALU with associated registers like accumulator ‘A’, B

register, PSW, SP, 16 bit program counter, stack pointer.

* ALU can perform arithmetic and logic functions on 8 bit variables.

* 8051 has 128 bytes of internal RAM which is divided into
o Working registers [00 - 1F]
o Bit addressable memory area [20 - 2F]
o General purpose memory area (Scratch pad memory) [30-7F]

8051 has 4 K Bytes of internal ROM. The address space is from 0000 to OFFFh. If the
program size is more than 4 K Bytes 8051 will fetch the code automatically from
external memory.

* Accumulator is an 8 bit register widely used for all arithmetic and logical operations.

Accumulator is also used to transfer data between external memory. B register is
used along with Accumulator for multiplication and division. A and B registers
together is also called MATH registers.

* PSW (Program Status Word). This is an 8 bit register which contains the arithmetic
status of ALU and the bank select bits of register banks.

CY [AC| F [RS1 | RSO [OV -
0 P

CY - carry flag
AC - auxiliary carry flag
FO - available to the user for general purpose

RS1,RSO0 - register bank select bits
0V - overflow
P - parity
* Stack Pointer (SP) - it contains the address of the data item on the top of the stack.

Stack may reside anywhere on the internal RAM. On reset, SP is initialized to 07 so
that the default stack will start from address 08 onwards.

* Data Pointer (DPTR) - DPH (Data pointer higher byte), DPL (Data pointer lower byte).

This is a 16 bit register which is used to furnish address information for internal
and external program memory and for external data memory.

* Program Counter (PC) - 16 bit PC contains the address of next instruction to be

executed. On reset PC will set to 0000. After fetching every instruction PC will
increment by one.

C. Explain (i) RST (ii) INT Pins of 8051

8051 DIP Pin Assignrments

Pert 1 BiL D
Part 1 BIE]
Port 1 Bit 2
Port 1 Bit3
Poet] Bit 2

Port 1 Bit 5

Por | BAG

Port 1 Bit 7

Resed Irput

Port 3 BiL O
[Receie Dats)

PortdEnt
(KMIT Datad

Port 3 B4t 2
[inbernapt 09

Port 3 Bit 3
inbernapd 14
Port 3 Bit 4
iTirewes i | Aipailh
Port 3 Bil &
CTamar 1 |rgit]

Pert 3 Bit6
MWinte SEncb=s)

Pert 3BT
(Fread Shoha)
Crystad Pnput 2
Crpstal Imput 1

Gingwind

/

P10 Wer
#i.1 ACPD.0
P1.2 JADTIPD. 1
PLA (AD2IPD.2
PLA {ADZIPD.3
P1.5 DA Po.4
Fl.& (ADSIPO. 5
P17 {ADEIPD G
R&T [ADTRFO. 7
P3.0MRXO feppifEA
FAUTHDN {PROGIALE
P3.20NTO) PSEN
P33INTI WigEE2.?
P340 (AL4}FEE
P3.54T1H 3PS
P36 WA TSF. LK
P37 00 L1223
MTRLZ (ALOKFZ. 2
WTALL P21
VEs (ARIPZ.0

40

an

4

7

L]

a5

=

13

3z

24

23

22

21

1. RST (Reset) Pin:

Pin Number: 9
Function: Used to reset the microcontroller and set it to a known

initial state.

e Operation: When a high logic level (typically 1) is applied to the RST
pin for at least two machine cycles, the 8051’s internal registers and
Special Function Registers (SFRs) are set to their default values.

e Common Uses: Initializing the microcontroller before starting a new
operation, resetting the device in the event of a malfunction, or during

power-on.

