

CMR

INSTITUTE OF
TECHNOLOGY

 USN

Internal Assesment Test –II Answer Key

September 2024

Sub: Database Management System Code:
22MCA21

Date: 11/09/2024 Duration:
90

mins
Max

Marks:
50 Sem: II Branch: MCA

Answer Any 5 QUESTIONS Marks
OBE

CO RBT

1) Explain the concept of an ER (Entity-Relationship) diagram in

database design. Draw and describe an ER diagram for a

university database that tracks students, courses, and instructors.

Your diagram should include the following:

Entities: Student, Course, Instructor

Relationships: Enrollment (between Student and Course),

Teaching (between Instructor and Course)

Attributes:

For Student: Student_ID (primary key), Name, Age,

Major For Course: Course_ID (primary key),

Course_Name, Credits

For Instructor: Instructor_ID (primary key), Name,

Department For Enrollment: Grade

Indicate any key attributes and participation constraints (total or

partial). Use proper symbols for entities, attributes, and

relationships.

ER Diagram Components

1. Entities:

o Student: Represents the students enrolled in the university.

o Course: Represents the courses offered by the university.

o Instructor: Represents the instructors teaching the courses.

2. Attributes:

o Student:

 Student_ID (Primary Key)

 Name

 Age

 Major

o Course:

 Course_ID (Primary Key)

 Course_Name

 Credits

o Instructor:

 Instructor_ID (Primary Key)

 Name

 Department

o Enrollment (Relationship between Student and Course):

 Grade (Attribute of Enrollment)

3. Relationships:

o Enrollment: Connects Student and Course with a Grade attribute.

10

CO1,

CO4

L2

o Teaching: Connects Instructor and Course.

Participation Constraints

 A Student can enroll in multiple Courses (partial participation).

 A Course can have multiple Students enrolled (total participation).

 An Instructor can teach multiple Courses (partial participation).

 A Course must be taught by at least one Instructor (total participation).

Symbols

 Entities are represented by rectangles.

 Attributes are represented by ovals connected to their entity.

 Relationships are represented by diamonds connected to the related

entities.

ER Diagram Description

1. Draw three rectangles labeled "Student," "Course," and "Instructor."

2. Connect the "Student" rectangle to a diamond labeled "Enrollment," which

then connects to the "Course" rectangle.

o Add an oval labeled "Grade" connected to the "Enrollment"

diamond.

3. Connect the "Instructor" rectangle to a diamond labeled "Teaching," which

connects to the "Course" rectangle.

4. For attributes, connect ovals to each entity rectangle:

o Student: Connect ovals for "Student_ID," "Name," "Age," and

"Major."

o Course: Connect ovals for "Course_ID," "Course_Name," and

"Credits."

o Instructor: Connect ovals for "Instructor_ID," "Name," and

"Department."

Diagram
OR

2) Design an ER diagram for an online bookstore database. The

system should manage information about customers, books, and

orders.

Ensure your diagram covers the following aspects:

Entities: Customer, Book, Order

Relationships: Places (between Customer and Order),

Contains (between Order and Book)

Attributes:

For Customer: Customer_ID (primary key), Name, Email,

Phone For Book: Book_ID (primary key), Title, Author, Price

For Order: Order_ID (primary key), Order_Date,

Total_Amount Indicate key attributes and show participation

constraints for the relationships. Also, specify the

cardinalities of the relationships.

ER Diagram Components

1. Entities:

o Customer: Represents the customers purchasing books.

o Book: Represents the books available for sale.

10 CO1,

CO4

L2

o Order: Represents the orders made by customers.

2. Attributes:

o Customer:

 Customer_ID (Primary Key)

 Name

 Email

 Phone

o Book:

 Book_ID (Primary Key)

 Title

 Author

 Price

o Order:

 Order_ID (Primary Key)

 Order_Date

 Total_Amount

3. Relationships:

o Places: Connects Customer to Order.

o Contains: Connects Order to Book.

Participation Constraints and Cardinalities

 A Customer can place multiple Orders (1-to-many relationship, total

participation on the Order side).

 An Order is placed by exactly one Customer (1-to-1 relationship on the

Customer side).

 An Order can contain multiple Books (1-to-many relationship).

 A Book can be included in multiple Orders (many-to-many relationship).

Symbols

 Entities are represented by rectangles.

 Attributes are represented by ovals connected to their respective entities.

 Relationships are represented by diamonds connected to the related

entities.

