

CMR

INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test –III, October 2024

Sub: Database Management System Code:
22MCA21

Answer Any 5 QUESTIONS Marks
OBE

CO RBT

1) Discuss various Transaction states with a neat diagram and its pros and cons 10 CO3 L2

OR

2) Explain various types of failure that may occur in a system. 10 CO3 L2

3) Explain types of problems that may occur when two simple transaction run

concurrently with examples. Why concurrency control and recovery are needed in
DBMS?

10

CO3

L1

OR

4) Explain properties, characteristics, advantages and disadvantages of a transaction

in detail.

10

CO3

L3

5) Explain the select and project operation with syntax and examples. 10 CO4 L2

OR

6) Explain Union, intersection and minus operation with examples 10 CO4 L3

7) Consider the following COMPANY database EMP(Name,SSN,Salary,address,

SuperSSN,Gender,Dno) DEPT(DNum,Dname,MgrSSN)

PROJECT(Pname,Pnumber,Plocation,Dnum)

Write the relational algebra queries for the following

(i) Retrieve the name, address, salary of employees who work for the Research

department.

(ii) Find the names of employees who work on all projects controlled by

department number 4.

iii) Retrieve the SSN of all employees who either in department no :4 or directly

supervise an employee who work in dno 4

10 CO4 L3

OR

8) Explain briefly about database application development 10 CO4 L2

9) Explain in detailed about

i.)JDBC ii.) Cursors

10 CO4 L3

OR

10) Explain in detailed about

i.)Embedded SQL ii.) SQLJ

10 CO4 L3

1 Key Transaction States in DBMS

1. Active State:

o Description: The transaction starts here, performing its operations

(e.g., read/write).

o Pro: Allows flexibility to perform all operations.

o Con: No guarantee of completion; may end abruptly if an error

occurs.

2. Partially Committed State:

o Description: Transaction has completed all operations but not yet

committed.

o Pro: Ensures that checks can occur before commitment.

o Con: Can lead to a failed state if checks fail.

3. Committed State:

o Description: Changes are saved permanently; the transaction is

successful.

o Pro: Guarantees durability of transaction results.

o Con: No changes can be reverted without a new transaction.

4. Failed State:

o Description: An error occurred; transaction cannot continue.

o Pro: Prevents inconsistent data from entering the database.

o Con: Requires re-execution if a failure occurs due to recoverable

issues.

5. Aborted State:

o Description: Transaction has been rolled back, undoing all

changes.

o Pro: Restores database consistency by discarding changes.

o Con: May involve performance overhead during rollback.

2 Failure Type Impact Recovery Mechanism

Transaction Failure: Incomplete transaction Rollback using logs

System Failure Lost in-memory data Checkpoints, transaction logs

Media Failure Permanent data loss Restore from backups or replication

Application Failure Inconsistent or incomplete transactions Rollback incomplete transactions

Network Failure Distributed transaction inconsistency Distributed recovery protocols

Buffer Overflow Possible data corruption Memory management adjustments, rollback

3 1. Lost Update Problem

 Description: Occurs when two transactions update the same data item

simultaneously, causing one update to overwrite the other.

 Example:

o Assume a bank account balance is initially $500.

o Transaction T1T_1T1 reads the balance, adds $100, and sets it to

$600.

o Before T1T_1T1 writes $600 back, Transaction T2T_2T2 reads the

same balance of $500, subtracts $50, and sets it to $450.

o Both transactions complete, but T1T_1T1’s update to $600 is

overwritten by T2T_2T2’s update to $450, causing the addition of

$100 to be "lost."

2. Dirty Read (Uncommitted Dependency Problem)

 Description: Occurs when a transaction reads data modified by another

transaction that has not yet been committed. If the modifying transaction

rolls back, the reading transaction has read invalid data.

 Example:

o T1T_1T1 updates an account balance from $500 to $600 but does

not commit.

o T2T_2T2 reads this uncommitted balance of $600 and uses it for

calculations.

o If T1T_1T1 rolls back, the original balance of $500 is restored, but

T2T_2T2 has already used the invalid $600 balance.

3. Unrepeatable Read (Inconsistent Retrieval)

 Description: Occurs when a transaction reads the same data multiple

times and gets different results due to another transaction’s updates.

 Example:

o T1T_1T1 reads the balance of an account as $500.

o T2T_2T2 updates the balance to $600 and commits.

o T1T_1T1 reads the balance again and sees $600, which is

inconsistent with the initial read.

4. Phantom Read

 Description: Occurs when a transaction reads a set of rows based on a

condition, but another transaction inserts, deletes, or updates rows that

affect the result of the original query.