2. INT (Interrupt) Pins:

+ 5

Part DAt D
LhddressiDiata 00
Part 0 Bit 1
[AddressTata 1)
Poyrt 0 @iy 2
[kddressData 2§
Pori 0 @i 3
[AddresaiData 1)

Port O Bit 4
LAddrmeslDals &)

Port 0 Bat 5

|Address'Data 5

Part 0 Bt G

tAddreesDats &)

Port O BiL T

[Address'Tata 7]

Faiermal Enable

{EPROW Pregramening Vollage)
Badress Latch Enabie

[EFRTIM Program Pulse)

Frogram Stone Enabie

Port 2 Bt £
[AdidFuis 151
Port 2 Bit &
(Address L4}
Port 2 Bl S
[Adfdrass 131
Pert 2 Bit 4
[hifcress 121
Port 2 Bt 3
[hddress 111
Port 2 Bl 2
|Address 100
Porl 2 B4t}
(Addrazs F
Parl 2 BiLO
|Address B

e Pins: There are two external interrupt pins, INTO (Pin 12) and INT1
(Pin 13).
e Function: Used to handle external interrupt requests, allowing the
microcontroller to stop its current task to service an urgent event.
e Interrupt Vector Addresses:
o INTO: Address 0003H
o INT1: Address 0013H
e Types of Interrupts:
o Level Triggered: Activated when held low.
o Edge Triggered: Activated on the falling edge of a pulse.
e Common Uses: Handling time-sensitive events, monitoring sensors,
and other peripheral devices that need quick responses.

Q2. a. Differentiate between CISC and RISC

RISC CISC

Instruction takes one or two cycles Instruction takes multiple cycles

Only load/store instructions are used to access | In additions to load and store instructions,
MEemory memory access is possible with other
instructions also.

Instructions executed by hardware Instructions executed by the micro program
Fixed format instruction Variable format instructions

Few addressing modes Many addressing modes

Few instructions Complex instruction set

Most of the have multiple register banks Single register bank

Highly pipelined Less pipelined

Complexity is in the compiler Complexity in the microprogram

b. With a neat diagram, explain the internal Memory Structure and
programming model of 8051.

B051 Programmming Mode|
HERIERLE 8) [8 [ee] rer

1. IE THOE TOON
R A
I_T_m“'! T _E_T-'I-'El‘_l R e mgiate H.Illr" l:lp:t!l
r &] Intenypl Fegisies Tirrsr G2ivirod Magisies
Haphar Lpgesier
® " | AL B | A& B | AL A | &b
Weth apaser Tha Lo T L
Caounlid Cinmthi Comirler Gaviniler
Timmrslounie Ragnier
§ | 98- LI EE B |8) [& Joor
" SCON shor POON FEW
il Hicgiater FERAIE Hegiter
Serig Dty Regishery Flags
[am o il
Py
A B | &t
Stack
Ped Fifike
]
aF 1] TF
hodness Rit Addrensesy har this RAM Anep Difly
m hs b
iF Rigitler
Bank
m 3
17 Begriter g | &z | 8 | &2 [| FoAddeesa
Ranis Dats Poinier ' Lk
it 2 OPH | DR Frogim Cn
L ftegistis
Bank
8 1
] B7 TS g [eoe a | ¢ [& Teo-
0l Ak Pori Pt | Forl 7 |_ EE]
Firsgiate s L] Latch Lakch Laich ‘_Llh:h
Bank 4 LD
& o3 LE]
az LH | .
o -E Sermiber ol Direci Byt dddeess
- i Bils. * Tredier pley B Adddrevaahis
oo {—_._.
Irdpma! i
LLERTER Y 710 Tm“

Register Banks: 00h to 1Fh. The 8051 uses 8 general-purpose registers RO through R7
(RO, R1, R2, R3, R4, R5, R6, and R7). There are four such register banks. Selection of
register bank can be done through RS1,RS0 bits of PSW. On reset, the default Register Bank
0 will be selected.

Bit Addressable RAM: 20h to 2Fh . The 8051 supports a special feature which allows

access to bit variables. This is where individual memory bits in Internal RAM can be set or
cleared. In all there are 128 bits numbered 00h to 7Fh. Being bit variables any one variable
can have a value 0 or 1. A bit variable can be set with a command such as SETB and cleared
with a command such as CLR. Example instructions are:

SETB 25h ; sets the bit 25h (becomes 1)

CLR 25h; clears bit 25h (becomes 0)

Note, bit 25h is actually bit 5 of Internal RAM location 24h.

