CMR

INSTITUTE USN
OF

TECHNOLOGY

GNEARS #

CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A++ GRADE BY NAAC

()

ELE
«CELEBRY,

Internal Assessment Test —II, September 2024

Sub: | Mobile Application Development

Code: | 22MCA263

execution environment for mobile devices.

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

A o . Window Content
Activity Manager Manager Providers

= = Telephony Motification
Paclkage Manager Manager T anag Manager

LIBRARIES ANDROID RUNTIME

Media SQLite Core Libraries

< An
Surface Manager
& Framework

OpenGL | ES FreeType WebKit

SGL o libe

Linux KERMNEL

Display = Tk Flash Memary Binder (IPC)
Elrle.'e-" Sl Bl Driver Driver

Keypad Driver WViFi Driver Eﬂ_‘:ﬂfr le_f::_e_l:em

1) Linux kernel

Linux kernel is responsible for device drivers, power management, memory
management,device management and resource access.

components of an Android device, including Display, Camera, Keypad, Wifi,
Memory, and Audio.

Android 1s structured in the form of a software stack comprising applications, an
operating system, run-time environment, middleware, services and libraries. Each
layer of the stack, and the corresponding elements within each layer, are tightly
integrated and carefully tuned to provide the optimal application development and

It is the heart of android architecture that exists at the root of android architecture.

The kernel on which Android is based contains device drivers for various hardware

Answer Key Marks | OBE
CO [RBT
1 Explain the Android Software Stack in detail with a neat diagram. 10 CO2 | L3

2) Native Libraries

The next layer on top of the Linux kernel is the libraries that implement different
Android features. A few of these libraries are listed here:

a. Freetype library-Responsible for font support.

b. SQLite library-Provides database support

c. Surface Manager library-Provides graphics libraries that include
SGL and OpenGL.

d. Open GL(graphics library):This cross-language, cross-platform
application program interface (API) is used to produce 2D and 3D
computer graphics.

3) Android Runtime

it provides a set of core Android libraries and a Dalvik virtual machine that enable
developers to write Android applications using java and (the Android RunTime).

In android runtime, there are core libraries and DVM (Dalvik Virtual Machine)
which is responsible to run android application. DVM is like JVM but it is
optimized for mobile devices. It consumes less memory and provides fast
performance.

4) Android Framework

On the top of Native libraries and android runtime, there is android framework.
Android

framework includes Android API's such as UI (User Interface), telephony,
resources,

locations, Content Providers (data) and package managers. It provides a lot of
classes and interfaces for android application development.

provides the classes that enable application developers to develop[android
applications].

a. Activity Manager:
It manages the activity lifecycle and the activity stack.
B. Telephony Manager:
It provides access to telephony services as related subscriber information, such as
phone numbers.

C. View System:

It builds the user interface by handling the views and layouts.
D. Location manager:
It finds the device’s geographic location.
5). Application layer
Displays the application developed and downloaded by users.
On the top of android framework, there are applications.

All applications such as home,contact, settings, games, browsers are using android
framework that uses androidruntime and libraries.

Android runtime and native libraries are using linux kernal.

Explain the building blocks in Android.

There’re four building blocks in Android

« Activities k
* Services.
* Broadcast Receivers.

* Intent. é}})
\id

Activities

» Something with which user interacts, something the user sees
on the screen.

10

CO2

L2

Services

»Something that runs in the background.

~These are used [to perform the long tasks, like downloading a file,
connecting to a mail service, connecting to a server, uploading a file to a
drop box and stuff like that.

~All these thing happens in services.
~User can't see them, but they started by activities and such operations run

independently. Even if your activity is off your services may run in the
background.

. T

Broadcast Receivers y,};

~These are functions who sleeps all the time, but when suddenly something
happens, they wake up and they do something.

~For example if your battery gets low, and you have broadcast receiver
inside your app who wakes up and shut down all the downloads.

~So that’s what broadcast receivers do. These are a kind a alarms that you
want ring when a specific event triggered.

ke

What an intent does? &

It is used to start a new activity from where ever vou are. It is like going to a different page
in html from one page.

If you want to download something your download services begin in the background in
case you're downloading a big file, or you vsant to play music in the background, so intents
are used to start all these services.

The third thing that intents are used register the broadcast receivers.

Intents are also used to tell the system, which is the entry point of vour application inside
of your application, and which activity should appear in launcher screen, or inside the list
of application installed on your android OS.

Types of Intents

1. Explicit Intents
2. Implicit Intents

W

e = =E T T E - ke
S% aA SEEAE

Ty

- "
= Desi Food Recipe Q o Ton Fhape Ot
' = - yovt artirn . o Shage [T
e = Py oot L
: \ tl L i = = ————
2 Of

Explicit Intents

! -

: ‘ + Explicit intents are those intents, when yvou know the
| you are calling.
! ‘ m

R

1% —

.. B

o o 4

What is intent? Explain implicit intent with an example.