 Example:

o T1T_1T1 reads a list of accounts with a balance greater than $500,

finding three accounts.

o Meanwhile, T2T_2T2 inserts a new account with a balance of

$700.

o If T1T_1T1 re-reads the list, it will find four accounts, leading to

inconsistencies.

Why Concurrency Control and Recovery are Needed in DBMS

1. Concurrency Control:

o Concurrency control mechanisms manage the execution of

transactions to ensure data integrity and isolation. They prevent

conflicts like lost updates, dirty reads, unrepeatable reads, and

phantom reads by coordinating access to shared data.

o Reason: Concurrency control is essential to maintain the ACID

properties (especially isolation and consistency) and avoid data

inconsistencies. It enables multiple users to access the database

concurrently without interference.

2. Recovery:

o Recovery mechanisms restore the database to a consistent state in

the event of system crashes, transaction failures, or hardware

issues. This includes rolling back incomplete transactions or

redoing committed ones.

o Reason: Recovery mechanisms ensure atomicity and durability,

allowing transactions to either complete entirely or leave no trace

in case of a failure. This maintains database consistency and helps

recover from unexpected issues.

4 A transaction in a Database Management System (DBMS) is a logical unit of

work that includes one or more operations on the database (such as reading,

writing, updating, and deleting data). It ensures data consistency, reliability, and

integrity, especially in multi-user environments where several transactions might

occur simultaneously. Here’s a detailed explanation of its properties,

characteristics, advantages, and disadvantages:

Properties of a Transaction (ACID Properties)

Transactions follow the ACID properties, which are essential to maintaining

database integrity:

1. Atomicity:

o Definition: A transaction is an atomic unit of operation, meaning it

either fully completes or does not happen at all. If any part of the

transaction fails, the entire transaction is rolled back.

o Explanation: If a transaction involves multiple steps (e.g.,

transferring funds between accounts), either all steps must succeed,

or none should take effect.

o Example: In an e-commerce system, if a customer’s payment fails,

the entire transaction (including inventory update and order

creation) should be reversed.

2. Consistency:

o Definition: A transaction must bring the database from one

consistent state to another. All integrity constraints must be

satisfied both before and after the transaction.

o Explanation: Database rules (like foreign keys or constraints)

ensure that data remains valid. If any condition fails, the

transaction will not complete.

o Example: A transaction should not result in a negative balance if

the system disallows negative account balances.

3. Isolation:

o Definition: Transactions should be executed independently and

should not interfere with each other. A transaction's intermediate

states should not be visible to other transactions.

o Explanation: This property prevents issues like dirty reads,

unrepeatable reads, and lost updates, maintaining the accuracy of

concurrent transactions.

o Example: In a banking application, two simultaneous withdrawals

from the same account should occur in isolation to avoid incorrect

balance calculations.

4. Durability:

o Definition: Once a transaction is committed, its changes to the

database are permanent, even in the event of a system crash or

failure.

o Explanation: Durability ensures that the database maintains a

record of committed transactions, usually through logging and

backup mechanisms.

o Example: If a power failure occurs right after a transaction is

committed, the changes should remain when the system restarts.

Characteristics of Transactions

1. Consistency Preservation: Transactions uphold database integrity

constraints, ensuring consistency before and after each transaction.

2. Concurrency Control: Transactions are designed to operate in

environments where multiple users may access the database

simultaneously. Concurrency control techniques, such as locking or

timestamp ordering, are used to maintain isolation.

3. Recoverability: A transaction should be able to be rolled back in case of

failure, and committed transactions should be persistent. This helps

maintain the atomicity and durability of transactions.

4. Transparency: The underlying database system handles transactions so

that the user only sees the end result, ensuring a seamless user experience

regardless of the complexity of the transaction.

Advantages of Transactions

1. Data Integrity and Consistency:

o Transactions help maintain data accuracy and consistency, even in

cases of simultaneous updates by multiple users. By enforcing the

ACID properties, transactions help protect against data corruption.

2. Error Handling and Recovery:

o Transactions make it easier to handle errors. If any part of a

transaction fails, the entire transaction can be rolled back,

preventing partial updates that could lead to inconsistencies.

3. Concurrent Access:

o By providing isolation and using concurrency control, transactions

allow multiple users to interact with the database simultaneously

without conflicting with each other’s operations.

4. Simplifies Complex Operations:

o Transactions allow complex sequences of operations to be

managed easily, enabling developers to define all or nothing

operations that make application development simpler and more

reliable.

5. Guaranteed Durability:

o Transactions ensure that once a change is committed, it is

permanent. This provides reliability for users, who can trust that

completed transactions will not be lost due to system failures.

