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PART I 

1. Explain Data cube operations with example of each operations 

Operations on Data Cube 

Operations on a data cube in data mining are used to analyze data from different perspectives and 

gain insights into data patterns and trends. The five common operations on a data cube are - 

 Roll-up - This operation involves summarizing data along one or more dimensions of a 

data cube. It results in a data cube with a lower level of granularity. For example, we can 

roll up a sales data cube from monthly sales to quarterly sales, resulting in a data cube 

with fewer dimensions and a higher level of aggregation. 

 Drill-down - This operation involves increasing the level of detail in a data cube by 

adding more dimensions or attributes to the existing dimensions. It results in a data cube 

with a higher level of granularity. For example, we can drill down a sales data cube from 

quarterly to monthly sales by adding the month dimension to the existing time dimension. 

 Slice - This operation involves selecting a subset of a data cube by fixing the values of 

one or more dimensions. It results in a smaller data cube with the same dimensions but 

fewer data points. For example, we can slice a sales data cube to analyze sales data for a 

particular region and time period. 

 Dice - This operation involves selecting a subset of a data cube by fixing the values of 

one or more dimensions and selecting a range of values for another dimension. It results 

in a smaller data cube with fewer dimensions and data points. For example, we can dice a 

sales data cube to analyze sales data for a particular region, time period, and product 

category. 

 Pivot - This operation involves changing the orientation of a data cube by rotating the 

dimensions and measures. It results in a data cube with a different perspective on the 

data. For example, we can pivot a sales data cube to analyze sales data by product 

category and time period instead of the time period and product category. 

 



 

 

Advantages of Data Cube 

Data cube in data mining provides several advantages - 

 Multidimensional analysis - Data cube technology in data mining enables users to 

analyze data from multiple perspectives and dimensions, such as time, product, location, 

and customer, allowing for a more comprehensive data view. 

 Fast query performance - Data cubes pre-aggregate data at multiple levels of 

granularity, making it easier and faster to query large datasets and retrieve results. 

 Reduced data redundancy - Data cubes store pre-aggregated data at various levels of 

granularity, reducing the need to store redundant data in a database. 

 Data visualization - Data cube in data mining can be visualized using charts, graphs, and 

other graphical representations, making it easier for users to understand and analyze 

complex data. 

 Improved decision-making - Data cube technology in data mining allows users to drill 

down, roll up, slice, and dice data, enabling them to make informed decisions based on 

insights gained from the data. 

 Scalability - Data cubes can handle large datasets and be stored in a database, making 

them scalable for enterprise-level data mining. 

Disadvantages of Data Cube 

While data cube in data mining provides several advantages, they also have some disadvantages 

- 

 Data cube creation - Creating a data cube in data mining can be a time-consuming and 

complex process that requires careful consideration of the dimensions, measures, and 

aggregation levels. 



 Data storage requirements - Data cubes can require significant storage space, especially 

when dealing with large datasets with many dimensions and measures. 

 Limited flexibility - Data cubes are optimized for multidimensional analysis and may 

need to be more flexible to accommodate changes to the underlying data or analysis 

requirements. 

 Data quality issues - Data cube technology in data mining relies on the accuracy and 

consistency of the underlying data, which can be challenging to achieve when dealing 

with complex datasets. 

 Complexity - While data cubes simplify the analysis of complex data, the analysis itself 

can be complex, requiring knowledge of the dimensions, measures, and aggregation 

levels used in the data cube. 

 

2. Difference between OLAP and OLTP 

 

 
 



PART II 
 

3. Explain the concept description in detail 
The simplest kind of descriptive data mining is concept description. A concept usually refers to a 

collection of data such as frequent_buyers, graduate_students, and so on. As a data mining task, concept 

description is not a simple enumeration of the data. Instead, concept description generates descriptions for 

characterization and comparison of the data. It is some times called class description, when the concept to 
be described refers to a class of objects. Characterization provides a concise and succinct summarization 

of the given collection of the data, while concept or class comparison (also known as discrimination) 

provides discriminations comparing two or more collections of data. Since concept description involves 
both characterization and comparison, techniques for accomplishing each of these tasks will study. 