Implicit Intents

« Implicit intents, when you don’t know who to call.
* You know you need to send a SMS, or you need

Email, when know the functionality but you don’t kn¢

going to do that function for you, that’s when
become implicit intent.

10

CO3

L3

+ So whenever there is an event and an intent is created out of that event, it
wili be supplied to everybody.

* Suppose you've a broadcast receiver, who is actively listening to such
events, then that broadcast receiver is going to be connected.

* There are hundreds of event in Android device that converted into an
intent object, and that intent broadcast to everybody in the Android OS.

Program1.xml

<Button

android:id="@+id/btn"

android:layout width="wrap content"
android:layout _height="wrap content"
android:layout_centerVertical="true"
android:text="Search" />

<EditText
android:id="@+id/editText"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout_marginLeft="21dp"
android:layout marginTop="63dp"
android:layout toRightOf="@+id/btn"
android:ems="10" >

<requestFocus />
</EditText>

Progaml.java

EditText editText;
Button button;

button = (Button)findViewByld(R.id.btn);
editText = (EditText) findViewByld(R.id.editText);

button.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
String url=editText.getText().toString();
Intent intent = new Intent(Intent. ACTION_VIEW, Uri.parse(url));
startActivity(intent);

}
1)

What is ViewGroup? Explain linear layout with properties.
VIEW GROUPS(Layout Managers)

One or more views can be grouped together into a ViewGroup. A ViewGroup
(which is itself a special type of view) provides the layout in which you can order
the appearance and sequence of views. Examples of ViewGroups include
LinearLayout and Framelayout. A ViewGroup derives from the base class
android.view.ViewGroup.

4 LinerlLayout

The LinearLayout arranges views in a single column or a single row.
LinearLayout:-

The LinearLayout is the most basic layout, and it arranges its elements
sequentially, either

horizontally or vertically. To arrange controls within a linear layout, the following
attributes are used:

1. android:orientation—Used for arranging the controls in the container in
horizontal or vertical order.
android:orientation="vertical"

2. android:layout_width—Used for defining the width of a control.
android:layout_width="20px”

3. android:layout_height—Used for defining the height of a control.
android:layout_height="20px”

4. android:padding—Used for increasing the whitespace between the
boundaries of the
control and its actual content.
android:padding="5dip”
android:paddingLeft="5dip”

5. android: layout_weight—Used for shrinking or expanding the size of the
control to
consume the extra space relative to the other controls in the container.the

value of the weight attribute range from 0.0 to 1.0, where 1.0 is the highest value.
android:layout_weight="0.0"

6. android:gravity—Used for aligning content within a control.
Android:gravity includes
left,center,right,top,bottom,center_horizontal,center_vertical,fill_horizontal,a
nd fill_vertical.
android:gravity="center"

a. center_vertical—Places the object in the vertical center of its
container, without changing its size.

b. fill_vertical—Grows the vertical size of the object, if needed, so it
completely fills its container.

c. center_horizontal—Places the object in the horizontal center of its
container, without changing its size.

d. fill_horizontal—Grows the horizontal size of the object, if needed, so
it
completely fills its container

e. center—Places the object in the center of its container in both the
vertical and horizontal axis,without changing its size.

10

CO4

L3

7. android: layout_gravity—Used for aligning the control within the

container(left,center,right).
android:layout_gravity="center”

e Child views can be arranged either vertically or horizontally.

e To see how LinearLayout works, consider the following elements
typically contained in the activity_main.xml file:

<?xml version=“1.0"” encoding="“Utf-8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android”

android:layout_width="fill_parent”
android:layout_height="fill_parent”

android:orientation="Vertical” >
<TextView

android:layout_width="fill_parent”

android:layout_height="wrap_content”

android:text="string/hello” />
</LinearLayout>

Discuss the lifecycle of activity with a diagram.

Android Activity Lifecycle

Android Activity Lifecycle is controlied by 7 methods of
android. app. Actinly class

A sctivity is the single screen in androesd, 11 i ke window o frarme of

Java

By the help of activity, you can place all youwr Ul components or widgets ina

singhe screen

The 7 lifecyche method of Activity describes how activity will Behave at
differant states

flaited

- uCrasle)
HLAg -
o PR -
pracans A iy
e vy
onPaus{l

LT

o Gararerald

A
shud doman

aEmalan||

10

CO2

Ll

http://schemas.android.com/apk/res/android

Android Activity Lifecycle methods
Let's see the 7 lifecycle methods of android activity.

