

1. a) The key attributes of object-oriented programming (OOP) principles are fundamental concepts that define

how software can be structured and designed around objects. These principles are Encapsulation, Abstraction,

Inheritance, and Polymorphism. Each plays a unique role in creating efficient, modular, and scalable systems.

1. Encapsulation

Encapsulation is the concept of bundling data (attributes) and methods (functions) that operate on the data into

a single unit, known as an object. It also restricts direct access to some of the object's components to ensure data

security and integrity.

Key Points:

Data Hiding: Internal details are hidden from the outside world.

Controlled Access: Access to data is typically provided through methods like getters and setters.

Ensures that objects maintain control over their state.

2. Abstraction

Abstraction focuses on hiding complex implementation details and exposing only the necessary functionality. It

allows developers to interact with objects at a higher level without needing to understand their internal

workings.

Key Points:

Simplifies Complex Systems: Users interact with simplified interfaces.

Focus on What, Not How: Only essential operations are exposed.

Often achieved through abstract classes and interfaces.

3. Inheritance

Inheritance is the ability to create a new class (child class) that derives or inherits the properties and behaviors of

an existing class (parent class). This promotes code reuse and establishes a hierarchical relationship.

Key Points:

Code Reusability: Reduces duplication by reusing existing code.

Hierarchy: Models real-world relationships like "is-a" relationships.

The child class can extend or override parent class functionality.

4. Polymorphism

Polymorphism means "many forms" and allows methods in different classes to share the same name but exhibit

different behaviors. It enables the same interface to be used with different underlying data types or objects.

Key Points:

Flexibility: A single interface can handle different types of objects.

Method Overloading and Overriding: Provides multiple ways to perform the same operation.

Promotes extensibility and adaptability.

5. Classes and Objects

While not a principle per se, classes and objects are the building blocks of OOP. A class serves as a blueprint,

defining the structure and behavior, while an object is an instance of that class.

Key Points:

Classes: Define attributes (data) and methods (behavior).

Objects: Represent specific instances with their own data and state.

Multiple objects can be created from a single class.

Summary of OOP Attributes

Attribute Description

Encapsulation Combines data and methods into a single unit; restricts direct data access.

Abstraction Hides implementation details; exposes only essential functionality.

Inheritance Enables new classes to inherit and extend existing class properties and behavior.

Polymorphism Allows methods or operations to behave differently depending on the object or data.

Classes & Objects Classes define the structure, while objects are specific instances of those classes.

1. b)

In Java, narrowing and widening refer to the conversion of one data type to another. These conversions occur

between primitive data types or between object references and are governed by the size or compatibility of

the data types.

1. Widening Conversion (Implicit Type Casting)

• Definition: Widening occurs when a smaller data type is automatically converted to a larger data type.

o No loss of data happens during this conversion.

o Done implicitly by the compiler.

• Example: Converting int to long or float to double.

public class WideningExample {

 public static void main(String[] args) {

 int num = 100; // Integer value

 long longNum = num; // Automatically converted to long

 double doubleNum = num; // Automatically converted to double

 System.out.println("Integer: " + num);

 System.out.println("Long: " + longNum);

 System.out.println("Double: " + doubleNum);

 }

}

Output:

Integer: 100

Long: 100

Double: 100.0

Key Points:

• Widening is safe because the target type has a larger range.

• Examples:

o byte → short → int → long → float → double.

2. Narrowing Conversion (Explicit Type Casting)

• Definition: Narrowing occurs when a larger data type is explicitly converted to a smaller data type.

o Data loss or truncation may occur.

o Requires an explicit cast by the programmer.

• Example: Converting double to int or long to byte.

public class NarrowingExample {

 public static void main(String[] args) {

 double num = 99.99; // Double value

 int intNum = (int) num; // Explicitly cast to int

 long longNum = 1000L;

 byte byteNum = (byte) longNum; // Explicitly cast to byte

 System.out.println("Double: " + num);

 System.out.println("Converted to Int (truncated): " + intNum);

 System.out.println("Long: " + longNum);

 System.out.println("Converted to Byte (overflow): " + byteNum);

 }

}

Output:

Double: 99.99

Converted to Int (truncated): 99

Long: 1000

Converted to Byte (overflow): -24

Key Points:

• Narrowing can lead to loss of precision or overflow.

• Requires explicit casting because it's unsafe.

• Examples:

o double → float → long → int → short → byte.

1. c)

Method Overloading

Definition:

Method overloading in Java occurs when multiple methods in the same class have the same name but

differ in their parameter list (type, number, or order of parameters). It allows methods to perform similar

but slightly different tasks using the same name.

Key Features of Method Overloading:

1. Same method name, but different parameter lists.

2. Return type can be different, but it alone cannot distinguish overloaded methods.

3. Compile-time polymorphism: The method to be invoked is determined at compile-time.

Example: Method Overloading

java

Copy code

class Calculator {

 // Method to add two integers

 int add(int a, int b) {

 return a + b;

 }

 // Overloaded method to add three integers

 int add(int a, int b, int c) {

 return a + b + c;

 }

 // Overloaded method to add two double values

 double add(double a, double b) {

 return a + b;

 }

}

public class MethodOverloadingExample {

 public static void main(String[] args) {

 Calculator calc = new Calculator();

 System.out.println("Addition of two integers: " + calc.add(5, 10)); // Calls add(int, int)

 System.out.println("Addition of three integers: " + calc.add(5, 10, 15)); // Calls add(int, int, int)

 System.out.println("Addition of doubles: " + calc.add(5.5, 10.2)); // Calls add(double, double)

 }

}

Output:

Addition of two integers: 15

Addition of three integers: 30

Addition of doubles: 15.7

Constructor Overloading

Definition:

Constructor overloading occurs when a class has multiple constructors with the same name (the class

name) but different parameter lists. It enables the creation of objects with different initializations.

Key Features of Constructor Overloading:

1. Same constructor name, but different parameter lists.

2. Allows different ways to initialize an object.

3. Achieves flexibility in object creation.

Example: Constructor Overloading

java

Copy code

class Student {

 String name;

 int age;

 String course;

 // Constructor with no parameters

 Student() {

 name = "Unknown";

 age = 0;

 course = "Not enrolled";

 }

 // Constructor with one parameter

 Student(String name) {

 this.name = name;

 this.age = 18; // Default age

 this.course = "Not enrolled";

 }

 // Constructor with all parameters

 Student(String name, int age, String course) {

 this.name = name;

 this.age = age;

 this.course = course;

 }

 void displayDetails() {

 System.out.println("Name: " + name + ", Age: " + age + ", Course: " + course);

 }

}

public class ConstructorOverloadingExample {

 public static void main(String[] args) {

 // Using different constructors

 Student student1 = new Student();

 Student student2 = new Student("Alice");

 Student student3 = new Student("Bob", 22, "Computer Science");

 // Display student details

 student1.displayDetails();

 student2.displayDetails();

 student3.displayDetails();

 }

}

Output:

Name: Unknown, Age: 0, Course: Not enrolled

Name: Alice, Age: 18, Course: Not enrolled

Name: Bob, Age: 22, Course: Computer Science

Comparison: Method Overloading vs Constructor Overloading

Aspect Method Overloading Constructor Overloading

Definition
Same method name, different

parameter list.

Same constructor name, different

parameter list.

Purpose
Implements tasks with variations

based on arguments.

Creates objects with different

initializations.

Invocation

Called explicitly by the

programmer using the method

name.

Called implicitly when creating

objects with the new keyword.

Example
add(int, int) vs add(double,

double).

Student() vs Student(String) vs

Student(String, int).

2. a)

Comparison Between Procedural-Oriented Programming (POP) and Object-Oriented Programming

(OOP)

Aspect
Procedural-Oriented

Programming (POP)

Object-Oriented Programming

(OOP)

Definition

Focuses on functions and

procedures to solve

problems.

Focuses on objects and their

interactions to model real-world

problems.

Program Structure
Divided into functions and

procedures.
Divided into classes and objects.

Data Management
Data is typically global or

shared between functions.

Data is encapsulated within

objects and accessed via

methods.

Aspect
Procedural-Oriented

Programming (POP)

Object-Oriented Programming

(OOP)

Security
Data is less secure as it is

accessible by any function.

Data is more secure due to

encapsulation and controlled

access.

Modularity
Functions are the building

blocks.