Concept description has close ties with the data generalization. Given the large amount of data stored in 

database, it is useful to be describe concepts in concise and succinct terms at generalized at multiple 

levels of abstraction facilities users in examining the general behavior of the data. Given the ABCompany 
database, for example, instead of examining individual customer transactions, sales managers may prefer 

to view the data generalized to higher levels, such as summarized to higher levels, such as summarized by 

customer groups according to geographic regions, frequency of purchases per group, and customer 
income. Such multiple dimensional, multilevel data generalization is similar to multidimensional data 

analysis in data warehouses. The fundamental differences between concept description in large databases 

and online analytical processing involve the following.  

Complex data types and aggregation:  
Data warehouses and OLAP tools are based on a multidimensional data model that views data in the form 

of a data cube , consisting of dimensions (or attributes) and measures(aggregate functions). However, the 

possible data types of the dimensions and measures for most commercial versions of these systems are 
restricted. Many current OLAP systems confine dimensions to non-numeric data, similarly, measures 

(such as count (), sum (), average ()) in current OLAP systems apply only to numeric data. In contrast, for 

concept formation, the database attributes can be of various data types, including numeric, nonnumeric, 
spatial, text, or image. Furthermore, the aggregation of attributes in a database may include sophisticated 

data types, such as the collection of nonnumeric data, the merging of spatial region, the composition of 

images, the integration of texts, and the grouping of object pointers. Therefore, OLAP, with its 

restrictions on the possible dimension and measure types, represents a simplified model for data analyses. 
Concept description in databases can handle complex data types of the attributes and their aggregations, 

as necessary.  

 User-control versus automation:  
On-line analytical processing in data warehouses is a purely user-controlled process. the selection of 

dimensions and the application of OLAP operations, such as drill-down, roll-up, slicing, and dicing, are 

directed and controlled by the users, although the control in most OLAP systems is quite user-friendly, 
users do require a good understanding of the role of each dimension. Furthermore, in order to find a 

satisfactory description of the data, users may need to specify a long sequence of OLAP operations. In 

contrast, concept description in data mining strives for a more automated process that helps determine 

which dimensions (or attributes) should be included in the analyses, and the degree to which the giver 
data set should be generalized in order to produce an interesting summarization of the data. Recently, data 

warehousing and OLAP technology has been evolving towards handling more complex types of data and 

embedding more knowledge discovery mechanisms. As this technology continues to develop , it is 
expected that additional descriptive data mining features will be integrated into future OLAP systems. 

Methods for concept description, including multilevel generalization, summarization, characterization, 

and comparison are outlined below. Such methods set the foundation for implementation of two major 

functional modules in data mining: multiple-level characterization and comparison. In addition, you will 
also examine techniques for the presentation of concept a description in multiple forms, including tables, 

charts, graphs, and rules.  



 Data Generalization and Summarization-Based Characterization  
Data and objects in databases often contain detailed information at primitive concept levels. .For example, 

the item relation in sales database may contain attributes describing low-level item information such s 

item _ID , name , brand, category, supplier, place_made, and price. It is useful to be able to summarize a 

large set or data and present it at a high conceptual level.. For example, summarizing a large set of items 
relating to Christmas season sales provides a general description of such data , which can be very helpful 

for sales and marketing managers. This requires an important functionality in data mining: data 

generalization. Data generalization is a process that abstracts a large set of task-relevant data in a database 
from a relatively low conceptual level to higher conceptual levels. Methods for the efficient and flexible 

generalization of large data sets can be categorized according to two approaches :(1) the data cube (or 

OLAP) approach and (2) the attribute –oriented induction approach .In this section, we describe the 
attribute-oriented induction approach. 