The Bit Addressable area of the RAM is just 16 bytes of Internal RAM located between 20h and

2Fh.

General Purpose RAM: 30h to 7Fh. Even if 80 bytes of Internal RAM memory are
available for general-purpose data storage, user should take care while using the memory
location from 00 -2Fh

since these locations are also the default register space, stack space, and bit addressable
space. It is a good practice to use general purpose memory from 30 - 7Fh. The general
purpose RAM can be accessed using direct or indirect addressing modes.

C. List out the special features of 8051 Microcontoller.

Special Function Registers

INTERNAL RAM
MNAME FUNCTION ADDRESS (HEX)
A Accumulator 0ED
B Anthmetic OFD
DPH Addressing external memaory B3
DPL Addressing external memory B2
IE Interrupt enable control DAS
I Irterrupt prornty gEs
PO Input/output port latch B0
P Inputfoutput port latch a0
P2 Input/cutput port latch Al
P3 Input/output port latch 0ao
PCON Power control 87
PSW Program status word 0DO
SCON senal port controd 98

SBUF Serial port data buffer a9

NAME

-1y
TRACD
TCON
TLEY
THQO
TL1
TH1

FUMNCTION

Stack pointer

Timer fcounter mode control
Temiér 'Counter contral

Timer O low byte

Timer O high byte

Timer 1 low byle

Timer 1 high byle

INTERNAL RAM
ADDRESS (HEX)

EREREEE

i]
=

Q.3. a. Define Addressing Mode. Explain different addressing modes with

example.

2.2 ADDRESSING MODES

Various methods of accessing the data are called addressing modes.

8051 addressing modes are classified as follows.

1. Immediate addressing.
2. Register addressing.
3. Direct addressing.
4. Indirect addressing.
5. Relative addressing.
6. Absolute addressing.
7. Long addressing.
8. Indexed addressing.
9. Bit inherent addressing.
10. Bit direct addressing.
1. Inmediate addressing.
In this addressing mode the data is provided as a part of instruction itself. In
other words data immediately follows the instruction.

Eg. MOV A,#30H

ADD A, #83

Symbol indicates the data is immediate.

2. Register addressing.
In this addressing mode the register will hold the data. One of the eight general

registers (RO to R7) can be used and specified as the operand.
Eg. MOV ARO

ADD AR6
RO - R7 will be selected from the current selection of register bank. The default register bank will

be bank 0. 3. Direct addressing

There are two ways to access the internal memory. Using direct address and indirect
address. Using direct addressing mode we can not only address the internal memory but SFRs also.
In direct addressing, an 8 bit internal data memory address is specified as part of the instruction
and hence, it can specify the address only in the range of 00H to FFH. In this addressing mode, data
is obtained directly from the memory. Eg. MOV A,60h

ADD A,30h

4. Indirect addressing

The indirect addressing mode uses a register to hold the actual address that will be used in
data movement. Registers RO and R1 and DPTR are the only registers that can be used as data
pointers. Indirect addressing cannot be used to refer to SFR registers. Both R0 and R1 can hold 8 bit
address and DPTR can hold 16 bit address.

Eg. MOV A,@RO
ADD A,@R1
MOVX A,@DPTR
5. Indexed addressing.

In indexed addressing, either the program counter (PC), or the data pointer
(DTPR)—is used to hold the base address, and the A is used to hold the offset address.
Adding the value of the base address to the value of the offset address forms the effective
address. Indexed addressing is used with JMP or MOVC instructions. Look up tables are
easily implemented with the help of index addressing.

Eg. MOVC A, @A+DPTR // copies the contents of memory location pointed by the sum of

the accumulator A and the DPTR into accumulator A.

MOVC A, @A+PC // copies the contents of memory location pointed by the sum of

the accumulator A and the program counter into accumulator A.

6. Relative Addressing.

Relative addressing is used only with conditional jump instructions. The relative
address, (offset), is an 8 bit signed number, which is automatically added to the PC to make
the address of the next instruction. The 8 bit signed offset value gives an address range of
+127 to —128 locations. The jump destination is usually specified using a label and the
assembler calculates the jump offset accordingly. The advantage of relative addressing is
that the program code is easy to relocate and the address is relative to position in the
memory.