Objects and classes are the

building blocks.

Reusability

Limited reusability; code

reuse is achieved via

functions.

High reusability through

inheritance and polymorphism.

Real-World

Representation

Does not directly

represent real-world

scenarios.

Models real-world entities using

objects.

Code Complexity
Can become complex as

the program grows larger.

Easier to manage and extend

due to modularity and

abstraction.

Examples of

Languages
C, Pascal, Fortran. Java, Python, C++, Ruby.

Focus

Focuses on how tasks are

done (step-by-step

execution).

Focuses on what objects do

(behavior) and their attributes.

Function

Overloading
Not supported.

Supported (method

overloading).

Inheritance Not available.
Key feature that allows

extending existing classes.

Polymorphism Not available.
Supported (e.g., method

overriding and overloading).

Key Differences Explained:

1. Program Structure:

o In POP, the primary focus is on creating functions that perform operations. The data is passed

between these functions.

o In OOP, the program is built around classes that encapsulate data and methods, forming objects that

interact with one another.

2. Encapsulation and Security:

o In POP, data can be freely accessed and modified by any function, making it harder to track changes

and ensure security.

o In OOP, data is encapsulated within objects, and access is restricted using modifiers like private or

protected.

3. Modularity and Reusability:

o POP provides limited reusability. If a procedure needs to be reused, it must be explicitly called and

written for the specific context.

o OOP inherently supports code reuse through features like inheritance and polymorphism, enabling

the creation of new classes from existing ones.

4. Real-World Representation:

o POP does not model real-world entities effectively, as it lacks a direct way to represent objects.

o OOP models real-world entities as objects with attributes (data) and behaviors (methods).

Examples:

Procedural-Oriented Programming:

#include <stdio.h>

void calculateArea(float radius) {

 printf("Area: %.2f\n", 3.14 * radius * radius);

}

int main() {

 float radius = 5.0;

 calculateArea(radius);

 return 0;

}

Object-Oriented Programming:

java

Copy code

class Circle {

 private double radius;

 Circle(double radius) {

 this.radius = radius;

 }

 void calculateArea() {

 System.out.println("Area: " + (3.14 * radius * radius));

 }

}

public class Main {

 public static void main(String[] args) {

 Circle circle = new Circle(5.0);

 circle.calculateArea();

 }

}

2. b) Arrays in Java

An array in Java is a container object that holds a fixed number of elements of the same data type. Arrays

are used to store multiple values in a single variable, which makes them useful for managing collections

of data.

Defining and Initializing Arrays

1. Defining an Array To define an array, you specify the data type of its elements, followed by square brackets [],

and then the array name:

java

Copy code

dataType[] arrayName;

Alternatively:

java

Copy code

dataType arrayName[];

2. Initializing an Array An array can be initialized in two ways:

o At Declaration: Directly assigning values to the array.

o After Declaration: Creating the array object and assigning values.

Examples

1. Declaring and Initializing an Array

• At Declaration:

java

Copy code

int[] numbers = {10, 20, 30, 40, 50};

• After Declaration:

java

Copy code

int[] numbers = new int[5]; // Array of size 5

numbers[0] = 10;

numbers[1] = 20;

numbers[2] = 30;

numbers[3] = 40;

numbers[4] = 50;

2. Accessing Array Elements

Array elements are accessed using their index, starting from 0.

java

Copy code

public class ArrayExample {

 public static void main(String[] args) {

 int[] numbers = {10, 20, 30, 40, 50}; // Declaring and initializing

 System.out.println("First element: " + numbers[0]); // Accessing the first element

 System.out.println("Third element: " + numbers[2]); // Accessing the third element

 }

}

Output:

First element: 10

Third element: 30

3. Looping Through an Array

You can use a loop to iterate through array elements.

java

Copy code

public class ArrayIteration {

 public static void main(String[] args) {

 int[] numbers = {10, 20, 30, 40, 50};

 System.out.println("Array elements:");

 for (int i = 0; i < numbers.length; i++) { // Using a for loop

 System.out.println(numbers[i]);

 }

 System.out.println("Using enhanced for loop:");

 for (int number : numbers) { // Using enhanced for loop

 System.out.println(number);

 }

 }

}

Output:

Array elements:

10

20

30

40

50

Using enhanced for loop:

10

20

30

40

50

4. Multidimensional Arrays

Java supports multidimensional arrays, such as 2D arrays.

public class MultiDimensionalArray {

 public static void main(String[] args) {

 int[][] matrix = {

 {1, 2, 3},

 {4, 5, 6},

 {7, 8, 9}

 };

 System.out.println("Element at [1][1]: " + matrix[1][1]); // Accessing element

 }

}

Output:

Element at [1][1]: 5

Key Points

1. Array elements are stored in contiguous memory locations.

2. The size of an array is fixed after initialization.

3. Arrays can store primitive data types or objects.

4. Default values for array elements:

o Numeric types: 0

o char: \u0000 (null character)

o Boolean: false

o Reference types: null

2. c)

The this Keyword in Java

The this keyword in Java is a reference variable that refers to the current instance of a class. It is used

primarily in methods and constructors to refer to the current object of the class.

Key Uses of the this Keyword:

1. Referring to Instance Variables: this is used to differentiate between instance variables and local variables

when they have the same name.

class Person {

 String name; // Instance variable

 Person(String name) {

 this.name = name; // 'this.name' refers to the instance variable, 'name' refers to the constructor

parameter

 }

 void display() {

 System.out.println("Name: " + this.name); // Using 'this' to refer to the instance variable

 }

}

In this example, the constructor parameter name is shadowing the instance variable name. Using

this.name refers to the instance variable.

2. Invoking Current Class Methods: You can use this to call other methods within the same class.

class Calculator {

 void add() {

 this.display(); // Calling another method in the same class

 }

 void display() {

 System.out.println("Hello from display!");

 }

}

3. Referring to the Current Object: this can be used to pass the current object as an argument to another

method or constructor.

java

Copy code

class Box {

 int length;

 int width;

 Box(int length, int width) {

 this.length = length;

 this.width = width;

 }

 void printBox(Box box) {

 System.out.println("Length: " + box.length + ", Width: " + box.width);

 }

 void display() {

 this.printBox(this); // Passing current object 'this' to the method

 }

}

4. Calling Another Constructor: The this() constructor call can be used to invoke another constructor in the

same class. This must be the first statement in the constructor.

java

Copy code

class Student {

 String name;

 int age;

 Student() {

 this("Unknown", 18); // Calls another constructor with parameters

 }

 Student(String name, int age) {

 this.name = name;

 this.age = age;

 }

}

Key Points:

• this refers to the current instance of a class.

• It helps avoid confusion between instance variables and method parameters when they have the same name.

• It is used to call other methods and constructors within the same class.

• It can be used to pass the current object as a parameter to another method.

3. a)

The final Keyword in Java

The final keyword in Java is used to indicate that a variable, method, or class cannot be modified. It is used in

different contexts to provide restrictions or enforce immutability.

Usage of final Keyword:

1. Final Variables:

o When a variable is declared as final, its value cannot be modified once it is initialized. This makes the

variable constant.

o For primitive types, the value cannot be changed.

o For reference types, the reference (address) cannot be changed, but the object it points to can be

modified.

Example:

public class FinalVariableExample {

 public static void main(String[] args) {

 final int MAX_VALUE = 100; // final primitive variable

 System.out.println(MAX_VALUE);

 // MAX_VALUE = 200; // Error: cannot assign a value to a final variable

 }

}

Output:

Copy code

100

For reference variables, once assigned, the reference cannot point to a different object, but you can modify

the object's fields (if they are not final).

public class FinalReferenceExample {

 public static void main(String[] args) {

 final StringBuilder sb = new StringBuilder("Hello");

 sb.append(" World"); // This is allowed, as the object's content can be modified.

 System.out.println(sb); // Output: Hello World

 // sb = new StringBuilder("New String"); // Error: cannot assign a new object to final variable

 }

}

2. Final Methods:

o When a method is declared as final, it cannot be overridden by subclasses. This ensures that the

behavior of the method is fixed and cannot be changed.

Example:

class Parent {

 final void show() {

 System.out.println("This is a final method.");

 }

}

class Child extends Parent {

 // Error: Cannot override the final method from Parent

 // void show() {

 // System.out.println("Overriding method.");

 // }

}

public class FinalMethodExample {

 public static void main(String[] args) {

 Parent obj = new Parent();

 obj.show(); // Output: This is a final method.