ER Diagram Description

1. Draw three rectangles labeled "Customer," "Book," and "Order."

2. Connect the "Customer" rectangle to a diamond labeled "Places," which

connects to the "Order" rectangle.

3. Connect the "Order" rectangle to a diamond labeled "Contains," which

connects to the "Book" rectangle.

4. For attributes, connect ovals to each entity rectangle:

o Customer: Connect ovals for "Customer_ID," "Name," "Email,"

and "Phone."

o Book: Connect ovals for "Book_ID," "Title," "Author," and

"Price."

o Order: Connect ovals for "Order_ID," "Order_Date," and "Total_Amount."

Diagram

3) Discuss the importance of Entity-Relationship (ER) diagrams in

database design. Explain the different types of attributes and

relationships found in ER diagrams with examples. In your

answer, include the following:

1. Definition and purpose of ER diagrams in database systems.

2. Types of attributes: Simple, Composite, Multivalued,

and Derived (with examples).

10

CO1,

CO4

L1

 3. Types of relationships: One-to-One, One-to-Many, Many-
to-Many (with examples).

4. The concept of key attributes and weak entities.

1. Role of participation and cardinality constraints in

ER diagrams.

1. An Entity-Relationship (ER) diagram is a visual tool used in database

design to depict the structure of data, its entities (objects or things), attributes

(characteristics), and relationships (associations) between entities. The

primary purpose of an ER diagram is to help database designers and

stakeholders understand the data requirements and relationships in a system,

ensuring that the database structure is logically organized before

implementation. This process leads to a well-structured, efficient, and

normalized database design.

 2. Types of Attributes

Simple Attribute: These attributes cannot be divided further into smaller

components. For example, Age or Employee_ID.

Composite Attribute: These attributes consist of multiple components that can

be broken down into simpler attributes. For example, Full Name can be split

into First Name and Last Name.

Multivalued Attribute: These attributes can hold multiple values for a single

entity. For example, an entity Person can have a multivalued attribute

Phone_Number, as a person may have more than one phone number.

Derived Attribute: These attributes are not physically stored in the database

but are derived from other attributes. For example, Age can be derived from

the attribute Date_of_Birth.

3. Types of Relationships

One-to-One (1:1): In this relationship, a single entity from one set is

associated with a single entity from another set. For example, in a database of

employees and their office locations, an Employee can be assigned to one

Office and vice versa.

One-to-Many (1

): In this type, one entity from one set can be associated with multiple entities

from another set. For example, a Customer can place many Orders, but each

Order is placed by one Customer.

Many-to-Many (M

): Here, entities from both sets can have multiple associations. For instance,

in a university database, a Student can enroll in many Courses, and each

Course can have many Students.

4. Key Attributes and Weak Entities

Key Attributes: A key attribute is an attribute that uniquely identifies an entity

in a set. For example, Student_ID uniquely identifies each student in a Student

entity set.

Weak Entities: A weak entity does not have sufficient attributes to form a

primary key on its own and relies on a relationship with another (strong)

entity. For example, in a system where Order is a weak entity, it depends on

a Customer for identification, as Order_ID alone may not be unique.

5. Role of Participation and Cardinality Constraints in ER Diagrams

Participation Constraints: This defines whether all or only some instances of

an entity participate in a relationship. There are two types:

Total Participation: All instances of an entity are involved in the relationship

(represented by a double line). For example, every Employee must be

assigned to a Department.

Partial Participation: Some instances of the entity may not participate in the

relationship (represented by a single line). For example, not every Student

needs to register for a Club.

Cardinality Constraints: These define the number of entities to which another

entity can be associated through a relationship.

1:1 (One-to-One)

1

(One-to-Many)

M

(Many-to-Many)

These constraints help database designers accurately represent real-world

associations and ensure that relationships between entities are clearly

understood during the database design process.

OR

4) Discuss any 5 different types of keys used in database
management systems with example

In a Database Management System (DBMS), keys play a crucial role

in defining how data is uniquely identified and organized. Here are

five different types of keys commonly used in DBMS:

1. Primary Key

A Primary Key is a column (or a set of columns) that uniquely

identifies each record in a table. No two rows can have the same

primary key value, and it cannot contain NULL values.

Example: In an Employee table, Employee_ID can be the primary key

as it uniquely identifies each employee.

10 CO5 L3

Employee_ID Name Department

101 Alice HR

102 Bob IT

Here, Employee_ID is the primary key.