Disadvantages of Transactions

1. Performance Overhead:

o Implementing transaction management, especially isolation and

durability, adds overhead, as mechanisms like locking, logging,

and checkpoints are resource-intensive. This can slow down

system performance, especially under high concurrency.

2. Deadlocks:

o Concurrency control mechanisms (like locking) can lead to

deadlocks, where transactions wait indefinitely for each other to

release resources, requiring additional management techniques to

resolve.

3. Increased Complexity:

o The algorithms required to manage transactions and enforce the

ACID properties are complex, making the DBMS more

challenging to implement and maintain, which can increase

development time and cost.

4. Resource Consumption:

o Transactions require additional resources, such as memory and

storage, to manage logs, backups, and checkpoints. In high-volume

transaction environments, this can strain system resources and

impact scalability.

5. Reduced Parallelism:

o High levels of isolation (like serializability) restrict parallel

execution of transactions, impacting performance in systems with

large numbers of concurrent users.

5 The Select and Project operations are fundamental operations in relational

algebra used to manipulate and query relational databases. Here’s a detailed

explanation, including syntax and examples:

1. Select Operation (σ)

 Purpose: The select operation retrieves rows (tuples) from a relation

(table) that satisfy a specified condition.

 Symbol: σ (sigma)

 Syntax:

σcondition(Relation)\sigma_{\text{condition}}(\text{Relation})σconditio

n(Relation)

Where condition is the criterion used to filter rows from Relation.

 Example: Suppose we have a relation (table) called Employee with the

following schema and data:

EmpID Name Department Salary

101 Alice HR 5000

102 Bob Sales 6000

103 Charlie IT 7000

104 David Sales 5500

105 Eve IT 7500

 Query: Retrieve all employees in the Sales department.

 Select Operation:

 σDepartment = ’Sales’(Employee)\sigma_{\text{Department =

'Sales'}}(\text{Employee})σDepartment = ’Sales’(Employee)

 Result:

EmpID Name Department Salary

102 Bob Sales 6000

104 David Sales 5500

 Explanation: The select operation filtered out only those rows where the

department is 'Sales'.

2. Project Operation (π)

 Purpose: The project operation retrieves specific columns (attributes)

from a relation, effectively creating a subset of columns in a new relation.

 Symbol: π (pi)

 Syntax:

πcolumn1, column2, ...(Relation)\pi_{\text{column1, column2,

...}}(\text{Relation})πcolumn1, column2, ...(Relation)

Where column1, column2, ... are the attributes you want to retrieve

from Relation.

 Example: Using the same Employee table, let’s say we want to retrieve

only the names and salaries of all employees.

Project Operation:

πName, Salary(Employee)\pi_{\text{Name,

Salary}}(\text{Employee})πName, Salary(Employee)

Result:

Name Salary

Alice 5000

Bob 6000

Charlie 7000

David 5500

Eve 7500

Explanation: The project operation selected only the Name and Salary

columns, discarding other attributes.

6 In relational algebra, Union, Intersection, and Minus are set operations used to

combine or differentiate between two relations (tables) with the same schema.

Here’s an explanation of each operation with examples.

1. Union Operation (∪)

 Purpose: Combines the results of two relations and returns all unique

rows present in either or both relations.

 Symbol: ∪

 Syntax:

Relation1∪Relation2\text{Relation1} \cup

\text{Relation2}Relation1∪Relation2

Both Relation1 and Relation2 must have the same schema (same

number of columns with matching data types).

 Example: Suppose we have two tables Employee_A and Employee_B:

Employee_A:

EmpID Name

101 Alice

102 Bob

103 Charlie

Employee_B:

EmpID Name

103 Charlie

104 David

105 Eve

Union Operation:

Employee_A∪Employee_B\text{Employee_A} \cup

\text{Employee_B}Employee_A∪Employee_B

Result:

EmpID Name

101 Alice

102 Bob

103 Charlie

104 David

105 Eve

Explanation: The union operation returns all unique rows from both

tables, combining the data without duplicates.

2. Intersection Operation (∩)

 Purpose: Returns only the rows that are present in both relations.

 Symbol: ∩

 Syntax:

Relation1∩Relation2\text{Relation1} \cap

\text{Relation2}Relation1∩Relation2

As with union, both Relation1 and Relation2 must have the same

schema.

 Example: Using the same tables Employee_A and Employee_B:

Intersection Operation:

Employee_A∩Employee_B\text{Employee_A} \cap

\text{Employee_B}Employee_A∩Employee_B

Result:

EmpID Name

103 Charlie

Explanation: The intersection operation returns only the rows that appear

in both tables.

3. Minus Operation (−)

 Purpose: Returns rows that are present in the first relation but not in the

second.