 }

}

Output:

This is a final method.

3. Final Classes:

o A class declared as final cannot be subclassed or extended. This ensures that the class's

implementation is immutable and cannot be changed.

Example:

java

Copy code

final class FinalClass {

 void display() {

 System.out.println("This is a final class.");

 }

}

// Error: Cannot subclass the final class FinalClass

// class SubClass extends FinalClass {

// // Compilation error: Cannot subclass the final class FinalClass

// }

public class FinalClassExample {

 public static void main(String[] args) {

 FinalClass obj = new FinalClass();

 obj.display(); // Output: This is a final class.

 }

}

Output:

This is a final class.

Key Points:

1. final variable: Once initialized, its value cannot be changed.

o For primitives, the value is immutable.

o For references, the reference cannot point to another object, but the object’s state can be changed

unless the fields are final as well.

2. final method: Cannot be overridden by subclasses, ensuring the method's behavior remains unchanged.

3. final class: Cannot be subclassed or extended. This is often used to create immutable classes like String.

3. b)

The super Keyword in Java

In Java, the super keyword is used to refer to the parent class (superclass) of the current object. It is typically

used in the context of inheritance to refer to parent class methods, constructors, and variables.

The super keyword helps to access members of the superclass that may be hidden or overridden by the

subclass.

Key Uses of the super Keyword:

1. Calling Parent Class Constructor:

o The super() keyword can be used to call the constructor of the parent class.

o It must be the first statement in the subclass constructor.

2. Accessing Parent Class Methods:

o If a subclass overrides a method of the parent class, the super keyword can be used to call the

method of the parent class.

3. Accessing Parent Class Variables:

o If the subclass has a variable with the same name as a parent class variable, super is used to refer to

the parent class's variable.

Example 1: Calling Parent Class Constructor

In the following example, the super() keyword is used to call the constructor of the parent class Animal from

the subclass Dog.

class Animal {

 Animal() {

 System.out.println("Animal constructor called");

 }

}

class Dog extends Animal {

 Dog() {

 // Calling the parent class constructor

 super(); // This is optional here as Java calls it automatically if not specified

 System.out.println("Dog constructor called");

 }

}

public class SuperKeywordExample {

 public static void main(String[] args) {

 Dog dog = new Dog(); // Creates an instance of Dog, which calls both Animal and Dog constructors

 }

}

Output:

Animal constructor called

Dog constructor called

• In this example, super() explicitly calls the constructor of the parent class Animal, which is executed before

the Dog constructor.

Example 2: Accessing Parent Class Method

In the following example, the super keyword is used to access the overridden method of the parent class.

class Animal {

 void makeSound() {

 System.out.println("Animal makes sound");

 }

}

class Dog extends Animal {

 void makeSound() {

 System.out.println("Dog barks");

 }

 void callSuperMethod() {

 // Calling the parent class's method

 super.makeSound(); // Uses super to call the overridden method in the parent class

 }

}

public class SuperKeywordExample {

 public static void main(String[] args) {

 Dog dog = new Dog();

 dog.makeSound(); // Calls the Dog class's method

 dog.callSuperMethod(); // Calls the parent class's method using super

 }

}

Output:

Dog barks

Animal makes sound

• Here, makeSound() is overridden in the Dog class. When we call super.makeSound(), the method of the

Animal class is invoked, despite being overridden in the Dog class.

Example 3: Accessing Parent Class Variable

In this example, the super keyword is used to access the variable name from the parent class Animal, even

though it is overshadowed by a variable with the same name in the subclass Dog.

class Animal {

 String name = "Animal";

 void display() {

 System.out.println("Name: " + name);

 }

}

class Dog extends Animal {

 String name = "Dog";

 void display() {

 System.out.println("Name (in Dog class): " + name);

 System.out.println("Name (from Animal class): " + super.name); // Accessing parent class variable using

super

 }

}

public class SuperKeywordExample {

 public static void main(String[] args) {

 Dog dog = new Dog();

 dog.display();

 }

}

Output:

Name (in Dog class): Dog

Name (from Animal class): Animal

• Here, name is defined in both the Animal and Dog classes. Using super.name, we are able to refer to the

name variable from the parent class Animal.

Key Points:

• super is used to refer to the parent class.

• It is used to call the parent class constructor, methods, and access variables.

• super() is typically used to invoke the parent class constructor, and it must be the first statement in the

subclass constructor.

• When a subclass overrides a parent class method, super can be used to access the method in the parent

class.

• Accessing parent class variables with super is useful when there is a naming conflict with variables in the

subclass.

3. c)

public class FactorialCalculator {
 public static void main(String[] args) {
 // Loop from 1 to 10
 for (int i = 1; i <= 10; i++) {
 // Calculate factorial of the current number
 long factorial = 1;
 if (i == 4) {
 // Use while loop to calculate the factorial of 4
 int j = 4;
 while (j > 0) {
 factorial *= j;
 j--;
 }
 } else {
 // For other numbers, use a for loop to calculate factorial
 for (int j = 1; j <= i; j++) {
 factorial *= j;
 }
 }
 // Print the factorial of the number
 System.out.println("Factorial of " + i + " is: " + factorial);
 }
 }
}

Output:
Factorial of 1 is: 1
Factorial of 2 is: 2
Factorial of 3 is: 6
Factorial of 4 is: 24
Factorial of 5 is: 120
Factorial of 6 is: 720
Factorial of 7 is: 5040
Factorial of 8 is: 40320
Factorial of 9 is: 362880
Factorial of 10 is: 3628800

4. a)

Inheritance is one of the core principles of Object-Oriented Programming (OOP) in Java. It allows one class

(called a subclass or child class) to inherit the properties (fields) and behaviors (methods) of another class

(called the superclass or parent class). This helps in code reuse, making it easier to maintain and extend the

codebase.

In Java, inheritance enables the subclass to:

• Inherit the non-private fields and methods of the superclass.

• Override the methods of the superclass to provide specific implementations.

• Extend the functionality of the parent class without modifying the original class.

The extends keyword is used in Java to define inheritance. The subclass inherits all public and protected

members (fields and methods) of the superclass, but it cannot access the private members.

Types of Inheritance in Java

There are different types of inheritance in Java, each representing how classes are related:

1. Single Inheritance:

In single inheritance, a class can inherit from only one superclass. This is the simplest form of inheritance,

where a child class inherits the members (fields and methods) of only one parent class.

• Example:

class Animal {

 void eat() {

 System.out.println("Eating...");

 }

}

class Dog extends Animal { // Dog inherits from Animal

 void bark() {

 System.out.println("Barking...");

 }

}

public class Main {

 public static void main(String[] args) {

 Dog dog = new Dog();

 dog.eat(); // Inherited method

 dog.bark(); // Dog's own method

 }

}

Output:

Eating...

Barking...

2. Multilevel Inheritance:

In multilevel inheritance, a class inherits from another class, and then another class inherits from the child

class. This forms a chain of inheritance.

• Example:

class Animal {

 void eat() {

 System.out.println("Eating...");

 }

}

class Dog extends Animal { // Dog inherits from Animal

 void bark() {

 System.out.println("Barking...");

 }

}

class Puppy extends Dog { // Puppy inherits from Dog

 void play() {

 System.out.println("Playing...");

 }

}

public class Main {

 public static void main(String[] args) {

 Puppy puppy = new Puppy();

 puppy.eat(); // Inherited from Animal

 puppy.bark(); // Inherited from Dog

 puppy.play(); // Own method in Puppy

 }

}

Output:

Eating...

Barking...

Playing...

3. Hierarchical Inheritance:

In hierarchical inheritance, multiple subclasses inherit from a single superclass. In this case, all subclasses

share the common properties and behaviors of the superclass.

• Example:

class Animal {

 void eat() {

 System.out.println("Eating...");

 }

}

class Dog extends Animal { // Dog inherits from Animal

 void bark() {

 System.out.println("Barking...");

 }

}

class Cat extends Animal { // Cat also inherits from Animal

 void meow() {

 System.out.println("Meowing...");

 }

}

public class Main {

 public static void main(String[] args) {

 Dog dog = new Dog();

 dog.eat(); // Inherited method

 dog.bark(); // Dog's own method

 Cat cat = new Cat();

 cat.eat(); // Inherited method

 cat.meow(); // Cat's own method

 }

}

Output:

Eating...