2. Candidate Key

A Candidate Key is any column (or a combination of columns) that

can be considered for the role of a primary key. Every candidate key

is unique, but there can be multiple candidate keys in a table. One of

them is selected as the primary key.

Example: In a Student table, both Student_ID and Email can serve as

candidate keys because both are unique.

Student_ID Name Email

S001 John john@gmail.com

S002 Sarah sarah@yahoo.com

Here, both Student_ID and Email are candidate keys.

3. Foreign Key

A Foreign Key is a column (or set of columns) that creates a link

between two tables. It refers to the primary key of another table,

enforcing referential integrity between the tables.

Example: In an Order table, the Customer_ID can be a foreign key

referencing the Customer_ID in the Customer table.

Customer Table:

Customer_ID Name

C001 Alice

C002 Bob

Order Table:

Order_ID Order_Date Customer_ID

O101 2024-09-22 C001

O102 2024-09-23 C002

Here, Customer_ID in the Order table is a foreign key referencing the

Customer_ID in the Customer table.

4. Super Key

A Super Key is any combination of columns that can uniquely

identify each row in a table. A super key can consist of one or more

columns and includes the primary key and candidate keys.

Example: In an Employee table, a combination of Employee_ID and

Email could serve as a super key because together they uniquely

identify each row.

Employee_ID Name Email

101 Alice alice@company.com

102 Bob bob@company.com

Here, both Employee_ID and Email together can form a super key.

5. Composite Key

A Composite Key is a key that consists of two or more columns that

together uniquely identify a record in the table. It is used when no

single column is unique by itself.

Example: In an Enrollment table that tracks students’ enrollment in

courses, a combination of Student_ID and Course_ID can form a

composite key since no single column is unique.

Student_ID Course_ID

S001 C101

S002 C102

Here, the combination of Student_ID and Course_ID uniquely

identifies each row, forming a composite key.

5) Define anomalies in the context of databases. Discuss the following

types of anomalies with suitable examples:

1. Insertion Anomaly

2. Update Anomaly

3. Deletion Anomaly

In the context of databases, anomalies refer to problems that arise

when performing operations (such as insertions, updates, or deletions)

on a database that has not been properly normalized. These anomalies

lead to data inconsistency, redundancy, and loss of information,

especially in poorly designed tables.

1. Insertion Anomaly

An insertion anomaly occurs when inserting data into a database is

problematic because some required data is not available, or inserting

certain data requires additional, unrelated data to be entered

unnecessarily.

Example:

Consider a table that stores information about Students and Courses in

the same table:

Student_ID Student_Name Course_ID Course_Name

S001 Alice C101 Database

S002 Bob C102 Networks

If a new course is introduced, say C103 - AI, and no students have yet

enrolled in it, the database cannot store the course information unless

we insert a dummy student record. This is an insertion anomaly

because we cannot add the new course without a student enrolling in

it, which is illogical.

Key Issue:

10 CO5 L2

In a non-normalized database, inserting data may require unrelated or

unnecessary data to be present, leading to inconsistent or invalid

records.

2. Update Anomaly

An update anomaly occurs when data redundancy leads to multiple

occurrences of the same information, making it necessary to update

multiple rows when a single fact changes. If not all rows are updated,

the database ends up with inconsistent information.

Example:

In the same table:

Student_ID Student_Name Course_ID Course_Name

S001 Alice C101 Database

S002 Bob C101 Database

If the name of the course C101 (Database) changes to Advanced

Database, the change must be applied to all rows where C101 is

mentioned. If only one row is updated:

Student_ID Student_Name Course_ID Course_Name

S001 Alice C101 Advanced Database

S002 Bob C101 Database

This inconsistency is caused by an update anomaly, where the

information about the same course is not synchronized across the

table.

Key Issue:

Without normalization, updating data in multiple places may lead to

inconsistencies when not all related rows are updated.

3. Deletion Anomaly

A deletion anomaly occurs when deleting data inadvertently results in

the loss of other important data, often because data that should be

stored separately is combined in a single table.

Example:

Suppose a student Alice is removed from the course table:

Student_ID Student_Name Course_ID Course_Name

S002 Bob C101 Database

In this case, if Alice was the only student enrolled in C101 - Database,

removing her data also deletes the course information. This results in

the loss of data about the course, even though the course might still be

relevant and offered to future students.

