

1.a. Explain the essential attributes of good software.

Ans.
The essential attributes of good software are:

Acceptability - Software must be acceptable to the type of users for which it is designed. This means that it must

be understandable, usable, and compatible with other systems that they use.

Dependability and security - Software dependability includes a range of characteristics including reliability,

security, and safety. Dependable software should not cause physical or economic damage in the event of system

failure. Software has to be secure so that malicious users cannot access or damage the system.

Efficiency - Software should not make wasteful use of system resources such as memory and processor cycles.

Efficiency therefore includes responsiveness, processing time, resource utilization, etc.

Maintainability - Software should be written in such a way that it can evolve to meet the changing needs of

customers. This is a critical attribute because software change is an inevitable requirement of a changing business

environment.

b. Bring out the significance of being ethical and moral responsibility of respected software

professional

The significance of being ethical and morally responsible as a software professional is immense, given the

profound impact that software has on society. Here are key points highlighting this importance:

1. Building Trust and Credibility

 Ethical behavior ensures that clients, users, and stakeholders trust the software professional and their

work.

 Trust is essential for fostering long-term relationships and professional growth.

2. Protecting User Data and Privacy

 Software professionals often handle sensitive personal and financial data. Acting ethically means

ensuring confidentiality and compliance with data protection regulations.

 Misuse or negligence in handling user data can lead to legal repercussions and harm individuals.

3. Ensuring Quality and Reliability

 Ethical professionals prioritize delivering high-quality, reliable, and safe software.

 This responsibility ensures that software functions as intended and minimizes harm or inconvenience

to users.

4. Avoiding Harm

 Ethical decision-making helps prevent creating software that could be misused or cause harm, such as

tools for illegal activities or spreading misinformation.

 Professionals must be vigilant about the unintended consequences of their work.

5. Contributing to Social Good

 Software professionals play a crucial role in building systems that improve lives, enhance

accessibility, and contribute positively to society.

 Being morally responsible encourages professionals to consider inclusivity and equity in their designs.

6. Upholding Professional Standards

 Following ethical guidelines established by professional bodies (e.g., ACM, IEEE) helps maintain the

integrity of the profession.

 It ensures accountability and inspires other professionals to adhere to high standards.

7. Legal Compliance

 Ethical behavior aligns with laws and regulations, reducing the risk of legal issues for both the

individual and their organization.

 This includes adherence to intellectual property rights, licensing agreements, and anti-piracy laws.

2. a Differentiate between waterfall and incremental process models.
Waterfall Model:

There are separate identified phases in the waterfall model:

□ Requirements analysis and definition

□ System and software design

□ Implementation and unit testing

□ Integration and system testing

□ Operation and maintenance

The main drawback of the waterfall model is the difficulty of accommodating change after the
process is underway. In principle, a phase has to be complete before moving onto the next phase.

Problems:

 Inflexible partitioning of the project into distinct stages makes it difficult to respond to
changing customer requirements.

 Therefore, this model is only appropriate when the requirements are well- understood
and changes will be fairly limited during the design process.

 Few business systems have stable requirements.

 The waterfall model is mostly used for large systems engineering projects where a system
is developed at several sites.

In those circumstances, the plan-driven nature of the waterfall model helps coordinate the work.

Incremental Development Model:

The cost of accommodating changing customer requirements is reduced.

The amount of analysis and documentation that has to be redone is much less than is required with
the waterfall model.

It is easier to get customer feedback on the development work that has been done.

Customers can comment on demonstrations of the software and see how much has been
implemented.

More rapid delivery and deployment of useful software to the customer is possible.

Customers are able to use and gain value from the software earlier than is possible with a
waterfall process.

Problems:

 The process is not visible.

 Managers need regular deliverables to measure progress. If systems are developed quickly,
it is not cost-effective to produce documents that reflect every version of the system.

 System structure tends to degrade as new increments are added.

 Unless time and money is spent on refactoring to improve the software, regular change
tends to corrupt its structure. Incorporating further software changes becomes increasingly
difficult and costly.

Changes are usually incorporated in documents without following any
 standard procedure. Thus, verification of all such changes often becomes difficult.