Barking...

Eating...

Meowing...

4. Multiple Inheritance (Not Supported in Java):

Java does not support multiple inheritance through classes, meaning a class cannot directly inherit from

more than one class. This is done to avoid ambiguity issues (for example, if two superclasses define the same

method). However, Java allows multiple inheritance through interfaces (explained below).

• Note: Java doesn't allow a class to inherit from more than one class:

// This will cause an error

class Animal {

 void eat() {

 System.out.println("Eating...");

 }

}

class Pet {

 void play() {

 System.out.println("Playing...");

 }

}

// Multiple inheritance is not allowed with classes

class Dog extends Animal, Pet { // Error: Class Dog cannot have multiple parents

}

However, interfaces can be used to achieve multiple inheritance in Java.

• Example of multiple inheritance using interfaces:

interface Animal {

 void eat();

}

interface Pet {

 void play();

}

class Dog implements Animal, Pet {

 public void eat() {

 System.out.println("Eating...");

 }

 public void play() {

 System.out.println("Playing...");

 }

}

public class Main {

 public static void main(String[] args) {

 Dog dog = new Dog();

 dog.eat(); // From Animal interface

 dog.play(); // From Pet interface

 }

}

Output:

Eating...

Playing...

4. b)
Method Overriding is a feature of Object-Oriented Programming (OOP) in Java where a subclass provides its
own implementation of a method that is already defined in its superclass. The method in the subclass must
have the same name, same parameter list, and same return type (or subtype) as the method in the parent
class.
Method overriding is used to implement runtime polymorphism, which allows a subclass to modify the
behavior of a method inherited from its superclass.
Key Points about Method Overriding:

1. Same method signature: The method in the subclass must have the same method signature (name,
parameters, and return type) as in the parent class.

2. Access modifiers: The overridden method in the subclass cannot have a more restrictive access modifier than
the method in the parent class. For example, if the parent class method is public, the overridden method in
the subclass must also be public.

3. Dynamic Method Dispatch: The version of the overridden method that gets called is determined at runtime,
not compile-time.

4. The @Override annotation: While not mandatory, it is good practice to use the @Override annotation to
indicate that a method is intended to override a method in the parent class.
Example Program: Method Overriding
Let’s consider an example where a Animal class has a method makeSound(), and we override that method in
the Dog class and Cat class.
// Parent class
class Animal {
 // Method in parent class
 void makeSound() {
 System.out.println("Animal makes a sound");
 }
}

// Child class - Dog overrides the makeSound() method
class Dog extends Animal {
 // Overriding method in child class
 @Override
 void makeSound() {
 System.out.println("Dog barks");
 }
}

// Child class - Cat overrides the makeSound() method
class Cat extends Animal {
 // Overriding method in child class
 @Override
 void makeSound() {
 System.out.println("Cat meows");
 }
}

public class MethodOverridingExample {
 public static void main(String[] args) {
 // Creating instances of Dog and Cat classes
 Animal myDog = new Dog(); // Upcasting
 Animal myCat = new Cat(); // Upcasting

 // Calling overridden methods

 myDog.makeSound(); // Calls Dog's makeSound()
 myCat.makeSound(); // Calls Cat's makeSound()

 // Creating an instance of the parent class
 Animal myAnimal = new Animal();
 myAnimal.makeSound(); // Calls Animal's makeSound()
 }
}
Explanation:

1. Parent Class (Animal): It defines a method makeSound() that prints "Animal makes a sound".
2. Child Classes (Dog and Cat): Both override the makeSound() method to provide their own specific

implementation. The Dog class prints "Dog barks", and the Cat class prints "Cat meows".
3. Upcasting: In the main method, we create objects of Dog and Cat, but assign them to references of type

Animal. This is called upcasting, and it is possible because both Dog and Cat are subclasses of Animal.
4. Runtime Polymorphism: When we call makeSound() on an Animal reference that points to a Dog or Cat

object, Java dynamically determines at runtime which version of the method to call based on the actual
object type (not the reference type). This is dynamic method dispatch.
Output:
Dog barks
Cat meows
Animal makes a sound

• When myDog.makeSound() is called, the makeSound() method in the Dog class is executed, which prints
"Dog barks".

• When myCat.makeSound() is called, the makeSound() method in the Cat class is executed, which prints "Cat
meows".

• When myAnimal.makeSound() is called, it executes the method in the Animal class, printing "Animal makes a
sound".
Benefits of Method Overriding:

1. Polymorphism: Overriding allows Java to make decisions at runtime about which method to invoke, enabling
polymorphism.

2. Customized Behavior: It allows a subclass to provide a specific implementation for a method inherited from a
parent class.

3. Code Reusability: While overriding, you can still reuse the code of the parent class by calling super.method()
inside the overridden method if necessary.

4. Cleaner and More Flexible Code: Method overriding allows you to maintain the same method signature
while providing new or more specific behavior in derived classes.

4. c) Explain 'abstract" keyword with an example,
In Java, the abstract keyword is used to define abstract classes and abstract methods.

• Abstract Class: An abstract class is a class that cannot be instantiated directly. It is meant to be extended by
other classes. It can contain both abstract methods (methods without a body) and regular methods (methods
with a body).

• Abstract Method: An abstract method is a method that is declared without an implementation. It does not
have a body and is meant to be overridden in subclasses.
The abstract keyword provides the mechanism for creating a template for other classes. Abstract classes
allow you to define general behavior that can be shared across multiple subclasses, but require the
subclasses to provide specific implementations.
Key Points about Abstract Keyword:

1. Abstract Class:
o Cannot be instantiated directly (i.e., you cannot create an object of an abstract class).
o Can have both abstract and non-abstract methods.
o Can have instance variables, constructors, and methods with code.

2. Abstract Method:
o A method without a body (i.e., no implementation).
o Must be implemented by the subclasses of the abstract class (unless the subclass is also abstract).

3. Concrete Subclass: A subclass that extends an abstract class must provide implementations for all the
abstract methods of the parent class (unless the subclass is abstract).

Example: Using the abstract Keyword
Let's define an example where we have an abstract class Animal, which has an abstract method sound(). We
will then create two concrete subclasses, Dog and Cat, which provide their specific implementations of the
sound() method.
// Abstract class
abstract class Animal {
 // Abstract method (no body)
 abstract void sound();

 // Regular method with a body
 void sleep() {
 System.out.println("This animal is sleeping");
 }
}

// Subclass Dog that extends Animal and implements the abstract method
class Dog extends Animal {
 // Providing implementation for the abstract method sound()
 @Override
 void sound() {
 System.out.println("Dog barks");
 }
}

// Subclass Cat that extends Animal and implements the abstract method
class Cat extends Animal {
 // Providing implementation for the abstract method sound()
 @Override
 void sound() {
 System.out.println("Cat meows");
 }
}

public class Main {
 public static void main(String[] args) {
 // Animal animal = new Animal(); // Error: cannot instantiate the abstract class Animal

 // Creating instances of Dog and Cat
 Animal dog = new Dog();
 Animal cat = new Cat();

 // Calling methods
 dog.sound(); // Calls Dog's implementation of sound
 dog.sleep(); // Calls the regular method sleep (inherited from Animal)

 cat.sound(); // Calls Cat's implementation of sound
 cat.sleep(); // Calls the regular method sleep (inherited from Animal)
 }
}
Explanation:

1. Abstract Class (Animal):
o The sound() method is declared as abstract. This means that any class that extends Animal must

provide its own implementation of sound().
o The sleep() method is a regular method with a body. It provides functionality that can be inherited by

subclasses.
2. Concrete Subclasses (Dog and Cat):

o Both Dog and Cat extend the Animal class.
o Each subclass provides its own implementation of the abstract sound() method. The Dog class

implements it as "Dog barks", and the Cat class implements it as "Cat meows".
3. In the Main method:

o We cannot instantiate an object of the Animal class directly, as it is abstract.
o We create instances of the Dog and Cat classes and call both the overridden sound() method and the

inherited sleep() method.
Output:
Dog barks
This animal is sleeping
Cat meows
This animal is sleeping
Key Benefits of Using the abstract Keyword:

1. Template for Subclasses: The abstract class serves as a template for its subclasses, enforcing a certain
structure by requiring subclasses to implement abstract methods.