Pfethod Drescnipgion.

onCreate callad when acinity & firsd crastad

onStart callad when activity is becoming wsible
1o 1hees Lesap

onResume called whan achvily wil slart
intaracting with e uses

onPause called whan actvity & nol wsible o the
ugear

on 51‘139 called whan actwity s no langar wisible
1o Thee wsar

onRestart called aler your aclivity & stopped
prior to start

onDestroy called before e soiivity & destroed

Android Activity Lifecycle methods

1. enCreate(Bundle savedinstance State}

+State: Craabad

‘Description: Caled whean the activity is first created. This & where you should nitialize your sctaily including setting ug fe
LN {using setContantyiaw) and initiglizing dala. This mathod is only called onca during the entina lfecycle of the actaity

2. entart()
+State: Staried
‘Description: Caled whean the activity becomes visiole to the user. Al this paint the sty = nol yel interactive

3. onResume{)

State: Resumed

+Description; Caled whan the actvity starls infaraching with the wsar. The actily = now at the top of the activity stack, and
he wsaar can intaract with . This is where the activity entars the foraground

4. onPause(]

~State: Paused

*Description; Called whan the sysiem is about to s3arl anoiher activity. The curment activity is shil partally vsibie bl not n the
Toreground. ou shauld use this method o pause any ongaing 1asks that should not continue while the activity i not in the
{oregraund

5. anStapl)

+State: Stopped

+*Description: Called when the activity is no longsr visible to the user. This heppens when anciher activity has
laken awer the screen. You shoukd use this mathod 10 release resources that are not needed while the activity is
not visibda

&, onRestart()

+State: Rastariad

‘Description: Called after the activity has been stoppead, just before it i started again. This is useful for
rafreshing any resources or dada that ware raleased in onSlop()

T. enDestroy)

+State: Dastroyad

‘Degeriplion: Called bafore the activity is destrayed. This can happen when the user manually inishas he
activity, or tha system dastroys it io frea up resowces. You should use this method to clean up any resources that
are nat aulomatically handied by the garbage collector

What are the different attributes of relative layout? Explain with an example.

Relativelayout
The RelativelLayout enables you to specify how child views are positioned relative
to each other. Consider the following main.xml file:
<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
android:id="@+id/RLayout”
android:layout_width="fill_parent”
android:layout_height="fill_parent”

10

CO3

L3

xmlins:android="http://schemas.android.com/apk/res/android”
>

<TextView

android:id=" @+id/IbIComments”
android:layout_width="wrap_conte
nt”
android:layout_height="wrap_cont
ent” android:text="Comments”
android:layout_alignParentTop="tru
o
android:layout_alignParentLeft="tr
ue”

/>

<EditText

android:id=" @+id/txtComments”
android:layout_width="fill_parent”

android:layout_height="170px”
android:textSize="18sp”
android:layout_alignLeft="@+id/lblIComments”
android:layout_below="@+id/IbIComments”
android:layout_centerHorizontal="true”

/>

<Button

android:id="@+id/btnSa

ve”

android:layout_width="

125px”

android:layout_height="wrap_content”
android:text="Save”
android:layout_below="@+id/txtComments”
android:layout_alignRight="@+id/txtComments”
/>

<Button

android:id=" @+id/btnCa

ncel”

android:layout_width="

124px”

android:layout_height="wrap_content”
android:text="Cancel”
android:layout_below="@+id/txtComments”
android:layout_alignLeft="@+id/txtComments”
/>

</RelativelLayout>

The Ul of the above code would look like —

http://schemas.android.com/apk/res/android

e Each view is embedded within the relative layout has attributes that
enable it to align with another view.
e The value for each of these attributes is the ID for the view that you are

referencing.
e These attributes are as follows:
o layout_alignParentTop
o layout_alignParentLeft
o layout_alignlLeft

o layout_alignRight

o layout_below

o layout_centerHorizontal
The attributes used to set the location of the control relative to a container are
android: layout _alignParentTop—The top of the control is set to align with the to
of the container.
android: layout_alignParentBottom—The bottom of the control is set to align
with
the bottom of the container.
android: layout_alignParentLeft—The left side of the control is set to align with
the left side of the container.
android: layout_alignParentRight—The right side of the control is set to align with
the right side of the container.
android: layout_centerHorizontal—The control is placed horizontally at the center
of the container.
android: layout _centerVertical —The control is placed vertically at the center of
the container.
android: layout _centerinParent—The control is placed horizontally and vertically
at the center of the container.
The attributes to control the position of a control in relation to other controls are
android: layout_above—The control is placed above the referenced control.
android: layout_below—The control is placed below the referenced control.