Key Issue:

A deletion anomaly causes unintended loss of related data when the

deletion of a record accidentally removes additional, important

information that should have been preserved.

OR

6) Define functional dependency in the context of a relational
database. Explain the types of functional dependencies with
examples
A functional dependency (FD) in a relational database is a constraint
that describes the relationship between two attributes (or sets of
attributes). In simpler terms, it expresses how one attribute (or a set of
attributes) uniquely determines another attribute. It is denoted as:

𝑋
→
𝑌
X→Y

Where X is a determinant, and Y is the dependent. This means that for
any two tuples (rows) in the relation, if the values of X are the same,
then the values of Y must also be the same.

Trivial Functional Dependency

A functional dependency is said to be trivial if the dependent is a
subset of the determinant. In other words, if Y is a part of X, then the
dependency is trivial.

Example: In the relation Student_ID, Name → Name, the dependency
is trivial because Name is part of the left-hand side (determinant).

Non-Trivial Functional Dependency

A functional dependency is non-trivial if the dependent is not a subset
of the determinant. In this case, X uniquely determines Y, but Y is not
part of X.

Example: In the relation Student_ID → Name, the dependency is non-
trivial because Name is not a part of Student_ID.

Full Functional Dependency

A functional dependency is said to be a full functional dependency if
removing any attribute from the determinant causes the dependency to
break. In other words, the entire determinant is necessary for the
dependency to hold.

Example: In an Order table:

10 CO5 L3

Order_ID Product_ID Quantity
O001 P001 10
O002 P002 15
Here, the dependency Order_ID, Product_ID → Quantity is a full
functional dependency because both Order_ID and Product_ID are
required to determine Quantity. If you remove Product_ID, the
quantity cannot be determined.

Partial Functional Dependency

A partial functional dependency occurs when a non-key attribute is
functionally dependent on part of a composite primary key. It arises in
cases where only part of the primary key is required to determine the
dependent attribute.

Example: In an Enrollment table:

Student_ID Course_ID Instructor
S001 C101 Dr. Smith
S002 C102 Dr. Lee
Here, if Student_ID is part of a composite primary key, but Instructor
only depends on Course_ID, it is a partial dependency because the full
key (Student_ID, Course_ID) is not necessary to determine Instructor.

Transitive Functional Dependency

A transitive functional dependency occurs when a non-key attribute is
dependent on another non-key attribute. This type of dependency
arises indirectly, meaning one attribute is functionally dependent on a
second, which is, in turn, functionally dependent on a third.

Example: In an Employee table:

Employee_ID Department_ID Department_Name
E001 D01 HR
E002 D02 IT
Here, Employee_ID → Department_ID and Department_ID →
Department_Name. Hence, there is a transitive dependency
Employee_ID → Department_Name through Department_ID.

Multivalued Dependency

A multivalued dependency occurs when one attribute in a table
determines a set of values for another attribute, but this does not
depend on a third attribute. This leads to redundancy because multiple
rows may store the same values.

Example: In a Movie table:

Movie_ID Actor Genre
M001 Actor A Action
M001 Actor B Action
M001 Actor A Adventure

Here, Movie_ID → Actor and Movie_ID → Genre are independent of
each other, leading to a multivalued dependency.

7) Describe the process of normalization in detail up to the Third
Normal Form (3NF).

Normalization is the process of organizing data in a relational
database to reduce redundancy, improve data integrity, and ensure
efficient data storage. It involves breaking down larger tables into
smaller, related tables and defining relationships between them. The
main objective of normalization is to eliminate data anomalies
(insertion, update, and deletion anomalies) and ensure that the
database structure supports consistency and accuracy of data.

The process of normalization is typically carried out through a series
of steps called normal forms. Each step builds on the previous one,
progressively refining the database structure.

First Normal Form (1NF)
A relation (table) is said to be in First Normal Form (1NF) if it
satisfies the following conditions:

Atomicity: All the values in the table are atomic, meaning that each
column contains indivisible values (no sets, lists, or arrays).
Uniqueness of Rows: There are no duplicate rows in the table.
Single-Valued Attributes: Each column must contain only a single
value, i.e., no multivalued attributes.
Example:
Consider a table storing student information with courses:

Student_ID Name Course_Enrolled
S001 Alice Database, AI
S002 Bob Networks
Issues in 1NF: The Course_Enrolled column contains multiple values,
which violates 1NF.