2. Code Reusability: The abstract class allows code sharing across subclasses, especially if there are common
methods that can be used by all subclasses, like the sleep() method in the example.

3. Flexibility: Subclasses have the flexibility to provide specific implementations of the abstract methods, which
enables polymorphism.

4. Design Pattern: Abstract classes are often used in design patterns (like Template Method pattern) where the
abstract class provides a framework with certain steps that need to be completed by subclasses.

5. a) Define Interface. Write a java program for the implementation of multiple 10 inheritance using interfaces
to calculate the area of a rectangle and triangle.

An interface in Java is a blueprint of a class that contains only abstract methods (until Java 8) and constants

(static final fields). Starting from Java 8, interfaces can also have default and static methods. From Java 9

onwards, they can have private methods as well.

Interfaces are used to achieve full abstraction and multiple inheritance, as Java does not support multiple

inheritance with classes due to the diamond problem.

Key Features of Interfaces

1. An interface is declared using the interface keyword.

2. It can contain abstract methods (implicitly public and abstract) and constants (public, static, and final by

default).

3. A class implements an interface using the implements keyword and must override all its abstract methods.

4. A class can implement multiple interfaces, thus achieving multiple inheritance.

Java Program: Multiple Inheritance using Interfaces

The following program demonstrates multiple inheritance using interfaces to calculate the area of a

rectangle and the area of a triangle.

// Interface to calculate the area of a rectangle

interface RectangleArea {

 void calculateRectangleArea(double length, double breadth);

}

// Interface to calculate the area of a triangle

interface TriangleArea {

 void calculateTriangleArea(double base, double height);

}

// Class implementing both interfaces

class AreaCalculator implements RectangleArea, TriangleArea {

 // Overriding method from RectangleArea interface

 @Override

 public void calculateRectangleArea(double length, double breadth) {

 double area = length * breadth;

 System.out.println("Area of Rectangle: " + area);

 }

 // Overriding method from TriangleArea interface

 @Override

 public void calculateTriangleArea(double base, double height) {

 double area = 0.5 * base * height;

 System.out.println("Area of Triangle: " + area);

 }

}

public class MultipleInheritanceExample {

 public static void main(String[] args) {

 // Create an object of AreaCalculator

 AreaCalculator calculator = new AreaCalculator();

 // Calculate and display areas

 calculator.calculateRectangleArea(10, 5); // Rectangle with length=10, breadth=5

 calculator.calculateTriangleArea(6, 8); // Triangle with base=6, height=8

 }

}

Explanation:

1. Interfaces (RectangleArea and TriangleArea):

o The RectangleArea interface declares an abstract method calculateRectangleArea.

o The TriangleArea interface declares an abstract method calculateTriangleArea.

2. Class (AreaCalculator):

o Implements both interfaces using the implements keyword.

o Provides concrete implementations for the methods declared in the interfaces.

3. Main Method:

o An object of the AreaCalculator class is created.

o The methods calculateRectangleArea and calculateTriangleArea are called to calculate and display the

respective areas.

Output:

Area of Rectangle: 50.0

Area of Triangle: 24.0

Key Benefits of Interfaces in Multiple Inheritance

1. Avoids Diamond Problem: Unlike classes, multiple interfaces can be implemented without conflicts because

interfaces provide only method declarations and no implementation.

2. Promotes Abstraction: Interfaces help define a contract that implementing classes must adhere to.

3. Flexibility: A class can implement multiple interfaces, making it versatile and reusable.

5. b)
File: Square.java
package shape;

public class Square {
 private double side;

 // Constructor
 public Square(double side) {
 this.side = side;
 }

 // Method to calculate area
 public double getArea() {
 return side * side;
 }
}
File: Triangle.java
package shape;

public class Triangle {
 private double base;
 private double height;

 // Constructor
 public Triangle(double base, double height) {
 this.base = base;
 this.height = height;
 }

 // Method to calculate area
 public double getArea() {
 return 0.5 * base * height;
 }
}
File: Circle.java
package shape;

public class Circle {
 private double radius;

 // Constructor
 public Circle(double radius) {
 this.radius = radius;
 }

 // Method to calculate area
 public double getArea() {
 return Math.PI * radius * radius;
 }
}

File: MainProgram.java
import shape.Square;
import shape.Triangle;
import shape.Circle;

public class MainProgram {
 public static void main(String[] args) {
 // Create objects of the shapes
 Square square = new Square(5); // Square with side = 5
 Triangle triangle = new Triangle(4, 3); // Triangle with base=4, height=3
 Circle circle = new Circle(2); // Circle with radius=2

 // Calculate and display the areas
 System.out.println("Area of Square: " + square.getArea());
 System.out.println("Area of Triangle: " + triangle.getArea());
 System.out.println("Area of Circle: " + circle.getArea());
 }

}

Output:
Area of Square: 25.0
Area of Triangle: 6.0
Area of Circle: 12.566370614359172

6. a) Define package. Explain the access protection for class numbers with respect to package.

A package in Java is a namespace that organizes classes and interfaces. It helps manage large codebases by
grouping related classes together, promoting better modularity and reusability. Packages also prevent naming
conflicts between classes by providing a unique namespace for each group.

• Packages are declared using the package keyword at the beginning of a Java file.
• Built-in packages like java.util, java.io, and java.lang provide pre-defined functionality.
• Custom packages can be created by developers to organize their code.

Types of Packages

1. Built-in Packages: Provided by Java, e.g., java.util, java.io.
2. User-defined Packages: Created by the user to organize their classes, e.g., com.mycompany.utils.

Access Protection in Java with Respect to Packages
Java uses access modifiers to control the visibility of classes, methods, and fields. The behavior of access
modifiers changes based on whether the elements are in the same package or different packages.
Access Modifiers

1. Public:
o Accessible everywhere, both within and outside the package.

2. Protected:
o Accessible within the same package.
o Accessible outside the package only through inheritance.

3. Default (Package-Private):
o Accessible only within the same package.
o No modifier is specified (the absence of a modifier implies default access).

4. Private:
o Accessible only within the same class. Not accessible outside the class, even within the same

package.

Access Control Table

Modifier
Same
Class

Same
Package

Subclass (Different
Package)

Outside
Package

Public Yes Yes Yes Yes

Protected Yes Yes Yes No

Default Yes Yes No No

Private Yes No No No

Example: Access Protection Across Packages
Package 1: mypackage
Create a file named TestClass.java in a package mypackage.
package mypackage;

public class TestClass {
 public int publicField = 10;
 protected int protectedField = 20;
 int defaultField = 30; // Default access
 private int privateField = 40;

 public void displayFields() {

 System.out.println("Public Field: " + publicField);
 System.out.println("Protected Field: " + protectedField);
 System.out.println("Default Field: " + defaultField);
 System.out.println("Private Field: " + privateField);
 }
}
Package 2: anotherpackage
Create another file named AccessTest.java in a package anotherpackage.
package anotherpackage;

import mypackage.TestClass;

public class AccessTest extends TestClass {
 public static void main(String[] args) {
 TestClass test = new TestClass();

 System.out.println("Public Field: " + test.publicField); // Accessible
 // System.out.println("Protected Field: " + test.protectedField); // Not accessible directly
 // System.out.println("Default Field: " + test.defaultField); // Not accessible
 // System.out.println("Private Field: " + test.privateField); // Not accessible

 // Accessing protected field through inheritance
 AccessTest access = new AccessTest();
 System.out.println("Protected Field (via inheritance): " + access.protectedField);
 }
}

Output
Public Field: 10
Protected Field (via inheritance): 20

6. b) Differentiae abstract class and interface

Feature Abstract Class Interface

Definition
A class that cannot be instantiated
and may contain both abstract and
concrete methods.

A blueprint for a class that contains
only abstract methods (before Java
8) and static/final fields.

Keyword
Declared using the abstract
keyword.

Declared using the interface
keyword.

Method
Implementation

Can have abstract methods
(without a body) and concrete
methods (with a body).

Can have:
- Abstract methods (implicitly public
and abstract).
- Default and static methods (from
Java 8).

Inheritance
A class can extend only one
abstract class (single inheritance).

A class can implement multiple
interfaces (multiple inheritance).

Fields
Can have instance variables (both
final and non-final).

Can only have constants (implicitly
public, static, and final).

Constructor
Can have a constructor to initialize
fields.