Eg. SJMP LOOP1
JC BACK
7. Absolute addressing

Absolute addressing is used only by the AJMP (Absolute Jump) and ACALL
(Absolute Call) instructions. These are 2 bytes instructions. The absolute addressing
mode specifies the lowest 11 bit of the memory address as part of the instruction. The
upper 5 bit of the destination address are
the upper 5 bit of the current program counter. Hence, absolute addressing allows
branching only within the current 2 Kbyte page of the program memory.

Eg. AJMP LOOP1
ACALL LOOP2

8. Long Addressing

The long addressing mode is used with the instructions LJMP and LCALL. These are
3 byte instructions. The address specifies a full 16 bit destination address so that a
jump or a call can be made to a location within a 64 Kbyte code memory space.

Eg. LJMP FINISH
LCALL DELAY

9. Bit Inherent Addressing

In this addressing, the address of the flag which contains the operand, is implied in
the opcode of the instruction.
Eg. CLR C; Clears the carry flag to 0

10. Bit Direct Addressing
In this addressing mode the direct address of the bit is specified in the instruction.
The RAM space 20H to 2FH and most of the special function registers are bit
addressable. Bit address values are between 00H to 7FH.
Eg. CLR 07h ;

SETB 07H

b. Write an ALP to add 16-bit numbers loaded in R1 RO and R3R2 . Store
the result in R6R5 and R4 from MSB to LSB

MOV A, R ; Load lower byte of first number into accumulator
ADD A, R2 ; Add lower byte of second number

MOV R4, A : Store result's LSB in R4

MOV A, R1 ; Load higher byte of first number into accumulator
ADDC A, R3 ; Add higher byte of second number with carry

MOV RS, A ; Store result's middle byte in RS

MOV A, #88H : Clear accumulator

ADDC A, #36H ; Add carry, if any, from previous addition

MOV R&, A : Store result's MSB in R6&

Q.4.a. Define Stack. Explain the operation of Stack using Stack Pointer,
PUSH and POP Instructions.

A stack is a specialized data structure in computer science that operates
on a Last In, First Out (LIFO) principle. This means that the last item
added to the stack is the first one to be removed. Stacks are commonly
used in programming and computer organization to manage function calls,
interrupt handling, and memory storage for temporary data.

Push and Pop Opcodes

PUSH and POP the Stack

SP + 2 pe Pursh Y —m Y P Pop Y =i 5P
SP + 1 b Puigh ¥ =] X o P X i SP -1
sSP I S . SP - 2 Y
Increment Before Internal Decrement After
PUSHing “Ri":'f POPing

Mnemonic Operation

PUSH add Increment SP; copy the data in add to the internal RAM address
contained in SP

POP add Copy the data from the internal RAM address contained in SP to add;
decrement the SP

b. Write an ALP to find the largest of N numbers.

MOV RO, #3@H
MOV R1, #31H
MOV A, @Re
MOV R2, A

¥
¥
¥

¥

; Load the memory address of N into R
; Load the starting address of data into R1

Load N (the count of numbers) into A

; Store N in R2 for countdown

; Load the first number into accumulator as initial largest

MOV A, @R1
INC R1

LOOP:
MOV B, @R1
CINE A, B, CHECK
SIMP NEXT

CHECK:
JB PSW.8, NEXT
MOV A, B

NEXT :
INC R1
DINZ R2, LOOP

: Store the result

MOV 48H, A

¥

¥

¥
¥

¥

Load the first number into A

; Point to the next number

; Load the next number into B
; Compare A (current largest) with B

; If A = B, skip to next iteration

; If C¥=1, skip; A is greater than B
; If B » A, update A with new largest

; Move to the next number in memory

; Decrement N and repeat if not zero

; Store the largest number in memory location 48H

Q.5. a. Explain (i) TMOD (ii) TCON register of 8051

TCON and TMOD Function Registers

7] 5 4 3 2 | o

TF1 TR1 TFO | TRO IE1 ITl 1EQ ITo

THE TIMER CONTROL (TCON) SPECIAL FUNCTION REGISTER

Bit Symbol Function
7 TF1 Timer | Overflowy flag. Set wihen timer rolls from all ones to zero, Cleared when processor
vectors to execute interrupl sennce routing located at program address 0018h.

