

CMR

INSTITUTE OF

TECHNOLOGY

US

N

Internal Assessment Test 2 – September 2024

Sub: Software Engineering
Sub

Code:

22MCA2

3

Date: 12/09/2023 Duration:
90

min’s

Max

Marks:
50 Sem: II

Branc

h
MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each

Module

PART I
MARK

S

OBE

CO

RB

T

1 What is OO development? List and explain various themes that are supported by OO

technology.

OR

[10]

CO1 L1

2 With respect to object oriented methodology, describe the following terms with examples:

(a) Class (b) Polymorphism (c) Meta Data (d) Abstract Class

[10] CO1 L1

3

PART II
Define the term model and mention the need for modeling. Describe the three models which
support for modeling system in different viewpoints.

OR

[10]
CO3 L1

4

Differentiate between Generalization, Aggregation and Composition with examples.

[10]
CO3 L2

5
PART III

Explain Reification, Qualified Association and Reflexive Association with

example.

 OR

[10] CO1 L2

6 a. Explain N-ary association with example

b. Describe Propagation of Operation with suitable example

[6+4]
 CO3 L2

7 What

PART IV

a. Discuss how to apply constraints in Class Diagram

b. What is an Association End? What are the properties of end?

[4+6]

CO4

L2

8

OR
Write short notes on:

a). Enumeration (b) Multiplicity (c) Visibility

[10]

CO4

L1

9
PART V

Draw class diagram for Hospital Management System.

OR

[10] CO5 L3

10 Draw Class diagram for Online Shopping System. [10] CO5 L3

Solution

PART I

1. What is OO development? List and explain various themes that are supported by OO technology.

Ans. Object-oriented modeling and design is a way of thinking about problems using models

organized around real world concepts. The fundamental construct is the object, which combines both

data structure and behavior.

System conception: Software development begins with business analysis or users conceiving an

application and formulating tentative requirements.

● Analysis: The analyst scrutinizes and rigorously restates the requirements from the system

conception by constructing models. The analysis model is a concise, precise abstraction of what the

desired system must do, not how it will be done.

The analysis model has two parts-

Domain Model- a description of real world objects reflected within the system.

Application Model- a description of parts of the application system itself that are visible to the user.

E.g. In case of stock broker application-

Domain objects may include- stock, bond, trade & commission.

Application objects might control the execution of trades and present the results.

● System Design: The development teams devise a high-level strategy- The System

Architecture- for solving the application problem. The system designer should decide what

performance characteristics to optimize, chose a strategy of attacking the problem, and make tentative

resource allocations.

● Class Design: The class designer adds details to the analysis model in accordance with the

system design strategy. His focus is the data structures and algorithms needed to implement each class.

● Implementation: Implementers translate the classes and relationships developed during class

design into a particular programming language, database or hardware. During implementation, it is

important to follow good software engineering practice.

OR

2. With respect to object oriented methodology, describe the following terms with examples:

(a)Class (b) Polymorphism (c) Generalization (d) Abstract Class

a. Class: A class is an abstraction that describes properties important to an application.

Each object is said to be an instance of its class.

An object has its own value for each attribute but shares the attribute names and operations with other instances

of the class.

B .Polymorphism: Polymorphism means that the same operation may behave differently for different

classes. For E.g. move operation behaves differently for a pawn than for the queen in a chess game.

c. Generalization: Inheritance is also called generalization and is used to describe the relationship

between parent and child classes. A parent class is also called a base class, and a subclass is also called

a derived class. In the inheritance relationship, the subclass inherits all the functions of the parent

class, and the parent class has all the attributes, methods, and subclasses. Subclasses contain additional

information in addition to the same information as the parent class.

Abstract Class: An abstract class is a class that has no direct instances but whose descendant

classes have direct instances. A concrete class is a class that is instantiable; that is, it can have

direct instances. A concrete class may have abstract subclasses (but they, in turn, must have

concrete descendants). Only concrete classes may be leaf classes in an inheritance tree.

PART II

3. Define the term model and mention the need for modeling. Describe the three models which

support for modeling system in different viewpoints.

Ans. A model is an abstraction of something for the purpose of understanding it before building it.

Models serve several purposes.

• Testing a physical entity before building it. The medieval masons did not know modern physics, but

they built scale models of the Gothic cathedrals to test the forces on the structure. Engineers test scale

models of airplanes, cars, and boats in wind tunnels and water tanks to improve their dynamics. Both

physical models and computer models are usually cheaper than building a complete system and enable

early correction of flaws.

• Communication with customers. Architects and product designers build models to show their

customers. Mock-ups are demonstration products that imitate some or all of the external behavior of a

system.

• Visualization. Storyboards of movies, television shows, and advertisements let writers see how their

ideas flow. They can modify awkward transitions, dangling ends, and unnecessary segments before

detailed writing begins. Artists’ sketches let them block out their ideas and make changes before

committing them to oil or stone.

• Reduction of complexity. Perhaps the main reason for modeling, which incorporates all the previous

reasons, is to deal with systems that are too complex to understand directly. The human mind can cope

with only a limited amount of information at one time. Models reduce complexity by separating out a

small number of important things to deal with at a time.

Different Types of Models:

The different types of modeling techniques are:

i) Class Model: It describes the structure of objects in a system – their identity, their relationships to

other objects, their attributes and their operations. The goal of constructing the class model is to

capture those concepts from the real world that are important to an application. Class diagram

express the class model.

ii) State Model: It describes those aspects of objects concerned with time and the sequencing of

operations – events that mark changes, state that define the context for events, and the organization

of events and states. State diagram expresses the state model.

iii) Interaction Model: It describes interactions between objects – How individual objects

collaborate to achieve the behavior of the system as a whole. Use case, sequence diagram and

activity diagram documents the interaction model.