Cannot have a constructor
(interfaces cannot be instantiated).

Access Modifiers
Methods and fields can have any
access modifier (public, protected,
private).

Methods are implicitly public. Fields
are implicitly public static final.

Feature Abstract Class Interface

Purpose
Used when classes share common
behavior but may also need to
define some unique methods.

Used to define a contract or
blueprint for implementing classes.

Default Methods
Allowed (normal methods are
used).

Supported from Java 8 using the
default keyword.

Static Methods
Can have static methods (with or
without a body).

Supported from Java 8 (must have a
body).

Examples
Abstract classes like Shape, Animal,
etc., share some common
behaviors with subclasses.

Interfaces like Comparable,
Runnable, and List define specific
behaviors.

6. c) Explain with an example, how interfaces can be extended.

Rules for Extending Interfaces

1. An interface can extend one or more interfaces (multiple inheritance is supported).
2. A class that implements the child interface must provide implementations for all methods from both the child

and parent interfaces.

Example: Extending Interfaces
Parent Interface
java
Copy code
interface Shape {
 double calculateArea();
 double calculatePerimeter();
}
Child Interface
java
Copy code
interface AdvancedShape extends Shape {
 double calculateVolume(); // New method added by the child interface
}
Implementing the Child Interface
A class that implements the AdvancedShape interface must implement methods from both AdvancedShape
and Shape.
java
Copy code
class Cube implements AdvancedShape {
 double side;

 Cube(double side) {
 this.side = side;
 }

 // Implementing methods from Shape interface
 @Override
 public double calculateArea() {
 return 6 * side * side; // Surface area of a cube
 }

 @Override
 public double calculatePerimeter() {
 return 12 * side; // Total edge length of a cube
 }

 // Implementing method from AdvancedShape interface
 @Override
 public double calculateVolume() {
 return side * side * side; // Volume of a cube
 }
}
Testing the Implementation
java
Copy code
public class InterfaceExtensionExample {
 public static void main(String[] args) {
 Cube cube = new Cube(3); // Create a Cube with side length = 3

 System.out.println("Surface Area: " + cube.calculateArea());
 System.out.println("Perimeter: " + cube.calculatePerimeter());
 System.out.println("Volume: " + cube.calculateVolume());
 }
}
Output
Surface Area: 54.0
Perimeter: 36.0
Volume: 27.0
Key Points

1. Inheritance in Interfaces:
o The AdvancedShape interface extends the Shape interface.
o It inherits the calculateArea and calculatePerimeter methods and defines a new method

calculateVolume.
2. Implementation:

o The Cube class implements the AdvancedShape interface.
o It provides implementations for all inherited and newly added methods.

3. Multiple Inheritance:
o An interface can extend multiple interfaces. For example:

java
Copy code
interface ThreeDimensional extends Shape, AdvancedShape {
 void renderIn3D();
}
This feature of extending interfaces allows for designing flexible and modular systems in Java.

7. a) What is an exception? Explain the exception handling mechanism with suitable example.

What is an Exception in Java?
An exception in Java is an event that disrupts the normal flow of program execution. It usually occurs during
runtime and is caused by unexpected conditions like invalid user input, hardware failures, or trying to access
a file that doesn’t exist.
Exceptions in Java are represented as objects, which are instances of the Throwable class or its subclasses.

Types of Exceptions

1. Checked Exceptions:
o Exceptions checked at compile time.
o Must be either caught or declared in the method using throws.
o Example: IOException, SQLException.

2. Unchecked Exceptions:
o Exceptions checked at runtime.
o Subclasses of RuntimeException.
o Example: NullPointerException, ArithmeticException.

3. Errors:

o Represent serious problems that are not meant to be handled by the application.
o Example: OutOfMemoryError, StackOverflowError.

Exception Handling Mechanism in Java
Java provides a robust mechanism to handle exceptions using five keywords:

• try: Defines a block of code to monitor for exceptions.
• catch: Handles the exception that occurs in the try block.
• finally: Defines a block of code that always executes, regardless of whether an exception occurs or not.
• throw: Used to explicitly throw an exception.
• throws: Declares the exceptions a method can throw.

Example: Exception Handling in Java
Example 1: Handling a Division by Zero Exception
java
Copy code
public class ExceptionExample {
 public static void main(String[] args) {
 try {
 int result = 10 / 0; // This will cause ArithmeticException
 System.out.println("Result: " + result);
 } catch (ArithmeticException e) {
 System.out.println("Exception caught: Division by zero is not allowed.");
 } finally {
 System.out.println("Execution completed.");
 }
 }
}
Output:
csharp
Copy code
Exception caught: Division by zero is not allowed.
Execution completed.

Explanation

1. The try block contains code that may throw an exception.
2. The catch block handles the ArithmeticException.
3. The finally block executes regardless of whether an exception occurs.

Example 2: Handling Multiple Exceptions
java
Copy code
public class MultipleExceptionExample {
 public static void main(String[] args) {
 try {
 int[] numbers = {1, 2, 3};
 System.out.println(numbers[5]); // ArrayIndexOutOfBoundsException
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("Exception caught: Index is out of bounds.");
 } catch (Exception e) {
 System.out.println("General exception caught.");
 } finally {
 System.out.println("Execution completed.");
 }
 }
}
Output:
Exception caught: Index is out of bounds.

Execution completed.

Example 3: Using throw and throws
java
Copy code
class CustomException extends Exception {
 public CustomException(String message) {
 super(message);
 }
}

public class CustomExceptionExample {
 public static void checkNumber(int num) throws CustomException {
 if (num < 0) {
 throw new CustomException("Negative numbers are not allowed.");
 }
 System.out.println("Number is: " + num);
 }

 public static void main(String[] args) {
 try {
 checkNumber(-5); // This will throw a CustomException
 } catch (CustomException e) {
 System.out.println("Exception caught: " + e.getMessage());
 }
 }
}
Output:
Exception caught: Negative numbers are not allowed.

Key Points of Exception Handling

1. Prevents Crashes:
o Helps prevent the program from terminating unexpectedly.

2. Debugging:
o Makes it easier to debug runtime errors.

3. Custom Exceptions:
o Developers can create custom exceptions by extending the Exception class.

4. Best Practices:
o Use specific exceptions in catch blocks rather than a generic Exception.
o Use finally for cleanup operations like closing files or releasing resources.

By using exception handling effectively, Java programs can gracefully recover from errors and maintain
stability during runtime.

7. b) Explain how to create your own exceptions. Give an example.

In Java, you can create your own exceptions by defining a custom exception class. This is useful when you need to
handle specific error conditions in a way that is more meaningful to your application. Custom exceptions are created
by extending the Exception class or the RuntimeException class.

Steps to Create Your Own Exception

1. Define a Class:
o Extend the Exception class for checked exceptions.
o Extend the RuntimeException class for unchecked exceptions.

2. Add Constructors:
o Include constructors to pass custom error messages or causes.

3. Throw and Handle the Exception:
o Use the throw keyword to throw the custom exception.

o Handle it using try-catch blocks.

Example: Custom Exception
Custom Exception Class
class InvalidAgeException extends Exception {
 // Constructor with custom message
 public InvalidAgeException(String message) {
 super(message);
 }
}
Using the Custom Exception
public class CustomExceptionExample {
 // Method to validate age
 public static void validateAge(int age) throws InvalidAgeException {
 if (age < 18) {
 throw new InvalidAgeException("Age must be 18 or older to register.");
 }
 System.out.println("Registration successful for age: " + age);
 }

 public static void main(String[] args) {
 try {
 validateAge(16); // This will throw an InvalidAgeException
 } catch (InvalidAgeException e) {
 System.out.println("Exception caught: " + e.getMessage());
 }

 try {
 validateAge(20); // This will pass the validation
 } catch (InvalidAgeException e) {
 System.out.println("Exception caught: " + e.getMessage());
 }
 }
}

Output
Exception caught: Age must be 18 or older to register.
Registration successful for age: 20

Explanation

1. Custom Exception Class:
o InvalidAgeException is a custom exception that extends the Exception class.
o A constructor is defined to accept a custom error message.

2. Throwing the Exception:
o In the validateAge method, the custom exception is thrown if the condition (age < 18) is met.