[TR1 Timar ¥ run control bit. Set to 1 by program to enable timer 1o count; cleased to O by
program 10 halt timer, DoEs Aot resel Tirmer

5 TFO Timer O Overflosy flag. Set when tmer rolls from all ones to 2ero, Cleared when processor
vectors to execute interrupt senice routine located at program addness 008

TCON & TMOD Function Registers

il TRO Timmer O run confral bit. S5et to 1 by program to enable timer (o count; ceared fo 0 by
program 1o halt timer, Does nol reset timer

3 IE1 External interrupt 1 edge flag. Set to | when a high to low edge sgnal i recewed on port 3
piri 3.3 {INT1). Cleared when processor vectars to mtefrupt sennce routing
lacated at program address 00136, Mot related to timer operabons.

2 Im External imterrupt 1 signal type control bit. Set to 1 by program to enable external interrupt 1
1o be iniggered by a falling edge signal. et 1o 0 by program 1o enable a low level
signal on external interrupt 110 generate an miermupt,

i (] External inierrupt 0 edge flag. Set to 1 when a high to low edge signal is received on port 3
pin 3.2 (INTOD). Cleared when processor vectors 1o inlermupt senace routine located af
program address 0003k, Not related 10 timer operations

b. Assume XTAL =22 MHz. Write an ALP to generate a square wave of
frequency 1KHz on Pin P1.2.

Calculations:

1. Clock Frequency (XTAL) = 22 MHz.

2. 8051 Machine Cycle Frequency = XTAL /12 =22 MHz /12 = 1.833
MHz.

3. Timer Clock Period =1/ 1.833 MHz = 0.546 us.

To generate a 1 kHz square wave, the period TTT should be 1 ms (since
Frequency=1Period\text{Frequency} =
\frac{1}{\text{Period}}Frequency=Period1). For a square wave, the high
and low times are equal, so each state (high or low) should last 0.5 ms.

4. Timer Delay Required = 0.5 ms = 500 ps.
5. Timer Counts Required = 500 us0.546 us=916\frac{500 \,
\text{us}}{0.546 \, \text{us}} \approx 9160.546us500us=916 counts.

Since Timer 0 in mode 1 (16-bit timer) counts from 65536 down to 0, the
timer must be loaded with 65536-916=6462065536 - 916 =
6462065536-916=64620 (which in hexadecimal is FC65H).

ALP to Generate a 1 kHz Square Wave on Pin P1.2:

Here's the program to toggle P1.2 every 0.5 ms, creating a 1 kHz square
wave.

ORG @2eeH ; Start of program

START:
MOV TMOD, #81H ; Set Timer B8 in Mode 1 (16-bit timer mode)
MOV P1, #88H 3 Clear Port 1 initially
TOGGLE:
MOV THe, #8FCH ; Load THe with FC (High byte of FCB5H)
MOV TLe, #865H ; Load TLe with 65 (Low byte of FCGE5H)
SETBE TRB : Start Timer @
JATT :
JNB TF8&, WAIT ; Wait until Timer @ overflows (TF@ = 1)
CLR TRe ; Stop Timer @
CLR TFe 3 Clear Timer @ overflow flag
CPL P1.2 ; Toggle P1.2
SIMP TOGGLE ; Repeat loop
v
END

6. a. Explain (i) SCON Register (ii) Importance of Tl Flag

o SCON is an 8-bit register used to
program the start bit, stop bit, and data
bits of data framing, among other

things

SMO ‘ SM1 ‘ SMZ2 | REN ‘ TES ‘ RES ‘ TT ‘ RT

SMO SCOMN.7
SM1 SCON.6
SM2 SCON.5
REN SCON4
TBS SCON.3
RBS SCON.2Z
TI SCON.1

RI SCON.O

Serial port mode specifier

Serial port mode specifier

Used for multiprocessor communication
Set/cleared by software to enable/disable reception
Not widely used