Solution: Each student-course pair should be represented in a separate
row:

Student_ID Name Course_Enrolled
S001 Alice Database
S001 Alice AI
S002 Bob Networks
The table now satisfies 1NF as each attribute holds atomic values, and
there are no multivalued attributes.

Second Normal Form (2NF)
A relation is in Second Normal Form (2NF) if:

It is in 1NF.
There is no partial dependency; that is, every non-prime attribute (an
attribute that is not part of a candidate key) is fully functionally
dependent on the primary key. This mainly applies to tables with
composite primary keys.

10 CO5 L3

Example:
Consider a Student_Course table (already in 1NF):

Student_ID Course_ID Course_Name Instructor
S001 C101 Database Dr. Smith
S002 C102 Networks Dr. Lee
S001 C102 Networks Dr. Lee
Here, the composite key is (Student_ID, Course_ID). However, the
attribute Course_Name and Instructor depend only on Course_ID, not
on the full composite key, creating a partial dependency.

Solution: To eliminate partial dependencies, we split the table into
two:

Student_Course:
Student_ID Course_ID
S001 C101
S002 C102
S001 C102
Course_Details:
Course_ID Course_Name Instructor
C101 Database Dr. Smith
C102 Networks Dr. Lee
Now, the Student_Course table is in 2NF because there are no partial
dependencies, and all non-prime attributes fully depend on the
primary key.

Third Normal Form (3NF)
A relation is in Third Normal Form (3NF) if:

It is in 2NF.
There is no transitive dependency, meaning that no non-prime
attribute is transitively dependent on the primary key. A transitive
dependency occurs when one non-key attribute depends on another
non-key attribute.
Example:
Consider the Course_Details table (in 2NF):

Course_ID Course_Name Instructor Instructor_Department
C101 Database Dr. Smith CS
C102 Networks Dr. Lee IT
Here, Instructor_Department depends on Instructor, not directly on
the primary key Course_ID, which creates a transitive dependency.

Solution: To eliminate transitive dependencies, we split the table
again:

Course_Details:
Course_ID Course_Name Instructor
C101 Database Dr. Smith
C102 Networks Dr. Lee
Instructor_Details:
Instructor Instructor_Department

Dr. Smith CS
Dr. Lee IT
Now, the Course_Details table is in 3NF because there are no
transitive dependencies, and every non-prime attribute depends only
on the primary key.

OR

8) Student_Course(Student_ID, Student_Name, Course_ID,

Course_Name, Instructor_ID, Instructor_Name)

Normalize above relation to BCNF. Explain each step in the

process, identifying the keys, dependencies, and anomalies resolved

at each stage.

Let's normalize the given relation Student_Course(Student_ID,

Student_Name, Course_ID, Course_Name, Instructor_ID,

Instructor_Name) step by step, from First Normal Form (1NF) to

Boyce-Codd Normal Form (BCNF). We will identify the keys,

functional dependencies, and anomalies at each stage and explain how

we resolve them.

Step 1: Unnormalized Relation

The given relation is:

Student_Course(Student_ID, Student_Name, Course_ID,

Course_Name, Instructor_ID, Instructor_Name)

Assumptions about Functional Dependencies:

Student_ID → Student_Name: A student’s ID uniquely determines the

student’s name.

Course_ID → Course_Name, Instructor_ID, Instructor_Name: A

course ID uniquely determines the course name, the instructor ID, and

the instructor name.

Instructor_ID → Instructor_Name: An instructor's ID uniquely

determines the instructor's name.

Step 2: First Normal Form (1NF)

10 CO5 L3

To satisfy 1NF, we need to ensure that all values are atomic and there

are no repeating groups.

In this relation, there are no multi-valued attributes or repeating groups,

so the table is already in 1NF.

Step 3: Second Normal Form (2NF)

A relation is in 2NF if it is in 1NF and all non-prime attributes are fully

functionally dependent on the whole primary key. Partial dependencies

need to be removed.

Identifying the Candidate Key:

The composite key here would be (Student_ID, Course_ID), since a

student can enroll in multiple courses, and each course can have

multiple students. Therefore, the combination of Student_ID and

Course_ID uniquely identifies each record in the table.

Functional Dependencies:

Student_ID → Student_Name

Course_ID → Course_Name, Instructor_ID, Instructor_Name

Instructor_ID → Instructor_Name

Partial Dependencies:

Student_Name depends only on Student_ID (not on the full composite

key Student_ID, Course_ID).