 

Attribute-Oriented Induction  
The attribute-oriented induction (AOI)) approach to data generalization and summarization-based 
characterization was first proposed in 1989,a few years prior to the introduction of the data cube 

approach. The data cube approach can be considered as a data warehouse-based, pre-

computationoriented, materialized-view approach. It performs off-line aggregation before an OLAP or 
data mining query is submitted for processing. On the other hand, the attribute-oriented induction 

approach, at least in its initial proposal, is a relational database query –oriented, generalization –based, 

on-line data analysis technique. However, there is no inherent barrier distinguishing the two approaches 
based on on-line aggregation versus off-line pre computation. Some aggregations in the data cube can be 

computed on-line, while off-line while off-line pre -computation of multidimensional space can speed up 

attribute –oriented induction as well. 

 

4. What is Association rule mining? Explain it in detail. 
Associations are relationships between objects. The idea behind association rule mining 

is to determine rules, that allow us to identify which objects may be related to a set of 

objects we already know. In the association rule mining terminology, we refer to the 

objects as items. A common example for association rule mining is basket analysis. A 

shopper puts items from a store into a basket. Once there are some items in the basket, it 

is possible to recommend associated items that are available in the store to the shopper. 

 

 

 
 

 

 

 

 

 



n this example, the association between items is defined as "shoppers bought items 

together". More generally speaking, we have transactions, and in each transaction we 

observe a set of related objects. We apply association rule mining to a set of 

transactions to infer association rules that describe the associations between items. 

 

The relationship that the rules describe should be "interesting". The meaning of 

interesting is defined by the use case. In the example above, interesting is defined as 

"shoppers bought items together". If the association rules should, e.g., find groups of 

collaborators, interesting would be defined as "worked together in the past". 

 
 

The goal of association rule mining is to identify good rules based on a set of 

transactions. A generic way to define "interesting relationships" is that items occur often 

together in transactions. Consider the following example with ten transactions. 

 

 

 



[['item1', 'item2', 'item3'], 

 ['item2', 'item4'], 

 ['item1', 'item5'], 

 ['item6', 'item7'], 

 ['item2', 'item3', 'item4', 'item7'], 

 ['item2', 'item3', 'item4', 'item8'], 

 ['item2', 'item4', 'item5'], 

 ['item2', 'item3', 'item4'], 

 ['item4', 'item5'], 

 ['item6', 'item7']] 

We can see that the items item2, item3, and item4 occur often together. Thus, there 

seems to be an interesting relationship between the items. The question is, how can we 

find such interesting combinations of items automatically and how can we create good 

rules from interesting combinations of items. 

Key Components of Association Rule Mining 

1. Itemset: A collection of one or more items (e.g., products). 

o Example: {Bread, Butter}, {Milk, Eggs, Bread} 

2. Support: This indicates how frequently an itemset appears in the dataset. 

Support (X)=Number of transactions containing XTotal number of transactions\text{Sup

port (X)} = \frac{\text{Number of transactions containing X}}{\text{Total number of 

transactions}}Support (X)=Total number of transactionsNumber of transactions containin

g X 

Example: If {Milk, Bread} appears in 20 transactions out of 100 total transactions, the 

support is 20%. 

3. Confidence: This measures how often items in Y appear in transactions that contain X. 



Confidence (X→Y)=Support (X ∪ Y)Support (X)\text{Confidence (X→Y)} = 

\frac{\text{Support (X ∪ Y)}}{\text{Support 

(X)}}Confidence (X→Y)=Support (X)Support (X ∪ Y) 

Example: If 10 transactions contain both Milk and Butter, and Milk appears in 20 

transactions, the confidence of the rule Milk → Butter is 50%. 

4. Lift: This measures the strength of the rule, indicating whether the occurrence of X and Y 

together is independent of each other. 

Lift (X→Y)=Support (X ∪ Y)Support (X)×Support (Y)\text{Lift (X→Y)} = 

\frac{\text{Support (X ∪ Y)}}{\text{Support (X)} \times \text{Support 

(Y)}}Lift (X→Y)=Support (X)×Support (Y)Support (X ∪ Y) 

A lift greater than 1 implies that X and Y occur together more frequently than would be 

expected if they were independent. 

5. Leverage: This measures the difference between the observed frequency of X and Y 

appearing together and the expected frequency if X and Y were independent. 

