
CMR

INSTITUTE OF

TECHNOLOGY

Internal Assessment Test 2 Answer Key – Sep. 2024

Sub: Web Technologies Sub Code: 22MCA24 Branch: MCA

Date: 12/09/2024 Duration: 90 min’s Max Marks: 50 Sem II OBE

Q1) What is Bootstrap? Explain file structure with a neat diagram. Give an example of basic HTML template using

Bootstrap

Bootstrap is a free and open-source CSS framework directed at responsive, mobile-first front-end web development. It

contains CSS- and (optionally) JavaScript-based design templates for typography, forms, buttons, navigation and other
interface components.

Bootstrap File Structure bootstrap

bootstrap/

 ├── css/

 │ ├── bootstrap.css

 │ ├── bootstrap.min.css

 ├── js/

 │ ├── bootstrap.js

 │ ├── bootstrap.min.js

 └── img/

 ├── glyphicons-halflings.png

 └── glyphicons-halflings-white.png

The Bootstrap download includes three folders: css, js, and img. For simplicity, add these to the root of your project.

Minified versions of the CSS and JavaScript are also included. It is not necessary to include both the uncompressed and the

minified versions.

Basic HTML Template

Normally, a web project looks something like this:

<!DOCTYPE html>

<html>

 <head>

 <title>Bootstrap 101 Template</title>

 </head>

 <body>

 <h1>Hello, world!</h1>

 </body>

</html>

With Bootstrap, we include the link to the CSS stylesheet and the JavaScript:

<!DOCTYPE html>

<html>

 <head>

 <title>Bootstrap 101 Template</title>

 <link href="css/bootstrap.min.css" rel="stylesheet">

 </head>

 <body>

 <h1>Hello, world! </h1>

 <script src="js/bootstrap.min.js"></script>

 </body>

</html>

Q2) How to create a bootstrap table illustrate it with an example. Explain any 3 table classes with example.

One of my favorite parts of Bootstrap is the nice way that tables are handled. I do a lot of work looking at and building

tables, and the clean layout is a great feature that’s included in Bootstrap right off the bat. Table 2-1 lists the various

elements supported by Bootstrap.

If you want a nice, basic table style with just some light padding and horizontal dividers, add the base class of .table to any

table (see Figure 2-13). The basic layout has a top border on all of the <td> elements:

Optional Table Classes

Along with the base table markup and the .table class, there are a few additional classes that you can use to style the markup.

These four classes are: .table-striped, .tablebordered, .table-hover, and .table-condensed. Striped table By adding the .table-

striped class, you will get stripes on rows within the <tbody> (see Figure 2-14). This is done via the CSS :nth-child selector,

which is not available on Internet Explorer 7–8

Bordered table

If you add the .table-bordered class, you will get borders surrounding every element and rounded corners around the entire

table, as shown in Figure 2-15

Q3) Explain CSS Box model with example ?

Q4) Discuss Grid systems and Containers of Bootstrap with example.

Default Grid System

The default Bootstrap grid (see Figure 1-1) system utilizes 12 columns, making for a 940px-wide container without

responsive features enabled. With the responsive CSS file added, the grid adapts to be 724px or 1170px wide, depending on

your viewport. Below 767px viewports, such as the ones on tablets and smaller devices, the columns become fluid and stack

vertically. At the default width, each column is 60 pixels wide and offset 20 pixels to the left. An example of the 12 possible

columns is in Figure 1-1

 Figure 1-1. Default grid

Basic Grid HTML

To create a simple layout, create a container with a <div> that has a class of .row and add the appropriate amount of .span*

columns. Since we have a 12-column grid, we just need the amount of .span* columns to equal 12. We could use a 3-6-3

layout, 4-8, 3-5-4, 2-8-2… we could go on and on, but I think you get the gist.

The following code shows .span8 and .span4, which adds up to 12:

<div class="row">
<div class="span8">...</div>
<div class="span4">...</div>
</div>

Offsetting Columns
You can move columns to the right using the .offset* class. Each class moves the span over that width. So an .offset2 would
move a .span7 over two columns (see Figure 1-2):

<div class="row">
<div class="span2">...</div>
<div class="span7 offset2">...</div>
</div>

Nesting Columns
To nest your content with the default grid, inside of a .span*, simply add a new .row with enough .span* that it equals the
number of spans of the parent container (see Figure 1-3):

Fluid Grid System
The fluid grid system uses percentages instead of pixels for column widths. It has the same responsive capabilities as our
fixed grid system, ensuring proper proportions for key screen resolutions and devices. You can make any row “fluid” by
changing .row to .row-fluid. The column classes stay exactly the same, making it easy to flip between fixed and fluid grids.
To offset, you operate in the same way as the fixed grid system— add .offset* to any column to shift by your desired
number of columns:

Nesting a fluid grid is a little different. Since we are using percentages, each .row resets the column count to 12. For
example, if you were inside a .span8, instead of two .span4 elements to divide the content in half, you would use two
.span6 divs (see Figure 1-4). This is the case for responsive content, as we want the content to fill 100% of the container:

Q5) What is an event and event handler? Explain any two event handler with examples.

An event is a notification that something specific has occurred, either with the browser, such as the completion of the

loading of a document, or because of a browser user action, such as a mouse click on a form button.