3. Handling the Exception:
o The try-catch block in main catches and handles the InvalidAgeException.

Unchecked Custom Exception
If you want to create an unchecked custom exception, extend RuntimeException instead of Exception.
Example:
class InvalidScoreException extends RuntimeException {
 public InvalidScoreException(String message) {
 super(message);
 }
}

public class UncheckedExceptionExample {
 public static void checkScore(int score) {
 if (score < 0 || score > 100) {
 throw new InvalidScoreException("Score must be between 0 and 100.");
 }
 System.out.println("Valid score: " + score);
 }

 public static void main(String[] args) {
 checkScore(50); // Valid score
 checkScore(-10); // Will throw InvalidScoreException
 }
}

Output
Valid score: 50
Exception in thread "main" InvalidScoreException: Score must be between 0 and 100.

When to Use Custom Exceptions

• When existing exceptions do not sufficiently describe the error condition.
• To make error handling more specific and meaningful.
• To enforce business logic, such as validating application-specific conditions.

By defining and using custom exceptions, you can build more robust and readable error-handling mechanisms
tailored to your application's needs.

8. a) What is checked and unchecked exception? Write a Java program to illustrate nested try catch statement.

In Java, exceptions are divided into two categories: checked exceptions and unchecked exceptions.
Checked Exceptions

1. Definition: Checked exceptions are exceptions that are checked at compile-time. The Java compiler requires
the developer to handle these exceptions using try-catch blocks or by declaring them in the method signature
using throws.

2. Examples:
o IOException
o SQLException
o FileNotFoundException

3. Characteristics:
o Must be explicitly handled in the code.
o Ensures that the program handles the possibility of failure gracefully.

Unchecked Exceptions

1. Definition: Unchecked exceptions are exceptions that occur at runtime. They are subclasses of
RuntimeException, and the compiler does not require the developer to handle them.

2. Examples:
o ArithmeticException
o NullPointerException
o ArrayIndexOutOfBoundsException

3. Characteristics:
o Not required to be explicitly handled.
o Usually indicate programming bugs (e.g., accessing a null reference).

Example Program: Nested Try-Catch Statements
Nested try-catch statements are used when one try block is inside another try block. This is useful when a specific
portion of the code requires additional exception handling.
Program: Nested Try-Catch
public class NestedTryCatchExample {
 public static void main(String[] args) {

 try {
 // Outer try block
 int[] numbers = {10, 20, 30};
 System.out.println("Accessing array element: " + numbers[2]);

 try {
 // Inner try block
 int result = 10 / 0; // This will cause ArithmeticException
 System.out.println("Result: " + result);
 } catch (ArithmeticException e) {
 System.out.println("Inner catch: Division by zero is not allowed.");
 }

 System.out.println("Exiting inner try-catch.");
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("Outer catch: Array index is out of bounds.");
 } finally {
 System.out.println("Outer finally: Program execution completed.");
 }
 }
}

Output
Accessing array element: 30
Inner catch: Division by zero is not allowed.
Exiting inner try-catch.
Outer finally: Program execution completed.

Explanation

1. Outer Try-Catch:
o Handles any ArrayIndexOutOfBoundsException that might occur while accessing the array.

2. Inner Try-Catch:
o Handles any ArithmeticException that might occur while performing division.

3. Finally Block:
o Executes regardless of whether an exception occurs or not.

4. Execution Flow:
o First, the outer try block is executed.
o If an exception occurs in the outer try block, it is handled by the outer catch.
o If no exception occurs in the outer try block, the inner try block is executed.

This example demonstrates how nested try-catch blocks allow fine-grained control over exception handling for
different portions of the code.

8. b) Write a Java program to demonstrate a division by zero exception.

In Java, dividing an integer by zero causes an ArithmeticException, which is an unchecked exception. The following
program demonstrates how this exception occurs and how it can be handled gracefully.

Java Code
public class DivisionByZeroExample {
 public static void main(String[] args) {
 try {
 // Attempting division by zero
 int numerator = 10;
 int denominator = 0;
 int result = numerator / denominator; // This will throw ArithmeticException
 System.out.println("Result: " + result);
 } catch (ArithmeticException e) {

 // Handling the exception
 System.out.println("Exception caught: Division by zero is not allowed.");
 } finally {
 // Executing the finally block
 System.out.println("Execution completed.");
 }
 }
}

Explanation

1. Try Block:
o The try block contains the code that attempts to divide a number by zero, which raises an

ArithmeticException.
2. Catch Block:

o The catch block handles the ArithmeticException and prints an appropriate error message.
3. Finally Block:

o The finally block executes regardless of whether the exception is thrown or not, ensuring cleanup or
final steps.

Output
Exception caught: Division by zero is not allowed.
Execution completed.

8. c) Differentiate between throw and throws with example.

Both throw and throws are related to exception handling in Java, but they serve different purposes. Here's a detailed
comparison:

Feature Throw throws

Purpose
Used to explicitly throw an exception from within a
method or block of code.

Used to declare that a method may throw an
exception.

Usage throw is used to throw an exception explicitly.
throws is used to declare exceptions that a
method may throw.

Position It is used inside a method to throw an exception.
It is used in the method signature to specify
possible exceptions.

Exception
Type

Can throw any type of exception (checked or
unchecked).

Can only be used for checked exceptions.

Syntax throw new ExceptionType("Message"); public void method() throws ExceptionType { }

Required
Handling

The thrown exception can be handled by a try-catch
block or passed to the caller using throws.

The exceptions declared with throws must
either be caught or declared further in the
calling methods.

1. throw Example
The throw keyword is used to explicitly throw an exception from a method or a block of code.
Example: Using throw
java
Copy code
public class ThrowExample {
 // Method to check age
 public static void checkAge(int age) {
 if (age < 18) {
 throw new IllegalArgumentException("Age must be 18 or older.");
 }
 System.out.println("Age is valid: " + age);
 }

 public static void main(String[] args) {
 try {
 checkAge(16); // This will throw an IllegalArgumentException
 } catch (IllegalArgumentException e) {
 System.out.println("Exception caught: " + e.getMessage());
 }
 }
}
Output:
Exception caught: Age must be 18 or older.

• In this example, the throw keyword is used to explicitly throw an IllegalArgumentException when the age is
less than 18.

2. throws Example
The throws keyword is used in a method declaration to specify that the method may throw one or more exceptions,
and the caller of the method must handle them (either by catching or declaring them further).
Example: Using throws
class CustomException extends Exception {
 public CustomException(String message) {
 super(message);
 }
}

public class ThrowsExample {
 // Method that declares it may throw a CustomException
 public static void validateAge(int age) throws CustomException {
 if (age < 18) {
 throw new CustomException("Age must be 18 or older.");
 }
 System.out.println("Age is valid: " + age);
 }

 public static void main(String[] args) {
 try {
 validateAge(16); // This will throw a CustomException
 } catch (CustomException e) {
 System.out.println("Exception caught: " + e.getMessage());
 }
 }
}
Output:
Exception caught: Age must be 18 or older.

• In this example, the throws keyword is used in the method signature (validateAge), which declares that the
method can throw a CustomException. The caller (in this case, main) is responsible for handling the exception
with a try-catch block.

9. a) Define A WT. List and explain types of containers in Java AWT

AWT (Abstract Window Toolkit) is a set of APIs provided by Java for building graphical user interfaces (GUIs) in Java
applications. AWT provides a way to create and manage user interface components, such as buttons, text fields, and
other controls, in a platform-independent manner.
AWT is a part of the java.awt package, and it allows developers to design graphical user interfaces that can work
across different platforms. It is a platform-dependent toolkit because it relies on the underlying operating system for
rendering GUI components, making the appearance of AWT components vary between platforms.

Types of Containers in AWT

A container is a component that can hold other components (called children or sub-components). Containers provide
layout and arrangement functionality for organizing the components within them.
List of Containers in Java AWT

1. Frame (java.awt.Frame)
2. Panel (java.awt.Panel)
3. Dialog (java.awt.Dialog)
4. Window (java.awt.Window)
5. Applet (java.applet.Applet)
6. ScrollPane (javax.swing.JScrollPane)

Explanation of Each Container
1. Frame (java.awt.Frame)

• Description: A Frame is a top-level window with a title and borders, which can contain other components like
buttons, text fields, etc.

• Usage: It is used to create the main window of a GUI application.
• Example:

import java.awt.*;

public class FrameExample {
 public static void main(String[] args) {
 Frame frame = new Frame("AWT Frame Example");
 frame.setSize(400, 300);
 frame.setVisible(true);
 }
}
2. Panel (java.awt.Panel)

• Description: A Panel is a container that is typically used to organize components inside a window or frame. It
can hold multiple components, which are arranged in a layout.