Course_Name, Instructor_ID, and Instructor_Name depend only on

Course_ID (not on the full composite key Student_ID, Course_ID).

These are partial dependencies and violate 2NF.

Decomposition into 2NF:

We split the relation into smaller tables to remove partial dependencies:

Student Table:

Student(Student_ID, Student_Name)

This removes the partial dependency Student_ID → Student_Name.

Course Table:

Course(Course_ID, Course_Name, Instructor_ID)

This removes the partial dependency Course_ID → Course_Name,

Instructor_ID.

Instructor Table (for instructor details):

Instructor(Instructor_ID, Instructor_Name)

This removes the partial dependency Instructor_ID →

Instructor_Name.

Student_Course Table (for the relationship between students and

courses):

Student_Course(Student_ID, Course_ID)

Let's normalize the given relation Student_Course(Student_ID,

Student_Name, Course_ID, Course_Name, Instructor_ID,

Instructor_Name) step by step, from First Normal Form (1NF) to

Boyce-Codd Normal Form (BCNF). We will identify the keys,

functional dependencies, and anomalies at each stage and explain how

we resolve them.

Step 1: Unnormalized Relation

The given relation is:

scss

Copy code

Student_Course(Student_ID, Student_Name, Course_ID,

Course_Name, Instructor_ID, Instructor_Name)

Assumptions about Functional Dependencies:

Student_ID → Student_Name: A student’s ID uniquely determines the

student’s name.

Course_ID → Course_Name, Instructor_ID, Instructor_Name: A

course ID uniquely determines the course name, the instructor ID, and

the instructor name.

Instructor_ID → Instructor_Name: An instructor's ID uniquely

determines the instructor's name.

Step 2: First Normal Form (1NF)

To satisfy 1NF, we need to ensure that all values are atomic and there

are no repeating groups.

In this relation, there are no multi-valued attributes or repeating groups,

so the table is already in 1NF.

Step 3: Second Normal Form (2NF)

A relation is in 2NF if it is in 1NF and all non-prime attributes are fully

functionally dependent on the whole primary key. Partial dependencies

need to be removed.

Identifying the Candidate Key:

The composite key here would be (Student_ID, Course_ID), since a

student can enroll in multiple courses, and each course can have

multiple students. Therefore, the combination of Student_ID and

Course_ID uniquely identifies each record in the table.

Functional Dependencies:

Student_ID → Student_Name

Course_ID → Course_Name, Instructor_ID, Instructor_Name

Instructor_ID → Instructor_Name

Partial Dependencies:

Student_Name depends only on Student_ID (not on the full composite

key Student_ID, Course_ID).

Course_Name, Instructor_ID, and Instructor_Name depend only on

Course_ID (not on the full composite key Student_ID, Course_ID).

These are partial dependencies and violate 2NF.

Decomposition into 2NF:

We split the relation into smaller tables to remove partial dependencies:

Student Table:

scss

Copy code

Student(Student_ID, Student_Name)

This removes the partial dependency Student_ID → Student_Name.

Course Table:

scss

Copy code

Course(Course_ID, Course_Name, Instructor_ID)

This removes the partial dependency Course_ID → Course_Name,

Instructor_ID.

Instructor Table (for instructor details):

scss

Copy code

Instructor(Instructor_ID, Instructor_Name)

This removes the partial dependency Instructor_ID →

Instructor_Name.

Student_Course Table (for the relationship between students and

courses):

scss

Copy code

Student_Course(Student_ID, Course_ID)

At this point, all relations are in 2NF because there are no partial

dependencies.

Step 4: Third Normal Form (3NF)

A relation is in 3NF if it is in 2NF and there are no transitive

dependencies.

Checking for Transitive Dependencies:

In the Course table, Instructor_ID → Instructor_Name is a transitive

dependency because Course_ID → Instructor_ID and Instructor_ID →

Instructor_Name. This violates 3NF since Instructor_Name depends on

a non-key attribute (Instructor_ID), not directly on Course_ID.

Decomposition into 3NF:

To remove the transitive dependency, we split the Course table further:

Course Table (after removing Instructor_Name):

Course(Course_ID, Course_Name, Instructor_ID)

The Instructor Table remains the same:

Instructor(Instructor_ID, Instructor_Name)

Let's normalize the given relation Student_Course(Student_ID,

Student_Name, Course_ID, Course_Name, Instructor_ID,

Instructor_Name) step by step, from First Normal Form (1NF) to

Boyce-Codd Normal Form (BCNF). We will identify the keys,

functional dependencies, and anomalies at each stage and explain how

we resolve them.