Not widely used

Transmit interrupt flag. Set by HW at the

begin of the stop bit mode 1. And cleared by SW
Receive interrupt flag. Set by HW at the

begin of the stop bit mode 1. And cleared by SW

Note:! Make SM2, TBS, and RB8 =0

5 SMO, SM1

» They determine the framing of data by
specifying the number of bits per character,
and the start and stop bits

SMO0 sSM1
0 0 Serial Mode 0
0 1 Serial Mode 1, 8-bit data,
1 stop hit, 1 start bit

1 0 Serial Mod&_____ —

1 1 Serial Mode 3 ERsats L 1S
of 1nterest to us

o SM2

» This enables the multiprocessing capability
of the 8051

o REN (receive enable)

» It is a bit-adressable register

= When it is high, it allows 8051 to receive data on
RxD pin
= If low, the receiver is disable

o TI (transmit interrupt)

> When 8051 finishes the transfer of 8-bit
character

= It raises TI flag to indicate that it is ready to
transfer another byte

= TI bit is raised at the beginning of the stop bit

o RI (receive interrupt)

» When 8051 receives data serially via RxD, it
gets rid of the start and stop bits and
places the byte in SBUF register

= It raises the RI flag bit to indicate that a byte
has been received and should be picked up
before it is lost

= RI is raised halfway through the stop bit

B. Write a C program to transfer “Yes” serially at 9600 baud rate, 8 bit data,
1 stop bit do it continuously.

Write an 8051 C program to transfer the message “YES” serially at
9600 baud, 8-bit data. 1 stop bit. Do this continuously.

Solution:

#include <reg51.h>

volid SerTx (unsigned char);

vold main (void) {
TMOD=0x20; //use Timer 1, mode 2
TH1=0xFD; //9600 baud rate
SCON=0x50;
TR1=1; //start timer

H i

i
oMo

H H

H = H
?C?C?Csl—u

vold SerTx (unsigned char =) {

SBUF=x; //place value in buffer
while (TI==0):; //wait until transmitted
TI=0;

7. a. Define Interrupt. List the steps involved in executing an Interrupt.
Interrupts

® An interrupt is an external or internal event that interrupts

the microcontroller to inform it that a device needs its service

A single microcontroller can serve several devices by two
ways

1. Interrupts 2. Polling
Interrupt

a). Whenever any device needs its service, the device notifies

the microcontroller by sending it an interrupt signal
b). Upon receiving an interrupt signal, the microcontroller

interrupts whatever it is doing and serves the device

c). The program which is associated with the interrupt is
called the interrupt service routine (ISR) or interrupt handler

d). It is request based and priority based service with out
wasting processing time.
Interrupts

® An interrupt is an external or internal event that interrupts

the microcontroller to inform it that a device needs its
service

A single microcontroller can serve several devices by two
ways

1. Interrupts 2.Polling

Interrupt

a). Whenever any device needs its service, the device
notifies the microcontroller by sending it an interrupt signal

b). Upon receiving an interrupt signal, the microcontroller
interrupts whatever it is doing and serves the device

c). The program which is associated with the interrupt is
called the interrupt service routine (ISR) or interrupt
handler

d). It is request based and priority based service with out
wasting processing time.

b. Explain Interrupt Vector Table of 8051 Microcontroller.

Each interrupt has a specific place in code memory

where program execution (interrupt service routine) begins.