• Usage: It is used for grouping components inside a frame or another container. Panels are commonly used
when you want to organize components in specific regions of a window.

• Example:
import java.awt.*;

public class PanelExample {
 public static void main(String[] args) {
 Frame frame = new Frame("Panel Example");
 Panel panel = new Panel();
 panel.add(new Button("Click Me"));
 frame.add(panel);
 frame.setSize(400, 300);
 frame.setVisible(true);
 }
}
3. Dialog (java.awt.Dialog)

• Description: A Dialog is a pop-up window that is used to get input or show messages to the user. It can be
modal (blocking) or non-modal (non-blocking).

• Usage: It is used for pop-up windows, where the user interacts with the dialog and then returns to the main
window.

• Example:
import java.awt.*;

public class DialogExample {
 public static void main(String[] args) {
 Frame frame = new Frame("Dialog Example");
 Dialog dialog = new Dialog(frame, "Input Dialog", true);
 dialog.setSize(200, 150);
 dialog.setVisible(true);

 }
}
4. Window (java.awt.Window)

• Description: A Window is a top-level container similar to a Frame but without the title bar and border. It is
used when you need a simple window that doesn’t require a title or other decorations.

• Usage: It is used for creating special types of windows or sub-windows that don’t require the traditional
window features like a title bar.

• Example:
import java.awt.*;

public class WindowExample {
 public static void main(String[] args) {
 Window window = new Window(new Frame());
 window.setSize(400, 300);
 window.setVisible(true);
 }
}
5. Applet (java.applet.Applet)

• Description: An Applet is a container used for Java applications that run inside a web browser. Applets are a
part of the java.applet package and were used for embedding Java code in web pages, although they are now
considered obsolete.

• Usage: It is used for small Java applications that need to be embedded inside a browser.
• Example:

import java.applet.*;
import java.awt.*;

public class AppletExample extends Applet {
 public void paint(Graphics g) {
 g.drawString("Hello, Applet!", 20, 30);
 }
}
6. ScrollPane (javax.swing.JScrollPane)

• Description: A ScrollPane is a container that allows a component to be scrolled. It is used when the
component’s content exceeds the visible area, and a scrollbar is needed to navigate the content.

• Usage: It is used to wrap components like TextArea, TextField, Panel, etc., and adds scrollbars automatically
when the content size exceeds the visible area.

• Example:
import javax.swing.*;
import java.awt.*;

public class ScrollPaneExample {
 public static void main(String[] args) {
 JFrame frame = new JFrame("ScrollPane Example");
 JTextArea textArea = new JTextArea(10, 30);
 JScrollPane scrollPane = new JScrollPane(textArea);
 frame.add(scrollPane);
 frame.setSize(400, 300);
 frame.setVisible(true);
 }
}

9. b) Write a Java program to create a window when we press. Mor m the windows display Good Morning A or a the
windows dísplay Good Afternoon iii) Eor e the window display Good Evening iv) Nor n the window display Good
Night.

import java.awt.*;
import java.awt.event.*;

public class GreetingWindow extends Frame implements KeyListener {

 private Label label;

 // Constructor to set up the Frame and add a Label
 public GreetingWindow() {
 setTitle("Greeting Window");
 setSize(400, 200);
 setLayout(new FlowLayout());

 // Create a label to display messages
 label = new Label("Press M, A, E, or N for greetings", Label.CENTER);
 add(label);

 // Add KeyListener to the frame
 addKeyListener(this);

 // Set the frame visibility
 setVisible(true);

 // Close the window on closing
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 System.exit(0);
 }
 });
 }

 // Method to handle key typed events
 public void keyTyped(KeyEvent ke) {
 // No action needed here
 }

 // Method to handle key pressed events
 public void keyPressed(KeyEvent ke) {
 char key = ke.getKeyChar(); // Get the key pressed

 // Display different messages based on the key pressed
 if (key == 'M' || key == 'm') {
 label.setText("Good Morning");
 } else if (key == 'A' || key == 'a') {
 label.setText("Good Afternoon");
 } else if (key == 'E' || key == 'e') {
 label.setText("Good Evening");
 } else if (key == 'N' || key == 'n') {
 label.setText("Good Night");
 } else {
 label.setText("Press M, A, E, or N for greetings");
 }
 }

 // Method to handle key released events
 public void keyReleased(KeyEvent ke) {
 // No action needed here
 }

 // Main method to run the program
 public static void main(String[] args) {
 new GreetingWindow(); // Create and show the window
 }
}

9. c) Write a short note on swings.

Swing is a part of Java's Standard Library (javax.swing package) used to create graphical user interfaces (GUIs). It is an
extension of the Abstract Window Toolkit (AWT), offering a richer set of GUI components and providing a more
powerful and flexible toolkit for building desktop applications. Swing is completely written in Java, making it platform-
independent and more customizable than AWT.

Key Features of Swing:

1. Lightweight Components: Swing components are lightweight (i.e., they do not rely on the underlying
operating system for rendering), unlike AWT components that are heavyweight. Swing components are
written entirely in Java, allowing for more flexibility in appearance and behavior.

2. Pluggable Look and Feel: Swing allows the "look and feel" (i.e., the appearance) of components to be
changed or customized. You can switch between different looks (e.g., Windows look, Mac look, or custom
looks), making Swing applications more visually consistent across platforms.

3. Rich Set of Controls: Swing provides a wide range of GUI components such as buttons, checkboxes, text
fields, tables, and trees. It also provides more advanced components like JTable for displaying tabular data,
JList for displaying lists, and JTree for hierarchical data.

4. Event Handling: Swing supports event-driven programming and provides an easy way to handle events like
mouse clicks, keyboard inputs, and other user interactions. It uses the listener model for handling events.

5. Customizable Components: Swing provides flexibility in customizing the appearance and behavior of
components. For example, you can create custom components or modify the properties of standard
components, such as changing the background color, font, or adding animations.

6. Double Buffering: Swing uses a technique called double buffering, which reduces flickering by drawing the
entire component in memory before displaying it to the screen. This ensures smooth graphical rendering,
especially in complex UIs.

Commonly Used Swing Components:

1. JFrame: A top-level container used to create a window for the application.
2. JButton: A button used to trigger actions when clicked.
3. JLabel: A component used to display text or images.
4. JTextField: A single-line text input field for user input.
5. JTextArea: A multi-line text input field.
6. JComboBox: A dropdown menu for selecting an option.
7. JList: A list of items that can be selected by the user.
8. JTable: A table for displaying data in rows and columns.
9. JScrollPane: A container that provides scrolling capability for other components.
10. JPanel: A container that organizes components within a window.

Example of a Simple Swing Program:
import javax.swing.*;

public class SimpleSwingExample {
 public static void main(String[] args) {
 // Create a JFrame (a top-level container)
 JFrame frame = new JFrame("Swing Example");

 // Create a button
 JButton button = new JButton("Click Me!");

 // Add action listener to the button
 button.addActionListener(e -> JOptionPane.showMessageDialog(frame, "Hello, Swing!"));

 // Add button to the frame
 frame.add(button);

 // Set frame properties
 frame.setSize(300, 200);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}
Explanation:

• This simple Swing program creates a window (JFrame) with a button (JButton).
• When the button is clicked, a message is displayed using a dialog box (JOptionPane).

Advantages of Swing:

1. Cross-Platform: Swing components are platform-independent, making them suitable for creating Java
applications that run across various operating systems without modification.

2. Customizable: Swing allows for greater control over the appearance of the components and the layout of the
user interface.

3. Rich Component Set: Swing provides a rich set of components that allow for the development of
sophisticated UIs, from simple buttons to complex tables and trees.

4. Integrated Event Handling: Swing integrates seamlessly with the event-driven programming model, providing
various listeners to handle user actions.

Disadvantages of Swing:

1. Performance: Swing components can be slower than native components, especially on older machines or
complex interfaces.

2. Complexity: Creating complex layouts and interfaces with Swing can be more challenging compared to
simpler libraries like AWT or newer UI frameworks like JavaFX.

3. Heavyweight: Swing components, while lightweight in terms of native resources, may still consume
significant CPU and memory, particularly in large applications.