Step 1: Unnormalized Relation

The given relation is:

scss

Copy code

Student_Course(Student_ID, Student_Name, Course_ID,

Course_Name, Instructor_ID, Instructor_Name)

Assumptions about Functional Dependencies:

Student_ID → Student_Name: A student’s ID uniquely determines the

student’s name.

Course_ID → Course_Name, Instructor_ID, Instructor_Name: A

course ID uniquely determines the course name, the instructor ID, and

the instructor name.

Instructor_ID → Instructor_Name: An instructor's ID uniquely

determines the instructor's name.

Step 2: First Normal Form (1NF)

To satisfy 1NF, we need to ensure that all values are atomic and there

are no repeating groups.

In this relation, there are no multi-valued attributes or repeating groups,

so the table is already in 1NF.

Step 3: Second Normal Form (2NF)

A relation is in 2NF if it is in 1NF and all non-prime attributes are fully

functionally dependent on the whole primary key. Partial dependencies

need to be removed.

Identifying the Candidate Key:

The composite key here would be (Student_ID, Course_ID), since a

student can enroll in multiple courses, and each course can have

multiple students. Therefore, the combination of Student_ID and

Course_ID uniquely identifies each record in the table.

Functional Dependencies:

Student_ID → Student_Name

Course_ID → Course_Name, Instructor_ID, Instructor_Name

Instructor_ID → Instructor_Name

Partial Dependencies:

Student_Name depends only on Student_ID (not on the full composite

key Student_ID, Course_ID).

Course_Name, Instructor_ID, and Instructor_Name depend only on

Course_ID (not on the full composite key Student_ID, Course_ID).

These are partial dependencies and violate 2NF.

Decomposition into 2NF:

We split the relation into smaller tables to remove partial dependencies:

Student Table:

scss

Copy code

Student(Student_ID, Student_Name)

This removes the partial dependency Student_ID → Student_Name.

Course Table:

scss

Copy code

Course(Course_ID, Course_Name, Instructor_ID)

This removes the partial dependency Course_ID → Course_Name,

Instructor_ID.

Instructor Table (for instructor details):

scss

Copy code

Instructor(Instructor_ID, Instructor_Name)

This removes the partial dependency Instructor_ID →

Instructor_Name.

Student_Course Table (for the relationship between students and

courses):

scss

Copy code

Student_Course(Student_ID, Course_ID)

At this point, all relations are in 2NF because there are no partial

dependencies.

Step 4: Third Normal Form (3NF)

A relation is in 3NF if it is in 2NF and there are no transitive

dependencies.

Checking for Transitive Dependencies:

In the Course table, Instructor_ID → Instructor_Name is a transitive

dependency because Course_ID → Instructor_ID and Instructor_ID →

Instructor_Name. This violates 3NF since Instructor_Name depends on

a non-key attribute (Instructor_ID), not directly on Course_ID.

Decomposition into 3NF:

To remove the transitive dependency, we split the Course table further:

Course Table (after removing Instructor_Name):

scss

Copy code

Course(Course_ID, Course_Name, Instructor_ID)

The Instructor Table remains the same:

scss

Copy code

Instructor(Instructor_ID, Instructor_Name)

Now, all tables are in 3NF because there are no transitive dependencies.

Step 5: Boyce-Codd Normal Form (BCNF)

A relation is in BCNF if it is in 3NF and, for every functional

dependency X → Y, X is a superkey (i.e., X must be a candidate key or

a superset of a candidate key).

Checking for BCNF Violations:

Let's examine each table:

Student Table:

Functional dependency: Student_ID → Student_Name

Student_ID is the primary key, so the table is in BCNF.

Course Table:

Functional dependency: Course_ID → Course_Name, Instructor_ID

Course_ID is the primary key, so the table is in BCNF.

Instructor Table:

Functional dependency: Instructor_ID → Instructor_Name

Instructor_ID is the primary key, so the table is in BCNF.

Student_Course Table:

Functional dependency: Student_ID, Course_ID → (no non-prime

attributes)

The composite key (Student_ID, Course_ID) is a superkey, so the table

is in BCNF.

9) Compare the process of normalizing a relation from 1NF to 3NF

versus normalizing it to BCNF.