There are only eight memory locations available for each interrupt. If
ISR is bigger use LJMP instruction)

Reset 0000H External /

Hardware (nghest
)

External 0003H External/ 2

Interrupt 0 Hardware

Timer Interrupt 0 000BH Internal/ 3
Software

External 0013H External/ 4

Interrupt 01 Hardware

Timer Interrupt1 001BH Internal/ 5
Software

Serial Interrupt 0023H Internal/ 6
software

C. Explain Interrupt Enable Register.

IE (Interrupt Enable) Register

ET2

ES

ET1
EX1
ETO
EXO

IE.7
IE.6
IE.5

IE.4
IE.3
IE.2
IE.1
IE.O

DO
ES ET1 EX1 ETO EXO

EA (enable all) must be set to 1 in order
for rest of the register to take effect

Disables all interrupts
Not implemented, reserved for future use

Enables or disables timer 2 overflow or capture
interrupt (8952)

Enables or disables the serial port interrupt
Enables or disables timer 1 overflow interrupt
Enables or disables external interrupt 1
Enables or disables timer 0 overflow interrupt
Enables or disables external interrupt 0

8. a. Explain Interrupt control used in 8051.

o The 8051 has two external hardware
interrupts

» Pin 12 (P3.2) and pin 13 (P3.3) of the 8051,
designated as INTO and INT1, are used as
external hardware interrupts

= The interrupt vector table locations 0003H and
0013H are set aside for INTO and INT1

» There are two activation levels for the
external hardware interrupts

= Level trigged
= Edge trigged

Activation of INTO

INTO
(Pin3.2)

Level-tnggered

0
ITO

>0

S

Edge-triggered

— 0003

Activation of INT1

INTI1
(Pin 3.3)

Level-triggered

0
— » IT1

IEO0
—l_ (TCON 1)
[—:Px
1] IE1
—l_ (TCON.3)

Edge-tnggered

— 0013

b. Explain the steps involved in programming serial communication

Interrupt.

o TI (transfer interrupt) is raised when
the last bit of the framed data, the
stop bit, is transferred, indicating that
the SBUF register is ready to transfer
the next byte

o RI (received interrupt) is raised when
the entire frame of data, including the
stop bit, is received

~ In other words, when the SBUF register
has a byte, RI is raised to indicate that the
received byte needs to be picked up
before it is lost (overrun) by new incoming
serial data

o In the 8051 there is only one interrupt
set aside for serial communication

~ This interrupt is used to both send and
receive data

~ If the interrupt bit in the IE register (IE.4)
is enabled, when RI or TI is raised the
8051 gets interrupted and jumps to
memory location 0023H to execute the ISR

~ In that ISR we must examine the TI and RI
flags to see which one caused the interrupt
and respond accordingly

TT T_“\
RT ,-*“I_ __-—/

Serial interrupt is invoked by TI or RI flags

O0Z2Z3H

o The serial interrupt is used mainly for
receiving data and is never used for
sending data serially

C. Explain how multiple interrupts were handled in 8051.

Interrupt Handling Workflow:

1. An interrupt is triggered (based on priority and enabled settings).

2. The 8051 checks the priority and, if permitted, halts the main
program.

3. The 8051 jumps to the vector address of the interrupt and executes
the ISR.

4. The ISR completes and executes the RETI instruction to return to the
main program.

By using the IE and IP registers, the 8051 microcontroller can handle
multiple interrupt sources efficiently, allowing high-priority tasks to interrupt
lower-priority ones and ensuring smooth execution of critical tasks.

9. a. Explain DAC Interface with a neat diagram and also write a program
to generate a staircase waveform.

The Digital-to-Analog Converter (DAC) interface allows a digital system
like the 8051 microcontroller to output analog voltages. DACs convert
digital values (binary numbers) into proportional analog voltage or current
outputs. For generating waveforms (such as sine, square, and staircase),
the DAC interface is commonly used with 8051.

Basic Diagram of DAC Interface with 8051

The 8051’s Port 1 (P1) is often used to interface with an 8-bit DAC (e.qg.,
DACO0808). The digital output from the microcontroller’s port is sent to the
DAC, which outputs a corresponding analog voltage.

Diagram

Here's a description to help visualize it:

1. 8051 Microcontroller with its P1.0 to P1.7 pins connected to the
D0-D7 input pins of the DAC.

2. DACO0808 is connected to V_ref for reference voltage and V_out for
analog output.

3. The DAC's analog output (V_out) is connected to a load resistor or
connected to an oscilloscope to view the waveform.

Staircase Waveform Generation Program

To generate a staircase waveform using 8051 and DAC, we increment the
digital value sent to the DAC in steps. Each increment increases the output
analog voltage by a small amount, creating a "staircase" effect.