android:layout _tolLeftof—The control is placed to the left of the referenced
control.
android:layout toRightof —The control is placed to the right of the referenced
control.
The attributes that control the alignment of a control in relation to other
controls are
android: layout _alignTop— The top of the control is set to align with the top of
the referenced control.
android: layout alignBottom—The bottom of the control is set to align with the
bottom of the referenced control.
android: layout alignLeft—The left side of the control is set to align with the left
side of the referenced control.
android:layout alignRight—The right side of the control is set to align with the
right side of the referenced control.
android:layout alignBaseline—The baseline of the two controls will be aligned.
android:padding—Defines the spacing of the content on all four sides of the
control.
To define padding for each side individually, use
android:paddingLeft,
android:paddingRight, android: paddingTop, and android: paddingBottom.
android:paddingTop—Defines the spacing between the content and the top of the
control.
android: paddingBottom—Defines the spacing between the content and the
bottom of the control.
android: paddingLeft—Defines the spacing between the content and the left side
of the control.
android:paddingRight—Defines the spacing between the content and the right
side of the control.
android: layout_margin—Defines the spacing of the control in relation to the
controls or the container on all four sides. To define spacing for each side
individually, we use the
android: layout_marginTop—Defines the spacing between the top of the control
and the related control or container.
android: layout_marginBottom—Defines the spacing between the bottom of the
control and the related control or container.
android: layout_marginRight—Defines the spacing between the right side of the
control and the related control or container.
android: layout _marginLeft—Defines the spacing between the left side of the

control and the related control or container.

Develop a mobile application to create a login form by using table layout.

<TablelLayout
xmlns:android="http://schemas.android.com/apk/res/android”
android:layout_height="fill_parent”
android:layout_width="fill_parent”>
<TableRow>
<TextView
android:text="Us
er Name:”
android:width
="120px” />
<EditText
android:id=" @+id/txtUserNa
me” android:width="200px"
/>
</TableRow>
<TableRow>
<TextView
android:text="Password:” />
<EditText
android:id=" @+id/txtPasswo
rd” android:password="true”
/>
</TableRow>
<TableRow>
<TextView />
<CheckBox android:id=" @+id/chkRememberPassword”
android:layout_width="fill_parent”
android:layout_height="wrap_content”
android:text="Remember Password” />
</TableRow>

<TableRow>
<Button

android:id="@+id/buttonSig
nin” android:text="Log In” />
</TableRow>

</TableLayout>

The above code result into following GUI:

10

CO3

L3

http://schemas.android.com/apk/res/android

Hameamber Fassdaand

Create a mobile app to change textview attributes from XML and Java code.

10

CO3

L3

What is canvas? Explain rectangle, circle, and arc with examples.
public class MainActivity extends Activity {

DemoView demoview;
@Override
protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity _main);
demoview = new DemoView(this);
setContentView(demoview);
}
private class DemoView extends View{
public DemoView(Context context){
super(context);
}
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
Paint paint = new Paint();
paint.setStyle(Paint.Style. STROKE);

// make the entire canvas white
paint.setColor(Color. WHITE);

canvas.drawPaint(paint);

/I draw blue circle with anti aliasing turned off

10

CO4

L3

paint.setColor(Color.BLUE);
canvas.drawCircle(20, 20, 15, paint);
I/l draw red rectangle with anti aliasing turned off

paint.setColor(Color.RED);

paint.setStyle(Paint.Style. STROKE);

canvas.drawRect(100, 5, 200, 30, paint);
/ldraw arc

paint.setColor(Color.RED);

RectF rect1=new RectF(200,400,300,550);

canvas.drawArc(rect1, 90, 270, true, paint);

canvas.restore();

}
}

10

What is Handover? Explain possible handover scenarios of GSM.

+ Cellular systems require handover procedures, as single cel
do not cover the whole service area, but, e.g., only up to 35 ki
around each antenna on the countryside and some hundred
meters in cities.

« The smaller the cell size and the faster the movement of a
mobile station through the cells (up to 250 km/h for GSM), the
more handovers of ongoing calls are required.

« However, a handover should not cause a cut-off, also called
call drop.

e GSM aims at miaximum handover duration of 60 ms.
There are two basic reasons for a handover.

1. The mobile station moves out of the range of a BTS or a
certain antenna of a BTS respectively.

2. Handover may be due to load balancing. /

Hard handover - The connection to the source is broken before or ‘as’ the
connection to the target is made—for this reason such handovers are also known
as break-before-make.

10

COl

L1

« Four possible handover scenarios in GSM:
« Intra-cell handover:

- Within a cell, narrow-band interference could make transmission at a certain frequency
impossible.

- The BSC could then decide to change the carrier frequency.
* Inter-cell, intra-BSC handover:

-Thesnslgbilesutbnﬂmesfmmonecelltoamher,bu.vtslaysw'lmhd\econtrolofthe
same BSC.

- The BSC then performs a handover, assigns a new radio channel in the new cell and
releases the old one,

« Inter-BSC, intra-MSC handover:

- As a BSC only controls a limited number of cells; GSM also has to perform handovers
&mwammmemm.mmmmmhmwm