 An event handler is a script that is implicitly executed in response to the appearance of an event. Event handlers enable a

Web document to be responsive to browser and user activities.

HANDLING EVENTS FROM BODY ELEMENTS
The events most often created by body elements are load and unload. As our first example of event handling, we consider
the simple case of producing an alert message when the body of the document has been loaded. In this case, we use the
onload attribute of <body> to specify the event handler

The unload event is probably more useful than the load event. It is used to do some cleanup before a document is unloaded,

as when the browser user goes on to some new document. For example, if the document opened a second browser window,

that window could be closed by an unload event handle

HANDLING EVENTS FROM BUTTON ELEMENTS

Buttons in a Web document provide an effective way to collect simple input from the browser user.

Example:

Q6) Explain different ways of creating Array with example. Explain any 5 array functions in JavaScript with example.

Q7) Develop and demonstrate a XHTML file that includes Javascript script for the following problems: a) Input : A number n

obtained using prompt Output : The first n Fibonacci numbers b) Input : A number n obtained using prompt Output : A table

of numbers from 1 to n and their squares using alert

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <title>Lab3a</title>

 </head>

 <body>

 <script type="text/javascript">

 //initialize variables

 var fib1=0,fib2=1,fib=0;

 var n=prompt("Enter a number");

 if(n!=null && n>0)

 {

 document.write("<h1>First " + n + " Fibonacci numbers are: </h1>
");

 //if input is one number

 if(n==1)

 document.write("<p>" + fib1 + "</p>
");

 //if input is two numbers

 else

 document.write("<p>" + fib1 + "</p>
<p>" + fib2 + "</p>
");

 //if input is more than two numbers, find the next Fibonacci number

 for(i=3;i<=n;i++)

 {

 fib=fib1+fib2;

 document.write("<p>" + fib + "</p>
");

 fib1=fib2;

 fib2=fib;

 }

 }

 else

 alert("Please enter proper input value");

 </script>

 </body>

 </html>

<!DOCTYPE HTML>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <title>Lab3b</title>

 </head>

 <body>

 <h2> Javascript to generate squares of 1 to 'N' numbers</h2>

 <script type="text/javascript">

 var n=prompt ("Enter the limit 'n' to generate the table of numbers from 1 to n:","");

 var msg="";

 var res= "0";

 for(var x= 1; x<=n;x++)

 {

 res = x * x;

 msg = msg + " " + x + " * "+ x + " = " + res + "\n";

 }

 alert(msg);

 </script>

 </body>

</html>

Q8)Develop and demonstrate a HTML file which includes JavaScript that uses functions for the following problems: a)

Input: A string Output: The position in the string of the left-most vowel. b) Input: A number Output: The number with its

digits in the reverse order.

<!DOCTYPE HTML>

<?xml version="1.0" encoding="UTF-8"?>

<html>

<head>

<script type ="text/javascript">

function str_vowel()

{

 var str=prompt("Enter the string\n", " ");

 var pos=str.search(/[aeiou]/i);

 if(pos>=0){

 document.write("The entered string is:" +str+ "
");

 document.write("The leftmost vowel is :"+str.charAt(pos)+"
");

 document.write("The position of the leftmost vowel " ,str.charAt(pos), " is:" ,(pos+1),"\n");

 exit;

 }

 else

 {

 document.write("The entered string is:" +str+ "
");

 document.write("The entered string has no vowels");

 }

}

</script>

</head>

<body onload = "str_vowel();">

</body>

</html>

<!DOCTYPE HTML>

<?xml version="1.0" encoding="UTF-8"?>

<html>

<head>

<script type ="text/javascript">

function rev_num()

{

 var num = prompt("Enter the number to be reveresed :", " ");

 var n= num;

 var rev = 0, rem;

 while (n>0)

 {

 rem = n % 10;

 rev = rev * 10 + rem ;

 n = Math.floor(n/10);

 }

 document.write("The given number is : " +num+ "
 The reversed number is : " +rev+ "\n");

}

</script>

</head>

<body onload = "rev_num();">

</body>

</html>

Q9) Explain screen output and keyboard input statements available in javascript.

Q10) Develop and demonstrate, a HTML document that collects the USN (the valid format is : A digit from 1 to 4 followed by
two upper-case characters followed by two digits followed by three upper-case characters followed by two digits; (no
embedded spaces are allowed) from the user. Use JavaScript that validate the content of the document. Suitable messages

should be display in the alert if errors are detected in the input data. Use CSS and event handlers to make your document
appealing.

<!DOCTYPE html>

<html>

 <head>

 <title>Program 5a</title>

 <script type="text/javascript">

 function funValidate(){

 var usn=document.getElementById('usn').value;

 var pattern=/^[1-4]{1}[A-Z]{2}[0-9]{2}[A-Z]{3}[0-9]{2}$/;

 if(usn.match(pattern))

 {

 alert("Valid Format");

 }

 else

 {

 alert("Invalid Format");

 }

 }

 </script>

 </head>

 <body>

 <label>Enter your USN: <input type="text" name="usn" id="usn" /></label>

 <input type="submit" name="validate" onClick="funValidate()" />

 </body>

</html>