Here’s an Assembly Language Program (ALP) for generating a staircase
waveform:

ORG Go8eeH ; Start of program
START: MOV P1, #©6H ; Initialize P1 to @ (starting digital value)
MOV R&, #80H : R@ is used as the counter for staircase levels
STAIRCASE:
MOV A, RO : Move counter value to Accumulator
MOV P1, A ; Send A to Port 1 (P1) -> DAC
ACALL DELAY ; Short delay between steps
INC R@ ; Increment counter (R)
CIJNE R®, #FFH, STAIRCASE ; If Re != 255, repeat (create staircase)
SIMP START ; Repeat staircase waveform continuously
DELAY: MOV R1, #6FFH : Load R1 with 255
D1: MOV R2, #AFFH ; Load R2 with 255 for inner delay loop
D2: DINZ R2, D2 ; Inner loop
DINZ R1, D1 : Outer loon

RET : Return 4 ¥ delay subroutine

b. With a neat diagram, write a program to interface Stepper Motor to 8051
microcontroller.

8051

Driver Stepper Motor

T 1
‘ i Hill

CYYYY-

+3
8051 interfaces to stepper motor

Example 1: Write an ALP to rotate the stepper motor clockwise /
anticlockwise

continuously with full step sequence.

Program:

MOV A #66H

BACK: MOV P1,A

RR A

ACALL DELAY

SJMP BACK

DELAY: MOV R1,#100

UP1: MOV R2,#50

UP: DJNZ R2,UP

DJNZ R1,UP1

RET

Note: motor to rotate in anticlockwise use instruction RL A instead of RR A

10. a. Explain the Interfacing of DC Motor using C programming.

A switch is connected to pin P2.7. Write a C to monitor the status of the
SW.

If SW =0, DC motor moves clockwise and if SW = 1, DC motor moves
anticlockwise.
Program:

include <reg51.h>
sbit SW =P27;

sbit Enable = P120;
sbit MTR_1 = P17,
sbit MTR_2 = P172;
void main ()

{

SW=1;

Enable = 0;
MTR_1=0;
MTR_2=0;

while()

{

Enable =1;

if(SW==1)

{ MTR_1=1;
MTR_2=0;

Y

else

{ MTR_1=0;
MTR_2=1;

1

b. With a neat diagram, write an ALP to interface the LCD to 8051
microcontroller.

ORG OH

MOV A#38H ;INIT. LCD 2 LINES, 5X7 MATRIX
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A #0EH ;display on, cursor on

ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A#01 ;clear LCD

ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A,#06H ;shift cursor right

ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

MOV A #86H ;cursor at line 1, pos. 6

ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

ACALL DATAWRT ;call display subroutine
ACALL DELAY ;give LCD some time

E ;display letter E

ACALL DATAWRT ;call display subroutine
ACALL DELAY ;give LCD some time

S ;display letter S

ACALL DATAWRT ;call display subroutine
AGAIN: SUMP AGAIN ;stay here

COMNWRT: ;send command to LCD

MOV P1,A ;copy reg A to port 1

CLR P2.0 ;RS=0 for command

CLR P2.1 ;R/W=0 for write

SETB P2.2 ;E=1 for high pulse

ACALL DELAY ;give LCD some time

CLR P2.2 ;E=0 for H-to-L pulse

RET

DATAWRT: ;write data to LCD

MOV P1,A ;copy reg A to port 1

SETB P2.0 ;RS=1 for data

CLR P2.1 ;R/W=0 for write

SETB P2.2 ;E=1 for high pulse

ACALL DELAY ;give LCD some time

CLR P2.2 ;E=0 for H-to-L pulse

RET

DELAY:

MOV R3,#50 ;50 or higher for fast CPUs
HEREZ2: MOV R4,#255 ;R4 = 255

HERE: DJNZ R4,HERE ;stay until R4 becomes 0
DJNZ R3,HERE2

RET

END