10 CO5 L3

Normalizing a relation from 1NF (First Normal Form) to 3NF (Third Normal

Form) and BCNF (Boyce-Codd Normal Form) both aim to reduce redundancy

and maintain data integrity, but they differ in terms of their criteria and strictness.

1NF to 3NF Process

1. 1NF (First Normal Form):

o Eliminate any repeating groups or arrays, ensuring each column

contains atomic values.

o Ensure that each table has a primary key and every entry in the

table is unique and non-null.

2. 2NF (Second Normal Form):

o Achieve 2NF by eliminating partial dependencies.

o A partial dependency occurs when a non-prime attribute (non-key

attribute) depends on a part of a composite key (only in cases

where the primary key is composite).

o Decompose the relation into smaller relations so that each non-

prime attribute depends on the whole key and not just part of it.

3. 3NF (Third Normal Form):

o Achieve 3NF by eliminating transitive dependencies.

o A transitive dependency exists when a non-prime attribute depends

on another non-prime attribute, which in turn depends on the

primary key.

o In 3NF, all non-key attributes must depend directly on the

primary key only and not on any other non-key attribute.

o If a transitive dependency is found, the relation is split so that each

non-key attribute depends directly on the key.

1NF to BCNF Process

1. 1NF:

o As with normalization to 3NF, begin by ensuring the relation is in

1NF by eliminating repeating groups and making sure that every

column contains atomic values.

2. 2NF:

o Achieve 2NF by eliminating partial dependencies, just as in the

process of normalizing to 3NF.

3. BCNF (Boyce-Codd Normal Form):

o BCNF is a stricter form of 3NF.

o A relation is in BCNF if, for every non-trivial functional

dependency X→YX \to YX→Y, XXX must be a superkey (i.e.,

XXX contains a candidate key).

o BCNF handles certain anomalies that can still exist in 3NF when

the relation has more than one candidate key and a non-prime

attribute depends on something other than the primary key.

OR

10) Explain Briefly about all 5 types of Normalization

Normalization is the process of organizing a database to reduce redundancy and

improve data integrity. There are five types of normalization, each building on the

previous form:

1. First Normal Form (1NF):

 Goal: Eliminate repeating groups; ensure atomic values.

10 CO5 L2

 Requirements:

o Each column contains only atomic values (no multi-valued

attributes).

o Entries in columns are of the same data type.

o Each record must be unique, identified by a primary key.

 Example: A table where each cell contains a single value and no sets of

values (e.g., {apple, banana}) within a cell.

2. Second Normal Form (2NF):

 Goal: Eliminate partial dependencies (dependencies on part of a

composite key).

 Requirements:

o Must be in 1NF.

o All non-key attributes must depend on the whole primary key, not

just part of it (if the key is composite).

 Example: If a table has a composite primary key, no non-key attribute

should depend on just one part of the composite key.

3. Third Normal Form (3NF):

 Goal: Eliminate transitive dependencies (dependencies on non-prime

attributes).

 Requirements:

o Must be in 2NF.

o No non-key attribute should depend on another non-key attribute

(i.e., no transitive dependencies).

 Example: If A→B→CA \to B \to CA→B→C, where AAA is the key,

CCC should depend directly on AAA, not via BBB.

4. Boyce-Codd Normal Form (BCNF):

 Goal: Handle certain anomalies not covered by 3NF when there are

multiple candidate keys.

 Requirements:

o Must be in 3NF.

o For every functional dependency X→YX \to YX→Y, XXX must

be a superkey (a candidate key or a set containing a candidate

key).

 Example: In a relation where a non-prime attribute depends on a

candidate key that is not the primary key, the relation must be decomposed

to satisfy BCNF.

5. Fourth Normal Form (4NF):

 Goal: Eliminate multi-valued dependencies.

 Requirements:

o Must be in BCNF.

o No relation should have more than one multi-valued dependency

(where one attribute determines a set of other attributes).

 Example: If a table has attributes where one attribute determines multiple

independent values for another, it should be decomposed.

6. Fifth Normal Form (5NF) (also known as Project-Join Normal

Form):

 Goal: Eliminate join dependencies.

 Requirements:

o Must be in 4NF.

o No table should have join dependencies that lead to redundant

information. It ensures that data is reconstructed correctly without

any anomalies after decomposition.

 Example: A relation is decomposed in such a way that, after joining the

decomposed relations, the original relation can be reconstructed without

loss of information.