The development ofl1igh-quality and reliable software requires the software to be thoroughly tested. Though

thorough testing of software consumes the majority of resources, underestimating it because of any reasons

deteriorates the software quality.

2.b. Explain the phases of RUP with a neat diagram.

The Rational Unified Process:

□ A modern generic process derived from the work on the UML and associated process.

□ Brings together aspects of the 3 generic process models discussed previously.

□ Normally described from 3 perspectives

i. A dynamic perspective that shows phases over time;

ii. A static perspective that shows process activities;

iii. A proactive perspective that suggests good practice.

1. Inception Phase

The Inception phase focuses on understanding the project’s scope, feasibility, and primary goals. Key activities

include defining the vision, identifying critical requirements, creating an initial business case, and sketching a

high-level architecture. This phase ensures that stakeholders align on objectives and provides a foundation for

subsequent phases.

2. Elaboration Phase

The Elaboration phase aims to establish a stable architecture to address high-risk elements. During this phase,

detailed requirements are gathered, architectural decisions are validated, and prototypes or simulations may be

developed. This phase reduces technical risks and ensures the project is on solid ground before entering full-

scale development.

3. Construction Phase

The Construction phase focuses on building the software system based on the elaborated architecture.

Development teams create code, integrate components, and perform initial testing. The emphasis is on

producing a functional system that meets defined requirements, ready for system testing and deployment.

4. Transition Phase

The Transition phase involves deploying the system to users and ensuring it meets their needs in the

operational environment. Activities include final testing, addressing bugs, user training, and preparing for

maintenance. The goal is to deliver a fully functional product to stakeholders.

3.a. Differentiate between Agile and Plan driven methodologies.

3.b What are Functional and Non-Functional Requirements? Explain the different types of Non-

functional requirements

Ans. Functional requirements

a. Statements of services the system should provide, how the system

should react to particular inputs and how the system should behave

in particular situations.

b. May state what the system should not do.

Non-functional requirements

c. Constraints on the services or functions offered by the system

such as timing constraints, constraints on the development

process, standards, etc.

d. Often apply to the system as a whole rather than individual features or services.

1. 4. a Define Requirements Engineering. Explain the activities of requirement engineering

process. Requirement Engineering is the process of defining, documenting and

maintaining the requirements. The requirements engineering process is an iterative

process that involves

several steps, including:

• Requirements Elicitation: This is the process of gathering information about the needs and

expectations of stakeholders for the software system. This step involves interviews,

surveys, focus groups, and other techniques to gather information from stakeholders.

• Requirements Analysis: This step involves analyzing the information gathered in the

requirements elicitation step to identify the high-level goals and objectives of the

software system. It also involves identifying any constraints or limitations that may

affect the development of the software system.

• Requirements Specification: This step involves documenting the requirements identified in

the

analysis step in a clear, consistent, and unambiguous manner. This step also involves

prioritizing and grouping the requirements into manageable chunks.

• Requirements Validation: This step involves checking that the requirements are

complete, consistent, and accurate. It also involves checking that the requirements are

testable and that they meet the needs and expectations of stakeholders.

• Requirements Management: This step involves managing the requirements throughout

the software development life cycle, including tracking and controlling changes, and

ensuring that the requirements are still valid and relevant.

4. b. 4.b Explain the different Techniques for Requirement elicitation and analysis?

Requirement elicitation and analysis are crucial phases in software development, where the needs and

expectations of stakeholders are gathered and understood. Different techniques are used to ensure that the

requirements are comprehensive, clear, and aligned with the project’s objectives. Here’s an overview of

some common techniques:

1. Interviews

One-on-one or group discussions with stakeholders to gather detailed information about their

needs, expectations, and constraints. Types: Structured (predefined set of questions), Unstructured

(open-ended), and Semi-structured (a mix of both).

 Advantages: Direct interaction helps in understanding complex requirements and clarifying doubts

immediately.

 Challenges: Time-consuming and may lead to incomplete or biased information if not conducted

properly.

2. Surveys/Questionnaires

 A set of written questions distributed to stakeholders to collect their requirements, preferences,

and opinions.

 Advantages: Can reach a large number of stakeholders quickly and is cost-effective.

 Challenges: Limited depth of information, and the quality of responses can vary.