Leverage (X→Y)=Support (X ∪ Y)−(Support (X)×Support (Y))\text{Leverage (X→Y)} 

= \text{Support (X ∪ Y)} - (\text{Support (X)} \times \text{Support 

(Y)})Leverage (X→Y)=Support (X ∪ Y)−(Support (X)×Support (Y)) 

Example of Association Rule 

In a supermarket, suppose we have the following transaction data: 

 

Association Rule: {Bread} → {Butter} 

 Support: The support of {Bread, Butter} is 3/5 = 60% (3 transactions contain both). 

 Confidence: The confidence of {Bread} → {Butter} is 3/3 = 100% (All transactions 

containing bread also contain butter). 

 Lift: If the probability of buying butter independently is 80%, the lift of {Bread} → 

{Butter} is 1.00.8=1.25\frac{1.0}{0.8} = 1.250.81.0=1.25. 



Apriori Algorithm 

The Apriori algorithm is a common method for association rule mining. It works by: 

1. Generating frequent itemsets using support. 

2. Generating association rules from those frequent itemsets. 

3. Pruning the itemsets that do not meet the minimum support and confidence thresholds. 

Applications of Association Rule Mining 

1. Market Basket Analysis: Discovering which items are frequently purchased together. 

2. Recommendation Systems: Recommending products based on customer behavior. 

3. Fraud Detection: Identifying unusual patterns that may indicate fraudulent activity. 

4. Healthcare: Finding correlations between symptoms and diseases, or treatments and 

outcomes. 

PART III 
 

 

5. Define Apriori principle. Briefly discuss about Apriori algorithm for 

frequent Item set generation          

                           The Apriori principle is a foundational concept in association rule mining 

that states: 

If an itemset is frequent, then all its subsets must also be frequent. 

Conversely: 

If an itemset is infrequent, then all its supersets will also be infrequent. 

This principle allows for efficient pruning of candidate itemsets when searching for frequent 

itemsets in large datasets. By eliminating infrequent itemsets early, the Apriori algorithm reduces 

the computational complexity of finding frequent itemsets. 

Apriori Algorithm for Frequent Itemset Generation 

The Apriori algorithm is a widely used technique for finding frequent itemsets in large 

databases. It leverages the Apriori principle to generate and prune candidate itemsets efficiently. 

The algorithm works iteratively, increasing the size of itemsets (from 1-itemset, 2-itemset, etc.) 

until no more frequent itemsets can be found. 

Steps in Apriori Algorithm: 

1. Set Minimum Support Threshold: 



o Before starting, a minimum support threshold is set to filter out infrequent 

itemsets. 

2. Generate 1-Itemsets (C1): 

o The algorithm first scans the dataset and counts the frequency (support) of each 

item. This generates a list of 1-itemsets. 

3. Prune Infrequent 1-Itemsets: 

o Itemsets whose support is below the minimum support threshold are discarded. 

The remaining itemsets are called frequent 1-itemsets (L1). 

4. Generate Candidate 2-Itemsets (C2): 

o From the frequent 1-itemsets (L1), pairs of items (2-itemsets) are generated. 

These are called candidate 2-itemsets. 

5. Prune Infrequent 2-Itemsets: 

o Again, the support of each 2-itemset is calculated, and those with support below 

the minimum threshold are removed, leaving frequent 2-itemsets (L2). 

6. Repeat Process for Larger Itemsets: 

o The algorithm continues iteratively, generating candidate 3-itemsets (C3) from 

frequent 2-itemsets (L2), then candidate 4-itemsets (C4), and so on. 

o At each step, the infrequent itemsets are pruned based on the support threshold. 

7. Terminate: 

o The algorithm stops when no further frequent itemsets can be generated (i.e., no 

more candidates pass the support threshold). 

8. Generate Association Rules: 

o After generating all frequent itemsets, the algorithm can derive association rules 

(like X → Y) from these itemsets, which must satisfy the minimum confidence 

threshold. 

Example of Apriori Algorithm: 

Consider the following transactions: 

Transaction ID Items Bought 

T1 Bread, Butter, Milk 

T2 Bread, Butter 

T3 Milk, Eggs 

T4 Bread, Butter, Eggs 

T5 Butter, Eggs 

Step 1: Set minimum support = 2 transactions (40%) 

Step 2: Generate 1-itemsets and prune: 

Item Support Count Pruned? 