OR

4. Differentiate between Generalization, Aggregation and Composition with examples.

Ans. In Object-Oriented Analysis and Design (OOAD), generalization, aggregation, and composition are

essential relationships that define how objects and classes interact and relate to one another. Understanding these

relationships helps in designing a robust and maintainable system

 Generalization:

● Describes an "is-a" relationship.

● Inheritance hierarchy where subclasses inherit from a superclass.

● Subclass can exist independently of the superclass but in a general-to-specific context.

 Aggregation:

● Describes a "has-a" relationship with independent lifecycle.

● Represents a whole-part relationship where the part can exist outside the whole.

● The destruction of the whole does not affect the existence of the part.

 Composition:

● Describes a "contains-a" relationship with dependent lifecycle.

● Represents a stronger whole-part relationship where the part cannot exist outside the whole.

● The destruction of the whole results in the destruction of the parts

PART III

5. Explain Reification, Qualified Association and Reflexive Association with example.

Ans. In class modeling, reification refers to the process of turning an abstract relationship or property

between classes into a concrete class itself. This is useful when the relationship or property has attributes or

behaviors of its own that need to be captured and managed.

Reification is used when an association between two entities has more information or significance than can

be expressed directly through the association alone. By converting the relationship into a separate class, we

can better model and represent additional details, constraints, and behaviors associated with that

relationship.

Example in Class Modeling

Scenario: File and User Relationship

In a university system, we have two main entities: Student and Course. A student can enroll in many

courses, and a course can have many students. This represents a many-to-many relationship.

A qualified association is an association in which an attribute called the

qualified disambiguates the objects for a “many” association end. It is possible to

define qualifier for one-to-many & many-to-many association.

OR

6. a Explain N-ary association with example

Ans.

 N-ary association in class modeling refers to a relationship between three or more classes. It is used to

represent a situation where multiple entities are related in a meaningful way, and the relationship itself

involves more than two classes. Unlike binary associations (which connect only two classes), n-ary

associations involve multiple classes simultaneously.

Example of an N-ary Association

b.Describe Propagation of Operation with suitable example.

Ans. Propagation (also called triggering) is the automatic application of an operation to a network of

objects when the operation is applied to some starting object. For example, moving an aggregate

moves its parts; the move operation propagates to the parts. Propagation of operations to parts is

often a good indicator of aggregation.

You can indicate propagation on class models with a small arrow indicating the direction and

operation name next to the affected association.

PART IV

a. a. Discuss how to apply constraints in Class Diagram

⮚ Ans. Constraint is a condition involving model elements, such as objects, classes,

attributes, links, associations, and generalization sets.

⮚ Class models capture many Constraints through their very structure. For example, the

semantics of generalization imply certain structural constraints.

⮚ The UML defines the following keyword s for generalization.

▪ Disjoint: The subclasses are mutually exclusive. Each object belongs to exactly one of

the subclasses.

▪ Overlapping: The subclasses can share some objects. An object may belong to more

than one subclass.

▪ Complete: The generalization lists all the possible subclasses.

▪ Incomplete: The generalization may be missing some subclasses.

⮚ Multiplicity is a constraint on the cardinality of a set. Multiplicity for an association

restricts the number of objects related to a given object.

⮚ Multiplicity for an attribute specifies the number of values that are possible for each

instantiation of an attribute.

b. What is an Association End? What are the properties of end?

an association end is an end of an association. A binary association has two ends, a ternary association

has three ends, and so forth. Following are few properties of associations:

■Association end name- An association end may have a name. The names within the proper context.

■Multiplicity- You can specify multiplicity for each association end.

■ Ordering- the objects have an explicit order.

 ■Bags and sequences. The objects for a “many” association end can also be a bag or sequence.

■Qualification. One or more qualifier attributes can disambiguate the objects for a “many” association

end.

Association ends have some additional properties.

■Aggregation. The association end may be an aggregate or constituent part.

 ■Changeability. This property specifies the update status of an association end. The possibilities are

changeable (can be updated) and readonly (can only be initialized).

 ■Navigability. Conceptually, an association may be traversed in either direction

■Visibility. Similar to attributes and operations, association ends may be public, protected, private, or

package

OR

9. Write short notes on:

a). Enumeration (b) Multiplicity (c) Reification (d) Visibility

a). An enumeration is a data type that has a finite set of values.

When constructing a model, one should carefully note enumerations, because they often occur & are

important to users.

Enumerations are also significant for an implementation; you may display the possible values with a

pick list & you must restrict data to the legitimate values.

b. Multiplicity

⮚ Multiplicity is a collection on the cardinality of a set, also applied to attributes (database

application).

⮚ Multiplicity of an attribute specifies the number of possible values for each instantiation

of an attribute. i.e., whether an attribute is mandatory ([1]) or an optional value ([0..1]

or * i.e., null value for database attributes) .

⮚ Multiplicity also indicates whether an attribute is single valued or can be a collection.

c. Visibility

⮚ Visibility refers to the ability of a method to reference a feature from another class and

has the possible values of public, protected, private, and package.

⮚ Any method can access public features.

⮚ Only methods of the containing class and its descendants via inheritance can access

protected features.

⮚ Only methods of the containing class can access private features.

⮚ Methods of classes defined in the same package as the target class can access package

features

⮚ The UML denotes visibility with a prefix. ―+‖ public, ―-‖ private,

―#‖ protected, ―~‖ package. Lack of a prefix reveals no information about

visibility.

PART V

10. Draw class diagram for Hospital Management System.

OR

11. Draw Class diagram for Online Shopping System.