3. Workshops

 Collaborative sessions where stakeholders and developers work together to identify and discuss

requirements.

 Advantages: Facilitates brainstorming, encourages collaboration, and helps in building a consensus.

 Challenges: Requires careful planning and skilled facilitation to be effective.

4. Focus Groups

 A guided discussion with a selected group of stakeholders to gain insights into their needs and

attitudes.

 Advantages: Allows for in-depth exploration of specific topics and helps in identifying common

requirements and concerns.

 Challenges: Group dynamics can influence the discussion, and it may not represent the views of all

stakeholders.

5. Observation

 Observing end-users in their working environment to understand their tasks, challenges, and

interactions with existing systems.

 Techniques: Passive observation (no interaction) or Active observation (with interaction).

 Advantages: Provides real-world insights into how users interact with systems and can uncover

hidden requirements.

 Challenges: Time-consuming and may not capture all possible scenarios.

6. Prototyping

 Developing a preliminary version of the system to visualize and validate requirements with

stakeholders.

 Types: Low-fidelity (paper sketches) and High-fidelity (interactive models).

 Advantages: Helps in identifying requirements early, reduces misunderstandings, and allows

stakeholders to provide feedback.

 Challenges: Can be resource-intensive and might lead to unrealistic expectations if not managed

properly.

7. Document Analysis

 Reviewing existing documentation, such as business plans, project charters, or legacy systems, to

extract relevant requirements.

 Advantages: Provides a historical perspective and can help in identifying regulatory, compliance, or

operational requirements.

 Challenges: Documents may be outdated or incomplete, leading to gaps in understanding.

8. Brainstorming

 A group activity focused on generating a wide range of ideas or solutions related to the requirements.

 Advantages: Encourages creative thinking and can help in discovering new or innovative

requirements.

 Challenges: Can result in too many ideas, some of which may be impractical or irrelevant.

9. Use Case/Scenario Analysis

 Creating detailed narratives or scenarios that describe how the system will be

used in various situations.

 Advantages: Helps in identifying functional requirements and understanding

user interactions with the system.

 Challenges: Requires thorough knowledge of the business processes and can be

complex to develop.

10. Mind Mapping

 A visual technique that involves creating a diagram to represent ideas,

tasks, or requirements.

 Advantages: Helps in organizing and visualizing complex information and

relationships between requirements.

 Challenges: May oversimplify complex requirements or miss important details.

12. Ethnographic Studies

 A deep immersion into the users' environment to understand their cultural and

social contexts.

 Advantages: Provides deep insights into user behavior and needs in a natural

setting.

 Challenges: Time-consuming and may require specialized skills to interpret the

findings.

4. c. What are different Requirement Validation Techniques.

1. Requirements Reviews

Requirements reviews involve a systematic examination of documented requirements by

stakeholders, developers, and testers. These reviews ensure that requirements are clear,

complete, and aligned with the project’s goals. They can be formal, such as structured

meetings with predefined agendas, or informal, like peer reviews. This technique is

effective in identifying inconsistencies, ambiguities, and gaps in the requirements.

2. Prototyping

Prototyping involves developing a simplified model or version of the system or specific

features to validate requirements. Stakeholders interact with the prototype to verify if it

aligns with their expectations and suggest improvements. This technique is particularly

useful for identifying unclear, incomplete, or misunderstood requirements early in the

development process.

3. Model Validation

Model validation uses diagrams or visual representations, such as use case diagrams, data

flow diagrams, or state diagrams, to review requirements. These models provide a clear

and structured way to represent requirements, making it easier to identify inconsistencies,

omissions, or ambiguities. This approach is helpful in validating both functional and non-

functional requirements.

4. Walkthroughs

Walkthroughs are collaborative sessions where stakeholders and team members go

through the requirements step by step. These sessions focus on understanding the

requirements, clarifying doubts, and ensuring alignment among all parties. Walkthroughs

are informal but structured discussions that help uncover errors or gaps in the

requirements.

5.a What is Object Oriented Design? Describe the stages of Object Oriented methodology in

software development.

Object-Oriented Design (OOD) is a software development approach that focuses on

designing a system using objects, which represent real-world entities. These objects

encapsulate both data (attributes) and behavior (methods), enabling modular, reusable, and

maintainable software. OOD leverages principles like abstraction, encapsulation,

inheritance, and polymorphism to create systems that are easier to understand, modify,

and extend.