Bread 3 No 

Butter 4 No 



Item Support Count Pruned? 

Milk 2 No 

Eggs 3 No 

All 1-itemsets are frequent. 

Step 3: Generate 2-itemsets from frequent 1-itemsets: 

2-Itemset Support Count Pruned? 

{Bread, Butter} 3 No 

{Bread, Milk} 1 Yes 

{Bread, Eggs} 1 Yes 

{Butter, Milk} 1 Yes 

{Butter, Eggs} 2 No 

{Milk, Eggs} 1 Yes 

After pruning, only {Bread, Butter} and {Butter, Eggs} remain as frequent 2-itemsets. 

Step 4: Generate 3-itemsets: 

3-Itemset Support Count Pruned? 

{Bread, Butter, Eggs} 1 Yes 

There are no frequent 3-itemsets, so the algorithm terminates. 

Efficiency of the Apriori Algorithm 

The Apriori algorithm is efficient due to its ability to prune the search space. Instead of 

generating all possible itemsets, it focuses only on the frequent itemsets, significantly reducing 

the number of calculations. 

However, the algorithm may still have limitations with very large datasets because of multiple 

passes over the data, which can be time-consuming. 

 

 

 

 

 
 



6. For a given transaction data ,generate frequent itemset and identify 

valid association rules with minimum support as 60%  and minium 

confidence as 75% 
 

Tid Items 

1 Bread,Cheese,eggs,juice 

2 Bread,Cheese, ,juice 

3 Bread,Milk,Yogurt 

4 Bread,Juice,Milk 

5 Cheese,juice,Milk 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



PART IV 
 

7. Write FP Growth algorithm for discovering frequent itemsets without 

candidate generation. 

 

FP-Growth Algorithm 

The FP-Growth (Frequent Pattern Growth) algorithm is an efficient method for discovering 

frequent itemsets in a dataset without generating candidate itemsets. It overcomes the limitations 

of the Apriori algorithm, which involves the generation of a large number of candidate itemsets. 

Instead of candidate generation, FP-Growth uses a compact data structure called the FP-Tree 

(Frequent Pattern Tree) to store the dataset and extract frequent itemsets directly. 

Steps of the FP-Growth Algorithm 

1. Build the FP-Tree: 

o Step 1.1: Scan the dataset: The algorithm first scans the dataset to compute the 

frequency (support) of each individual item. 

o Step 1.2: Sort items in descending order of support: Items are sorted by their 

frequency in each transaction. This ensures that the most frequent items appear 

closer to the root of the tree. 

o Step 1.3: Build the FP-Tree: The algorithm builds a compressed representation 

of the dataset called an FP-Tree by adding transactions one by one. Transactions 

with shared items share common prefixes in the tree. 

2. Mining the FP-Tree: 

o Step 2.1: Conditional Pattern Base: For each item in the FP-Tree, the algorithm 

constructs its conditional pattern base, which is the set of prefix paths ending with 

the item. 

o Step 2.2: Conditional FP-Tree: From the conditional pattern base, a new FP-

Tree is created, called a conditional FP-Tree, which is recursively mined to 

extract frequent itemsets. 

3. Extract Frequent Itemsets: 

o The frequent itemsets are extracted by traversing the FP-Tree and combining the 

items in the prefix paths with the suffix item (the item whose conditional pattern 

base is being analyzed). 

Detailed Steps of FP-Growth Algorithm 
1. Build the FP-Tree 

Given a dataset of transactions: 

Transaction ID Items Bought 

T1 {Bread, Milk, Butter} 

T2 {Bread, Butter} 



Transaction ID Items Bought 

T3 {Milk, Eggs} 

T4 {Bread, Butter, Eggs} 

T5 {Butter, Eggs} 

Step 1: Scan the dataset to find item frequencies: 

Item Support 

Bread 3 

Milk 2 

Butter 4 

Eggs 3 

Step 2: Sort items by support: 

 For each transaction, sort the items in descending order based on their frequency. 