 Symbol: −

 Syntax:

Relation1−Relation2\text{Relation1} -

\text{Relation2}Relation1−Relation2

As with the other two operations, both Relation1 and Relation2 must

have the same schema.

 Example: Using the same tables Employee_A and Employee_B:

Minus Operation:

Employee_A−Employee_B\text{Employee_A} -

\text{Employee_B}Employee_A−Employee_B

Result:

EmpID Name

101 Alice

102 Bob

Explanation: The minus operation returns only the rows that are in

Employee_A but not in Employee_B.

7. Employees in Research Department:

πName,address,Salary(σDno=DNum(EMP×DEPT)∧Dname = ’Research’)\pi_{Na

me, address, Salary}(\sigma_{Dno = DNum}(\text{EMP} \times \text{DEPT})

\land \text{Dname = 'Research'})πName,address,Salary(σDno=DNum

(EMP×DEPT)∧Dname = ’Research’)

 Employees working on all projects in department 4:

πName(EMP) where SSN∈(WORKS_ON÷P4)\pi_{Name}(EMP) \text{ where }

SSN \in (WORKS_ON \div P_4)πName(EMP) where SSN∈(WORKS_ON÷P4)

 Employees in department 4 or supervising someone in department 4:

EDept4∪SDept4E_{Dept4} \cup S_{Dept4}EDept4∪SDept4

8 Embedded SQL is great for static queries in host languages.

 Dynamic SQL offers flexibility for runtime query generation.

 JDBC provides a standard API for Java applications to interact with databases.

 Stored Procedures encapsulate complex logic in the database, improving

performance and security.

 SQLJ combines the benefits of SQL with Java, offering type safety and

integration.

9 DBC Driver: A software component that enables Java applications to interact

with a specific database. JDBC drivers can be categorized into four types:

 Type 1: JDBC-ODBC Bridge Driver
 Type 2: Native-API Driver

 Type 3: Network Protocol Driver

 Type 4: Thin Driver (pure Java driver)

Type 4 drivers are commonly used because they are platform-independent and

don't require any native libraries.

 Connection Interface: Establishes a connection to the database. This interface

includes methods to create statements, manage transactions, and close the

connection.

 Statement Interface: Used to execute SQL statements against the database.

There are three types of statements:

 Statement: Used for executing simple SQL queries without parameters.

 PreparedStatement: Used for executing parameterized SQL queries, which
helps prevent SQL injection and improves performance.

 CallableStatement: Used to execute stored procedures in the database.

 ResultSet Interface: Represents the result set of a query. It provides methods

to retrieve data from the result set, navigate through the rows, and update data if

applicable.

 Cursors play an essential role in database programming by enabling fine-

grained control over the processing of result sets, making them useful for complex

data manipulation tasks. However, their performance overhead necessitates

careful consideration when designing database interactions.

DECLARE

 CURSOR emp_cursor IS SELECT * FROM employees;

 emp_record emp_cursor%ROWTYPE;

BEGIN

 OPEN emp_cursor;

 LOOP

 FETCH emp_cursor INTO emp_record;

 EXIT WHEN emp_cursor%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(emp_record.name || ' - ' || emp_record.salary);

 END LOOP;

 CLOSE emp_cursor;

END;

10 Embedded SQL allows the integration of SQL statements within host

programming languages (like C, C++, or Java) to facilitate database interactions.

Key Features

 Static SQL: SQL statements are defined at compile time.
 Preprocessing: A preprocessor translates SQL into calls to a database interface.

 Type Safety: Compile-time checks ensure data type consistency.

Example (C)

c

Copy code

EXEC SQL SELECT name INTO :emp_name FROM employees WHERE id =

:emp_id;

Advantages

 Performance: Faster execution due to precompilation.

 Security: Helps prevent SQL injection attacks.

 Error Checking: Syntax errors are caught at compile time.

Disadvantages

 Less Flexibility: Hard to create dynamic queries.

 Tight Coupling: Links application logic closely to database schema.

II. SQLJ

Overview

SQLJ is an extension of SQL for Java, allowing SQL statements to be embedded

directly in Java code while maintaining strong typing.

Key Features

 Type Safety: Compile-time checks for SQL statements and variables.
 Precompilation: A precompiler converts SQLJ into standard JDBC code.

 Java Integration: Combines Java syntax with SQL statements.

Example (Java)

java

Copy code

#sql {

 SELECT name INTO :empName FROM employees WHERE id = 1

};

Advantages

 Type Safety: Errors caught at compile time.
 Ease of Use: SQL statements are readable and integrated with Java.

 Performance: Optimized as SQLJ compiles to JDBC.

Disadvantages

 Precompilation Step: Requires an additional build step.

 Learning Curve: Developers need to learn SQLJ syntax and JDBC.