Stages of Object-Oriented Methodology in Software Development

Object-Oriented software development involves distinct stages that align with the software

engineering lifecycle, emphasizing the use of objects throughout. The key stages are:

1. Object-Oriented Analysis (OOA)

 Focuses on understanding and modeling the problem domain.

 Identifies the key objects and their relationships based on the system's

requirements.

 Produces artifacts like use case models, class diagrams, and object diagrams.

 Tools such as Unified Modeling Language (UML) are often used for visualization.

2. Object-Oriented Design (OOD)

 Transforms the analysis model into a design model that serves as a blueprint for

implementation.

 Defines system architecture, specifying how objects interact to achieve system

functionality.

 Includes class hierarchy design, defining attributes and methods, and outlining

interfaces for interaction between components.

 Results in design artifacts like sequence diagrams, state diagrams, and detailed

class diagrams.

3. Object-Oriented Programming (OOP)

 The implementation phase where the design model is translated into executable

code.

 Focuses on creating and manipulating objects in an object-oriented programming

language (e.g., Java, Python, C++).

 Ensures that the code adheres to the design principles and maintains object

encapsulation and abstraction.

4. Testing and Maintenance

 Objects and their interactions are tested to verify the system’s correctness and

functionality.

 Maintenance ensures the system remains operational and adaptable to future

requirements, leveraging the modularity and reusability of object-oriented

components.

 Updates are often localized, thanks to the encapsulation and low coupling of

objects.

1. 5.b Describe the three models which support for modeling system in different

viewpoints.

Ans. A model is an abstraction of something for the purpose of understanding it

before building it.

Different Types of Models:

The different types of modeling techniques are:

i) Class Model: It describes the structure of objects in a system – their identity,

their relationships to other objects, their attributes and their operations. The goal of

constructing the class model is to capture those concepts from the real world that

are important to an application. Class diagram express the class model.

ii) State Model: It describes those aspects of objects concerned with time and the

sequencing of operations – events that mark changes, state that define the context

for events, and the organization of events and states. State diagram expresses the

state model.

iii) Interaction Model: It describes interactions between objects – How individual

objects collaborate to achieve the behavior of the system as a whole. Use case,

sequence diagram and activity diagram documents the interaction model.

6. a. Write short notes on : i) Generalization ii)Ordering iii) Bags and sequence

iv) Multiplicity v) N-ary Association

Ans

Generalization: Inheritance is also called generalization and is used to

describe the relationship between parent and child classes. A parent class is

also called a base class, and a subclass is also called a derived class. In the

inheritance relationship, the subclass inherits all the functions of the parent

class, and the parent class has all the attributes, methods, and subclasses.

Subclasses contain additional information in addition to the same information

as the parent class.

ii) Ordering :

Ordering ensures that the elements in a collection follow a specific arrangement, which

can be based on criteria like numerical order, alphabetical order, or insertion order. This

property is particularly useful in systems where the sequence of elements is significant,

such as maintaining a sorted list of customers or tasks.

iii)Bags and Sequence

Bags

A bag, also known as a multiset, is a collection that allows duplicate elements but does not

enforce any specific order. Bags are suitable for scenarios where the frequency of

occurrence matters more than the order, such as tracking the count of items sold in a store.

Sequence

A sequence is an ordered collection that preserves the order of insertion of its elements.

Unlike a bag, it considers both order and repetition. Sequences are often used when

processing items in a specific order is crucial, such as executing a series of commands or

managing a playlist.

These structures provide flexibility in managing collections based on the requirements of

the application.

iv) Multiplicity

⮚ Multiplicity is a collection on the cardinality of a set, also applied to

attributes (database application).

⮚ Multiplicity of an attribute specifies the number of possible values for

each instantiation of an attribute. i.e., whether an attribute is

mandatory ([1]) or an optional value ([0..1] or * i.e., null value for

database attributes) .