Transaction ID Sorted Items 

T1 Butter, Bread, Milk 

T2 Butter, Bread 

T3 Eggs, Milk 

T4 Butter, Bread, Eggs 

T5 Butter, Eggs 

Step 3: Build the FP-Tree: 

 Start with an empty root node. For each transaction, insert items into the tree. 

scss 

Copy code 

Root 

 ├─ Butter (4) 

 │  ├─ Bread (3) 

 │  │  ├─ Milk (1) 

 │  │  └─ Eggs (1) 

 │  └─ Eggs (1) 

 └─ Eggs (2) 

    └─ Milk (1) 

This FP-Tree represents the compressed set of transactions. 

2. Mining the FP-Tree 

Once the FP-Tree is built, the algorithm mines it to discover frequent itemsets. This is done 

recursively by: 



 Step 2.1: Extracting conditional pattern bases for each item. 

 Step 2.2: Creating conditional FP-Trees for those bases. 

For example, to find frequent itemsets involving Eggs, the conditional pattern base for Eggs 

would be: 

 From path Butter → Bread → Eggs (support = 1) 

 From path Butter → Eggs (support = 1) 

 From path Eggs → Milk (support = 1) 

The frequent itemsets involving Eggs can now be mined recursively. 

3. Extract Frequent Itemsets 

The final frequent itemsets are obtained by combining the items from the prefix paths with the 

item whose conditional pattern base is being mined. Some of the frequent itemsets extracted 

could be: 

 {Eggs} 

 {Butter, Eggs} 

 {Butter, Bread, Eggs} 

 {Milk, Eggs} 

 {Bread, Butter} 

FP-Growth Algorithm in Pseudocode 
plaintext 

Copy code 

Algorithm: FP-Growth 

Input: A transactional database, and a minimum support threshold. 

Output: The complete set of frequent itemsets. 

 

1. Build the FP-Tree: 

    a. Scan the dataset to find the support of each item. 

    b. Remove infrequent items (those that do not meet the minimum support). 

    c. Sort frequent items in descending order of support. 

    d. For each transaction, insert items into the FP-Tree, sharing common 

prefixes. 

 

2. Mine the FP-Tree recursively: 

    a. For each item in the FP-Tree, construct its conditional pattern base. 

    b. Build the conditional FP-Tree from the conditional pattern base. 

    c. Recursively mine the conditional FP-Tree. 

    d. Combine frequent itemsets from the conditional FP-Tree with the suffix 

item. 

 

3. Return all frequent itemsets. 



Advantages of FP-Growth 

1. No Candidate Generation: Unlike the Apriori algorithm, FP-Growth does not generate 

candidate itemsets, which reduces computational overhead. 

2. Compact Data Representation: The FP-Tree efficiently compresses the dataset, 

allowing frequent patterns to be mined directly from the tree. 

3. Faster Execution: FP-Growth is generally faster than Apriori, especially for large 

datasets, because it avoids multiple scans over the database. 

 

8. Construct FP tree for the transaction data set shown in the table  and 

explain steps of construction using FP Growth Algorithm 
 

Tid Items 

T1 {E,K,M,N,O,Y} 

T2 {D,E,K,N,O,Y} 

T3 {A,E,K,M} 

T4 {C,K,M,U,Y} 

T5 {C,E,I,K,O,O} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 

PART V 
 

9. Write an algorithm for decision tree induction technique 

Algorithm for Decision Tree Induction 

Input: 

 Training dataset D with n attributes and m instances. 

 Target attribute (class label). 

Output: 

 A decision tree. 

Steps: 

1. Start 

o If all instances in D belong to the same class, return a single-node tree with that 

class label. 

2. Attribute Selection 

o For each attribute A, compute the information gain (or Gini index, Gain ratio, 

etc., depending on the criterion) to determine how well A classifies the instances. 

o Select the attribute A that has the highest information gain as the splitting 

attribute. 

3. Create Node 

o Create a decision node in the tree corresponding to the selected attribute A. 