⮚ Multiplicity also indicates whether an attribute is single valued or can be a

collection.

v) N-ary association in class modeling refers to a relationship between three or

more classes. It is used to represent a situation where multiple entities are

related in a meaningful way, and the relationship itself involves more than two

classes. Unlike binary associations (which connect only two classes), n-ary

associations involve multiple classes simultaneously.

Example of an N-ary Association

6.b Draw a class diagram for Library management system and explain its working.

7.a What is a use case diagram? Explain the importance of use case modeling.

A Use Case Diagram is a visual representation in Unified Modeling Language (UML)

that depicts the functional requirements of a system from the user's perspective. It shows

how actors (users or external systems) interact with the system through use cases

(specific functionalities or tasks). These diagrams help define the scope and boundary of

the system, highlighting what the system will do without delving into implementation

details.

Importance of Use Case Modeling

1. Captures Functional Requirements:

Use case modeling focuses on the system's functionality, ensuring that all

requirements are captured and documented clearly.

2. Facilitates Communication:

By providing a visual, user-friendly representation, use case diagrams bridge the

gap between technical teams and stakeholders, ensuring everyone understands the

system's goals.

3. Defines System Scope:

The diagrams outline the system boundaries, specifying which functionalities are

part of the system and which are external, helping to avoid scope creep.

4. Supports System Design:

Use case modeling serves as a foundation for system design by identifying key

interactions, which guides the creation of class diagrams, sequence diagrams, and

other design artifacts.

5. Improves Test Case Development:

Each use case provides a basis for creating test cases, ensuring thorough testing of

functionalities and meeting user expectations.

6. Focus on User Perspective:

By centering on actors and their interactions, use case modeling ensures that the

system aligns with user needs and improves user satisfaction.

7.b. Draw a sequence diagram for Weather forecast system and explain the

functionality.

8.a Discuss the importance of Behavioral Model.

Behavioral models are essential tools in software engineering that represent how a system

behaves in response to internal and external stimuli. These models focus on the dynamic

aspects of a system, such as processes, events, and interactions among components,

making them crucial for understanding and designing complex systems.

Key Importance of Behavioral Models

1. Understanding System Dynamics:

Behavioral models help in visualizing and analyzing how a system reacts to

different inputs or events over time. This dynamic perspective complements the

static structure provided by class diagrams or other static models.

2. Defining Functional Requirements:

These models capture functional requirements by illustrating how the system

interacts with users or other systems, ensuring that all interactions are clearly

understood and documented.

3. Improving Communication:

Behavioral models, such as state diagrams and sequence diagrams, provide an

intuitive way for stakeholders, developers, and testers to understand system

behavior, enhancing collaboration and reducing misunderstandings.

4. Guiding System Design:

By modeling interactions and states, these diagrams provide a blueprint for

designing system processes, ensuring that all workflows are accounted for and

optimized.

5. Supporting Testing and Validation:

Behavioral models form the basis for creating test cases that validate system

functionality. For example, state diagrams can help testers understand all possible

states and transitions to identify edge cases.

6. Handling Complex Interactions:

They are particularly useful in systems with intricate logic or multiple interacting

components, providing clarity and ensuring that every scenario is addressed.

Examples of Behavioral Models

 State Diagrams: Show how the system transitions between different states based on

events.

 Activity Diagrams: Depict workflows or processes within the system.

8.b What is design pattern? Explain four elements of design pattern

The design pattern is a description of the problem and the essence of its solution, so that the

solution may be reused in different settings.

The pattern is not a detailed specification.

Patterns and Pattern Languages are ways to describe best practices, good designs,

and capture experience in a way that it is possible for others to reuse this

experience.

Design patterns are usually associated with object-oriented design.

The general principle of encapsulating experience in a pattern is one that is equally applicable

to any kind of software design

The four essential elements of design patterns were defined by the ‘Gang of Four’ in their

patterns book:

 A name that is a meaningful reference to the pattern.

 A description of the problem area that explains when the pattern may be applied.

 A solution description of the parts of the design solution, their relationships, and

 their responsibilities. This is not a concrete design description. It is a template for a design

solution that can be instantiated in different ways. This is often expressed graphically and shows

the relationships between the objects and object classes in the solution.

9. a Explain in detail any two Black box testing techniques.