4. Partition the Dataset 

o Partition the dataset D into subsets D1, D2, ..., Dk, based on the values of the 

selected attribute A. 

o For each subset Di corresponding to a value vi of attribute A: 

 If Di is empty, create a leaf node with the most common class label from 

the parent set. 

 If Di contains instances with more than one class, repeat the process 

recursively using Di as the new dataset. 

5. Stop Condition 
o The recursion stops when: 

 All instances in a subset belong to the same class. 

 There are no more attributes to split on. 

 The dataset is empty. 

6. Return Tree 

o Once all subsets are processed, return the complete decision tree. 



Algorithm: DecisionTreeInduction(D, attributes) 

   Input:  

     D - Dataset 

     attributes - List of attributes 

    

   Output:  

     Decision tree 

  

   if all instances in D have the same class label then 

     return a leaf node with that class label 

   else if attributes is empty then 

     return a leaf node with the most common class label in D 

   else 

     A = Attribute with highest information gain from attributes 

     Create a decision node with A as the splitting attribute 

     for each value vi of attribute A do 

       Di = Subset of D where A = vi 

       if Di is empty then 

         Add a leaf node with the most common class label in D 

       else 

         Add the subtree DecisionTreeInduction(Di, attributes - A) to the current node 

     return the decision node 

 

10. Write a note on Naïve Baye’s Classifier. 
 

Naïve Bayes Classifier 

The Naïve Bayes Classifier is a probabilistic machine learning model based on Bayes' 

Theorem. It is widely used for classification tasks due to its simplicity, efficiency, and 

effectiveness, especially with large datasets. Despite its simplicity, it performs surprisingly well 

for various real-world applications like spam filtering, text classification, sentiment analysis, and 

medical diagnosis. 

Key Assumption: Conditional Independence 

The "naïve" part of Naïve Bayes comes from the assumption that all the features (or attributes) 

are independent of each other, given the class label. This means that the presence or absence of 

a particular feature in a class is assumed to be independent of the presence or absence of any 

other feature. While this assumption rarely holds in real-world situations, Naïve Bayes still 

performs well in many cases, even when the assumption is violated. 

Bayes' Theorem 



Naïve Bayes is based on Bayes' Theorem, which relates the probability of a class given a set of 

features to the probability of the features given the class. Bayes' Theorem is stated as: 

P(C∣X)=P(X∣C)⋅P(C)P(X)P(C|X) = \frac{P(X|C) \cdot P(C)}{P(X)}P(C∣X)=P(X)P(X∣C)⋅P(C) 

Where: 

 P(C∣X)P(C|X)P(C∣X) is the posterior probability: the probability of class C given the 

feature vector X. 

 P(X∣C)P(X|C)P(X∣C) is the likelihood: the probability of the feature vector X given the 

class C. 

 P(C)P(C)P(C) is the prior probability: the overall probability of class C. 

 P(X)P(X)P(X) is the evidence: the overall probability of the feature vector X. 

Working of Naïve Bayes Classifier 

1. Training Phase: 

o Compute the prior probability for each class. 

o For each feature, compute the conditional probability of the feature value given 

the class label. 

2. Prediction Phase: 

o For a new data point, calculate the posterior probability for each class using 

Bayes' Theorem. 

o Assign the class label with the highest posterior probability. 

Advantages 

 Efficient: It is computationally efficient and works well with large datasets. 

 Simple to Implement: Easy to understand and implement, even with basic mathematical 

knowledge. 

 Works Well with High-Dimensional Data: It performs well in text classification tasks 

where the data has many features. 

Limitations 

 Strong Assumption of Independence: The assumption that all features are independent 

is often unrealistic in real-world data. 

 Zero Probability Problem: If a particular feature value is missing in the training dataset 

for a class, the model will assign a zero probability to it. This is often mitigated by using 

techniques like Laplace smoothing. 

Applications 

 Spam Filtering: Classifies emails as spam or non-spam based on the frequency of words. 

 Text Classification: Categorizes documents into predefined categories, such as news 

articles. 



 Sentiment Analysis: Determines the sentiment (positive/negative) of text, such as 

customer reviews. 
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