Black box testing focuses on evaluating a system’s functionality without considering its

internal code or structure. Testers provide inputs and examine outputs to ensure the system

meets specified requirements. Two commonly used techniques in black box testing are

Equivalence Partitioning and Boundary Value Analysis.

1. Equivalence Partitioning (EP)

 Description:

Equivalence partitioning involves dividing input data into groups or partitions that are

expected to exhibit similar behavior. Each partition is treated as a single test case,
reducing the number of test cases needed while ensuring comprehensive coverage.

 Purpose:

To identify representative inputs and ensure that the system handles different categories of
input data correctly.

 Example:

For a field accepting numbers from 1 to 100, the input can be divided into three partitions:

o Valid range (e.g., 1 to 100)
o Below valid range (e.g., <1)

o Above valid range (e.g., >100)

2. Boundary Value Analysis (BVA)

 Description:

Boundary value analysis focuses on testing the boundaries of input ranges, as errors are

more likely to occur at these points. Test cases are created for values at, just below, and

just above the boundaries.
 Purpose:

To detect errors at the edges of input ranges where systems often fail.

 Example:
For a system accepting inputs between 1 and 100:

o Test cases: 0 (below boundary), 1 (on boundary), 100 (on boundary), and 101

(above boundary).

9.b Justify when to use verification and validation.

Verification and Validation are complementary processes in software engineering,

ensuring that a product is both built correctly and meets user needs.

When to Use Verification?

Verification is conducted during the development process to ensure the product conforms

to its specifications and design. It focuses on "building the product right."

 Purpose: To check if the software meets the predefined requirements and is free of

defects.
 Stage: Early in the development lifecycle, during requirement gathering, design, and

coding.

 Example:

o During the requirement phase, a team reviews the Software Requirement
Specification (SRS) document to ensure all customer requirements are

documented accurately.

o During coding, static testing is performed to check for syntax errors and

adherence to coding standards without running the software.

When to Use Validation?

Validation is conducted after development to ensure the product meets user needs and

expectations. It focuses on "building the right product."

 Purpose: To check if the software fulfills its intended use in the real-world environment.

 Stage: After development, during testing phases, and at deployment.

 Example:
o During user acceptance testing (UAT), end users test the system to confirm it

solves their problem and performs as expected in their work environment.

o For a mobile app, validation would involve testing its responsiveness, usability,

and compatibility across devices.

Aspect Verification Validation

Objective Ensure product conforms to requirements. Ensure product meets user needs.

Focus Process-oriented ("building it right"). Product-oriented ("building the right one").

Timing During development phases. After development or during deployment.

Example Code reviews, static testing. User acceptance testing, usability testing.

Both are essential to deliver high-quality software that is both technically accurate and

user-friendly.

10.a Define ‘program evolution dynamics. Discuss Lehman’s Law for program

evolution dynamics.
Program evolution dynamics is the study of the processes of system change.After

several major empirical studies, Lehman and Belady proposed that there were a

number of ‘laws’ which applied to all systems as they evolved.

10.b Explain the four strategic options of Legacy System Management.

	The essential attributes of good software are:
	1. Inception Phase
	2. Elaboration Phase
	3. Construction Phase
	4. Transition Phase

	3.b What are Functional and Non-Functional Requirements? Explain the different types of Non- functional requirements
	4. b. 4.b Explain the different Techniques for Requirement elicitation and analysis?
	1. Interviews
	2. Surveys/Questionnaires
	3. Workshops
	4. Focus Groups
	5. Observation
	6. Prototyping
	7. Document Analysis
	8. Brainstorming
	9. Use Case/Scenario Analysis
	10. Mind Mapping
	12. Ethnographic Studies
	1. Requirements Reviews
	2. Prototyping
	3. Model Validation
	4. Walkthroughs
	ii) Ordering :
	Bags
	Sequence
	Example of an N-ary Association
	Importance of Use Case Modeling
	Key Importance of Behavioral Models
	Examples of Behavioral Models
	Patterns and Pattern Languages are ways to describe best practices, good designs, and capture experience in a way that it is possible for others to reuse this experience.
	9. a Explain in detail any two Black box testing techniques.
	1. Equivalence Partitioning (EP)
	2. Boundary Value Analysis (BVA)
	When to Use Verification?
	When to Use Validation?

