

Q1a) Briefly explain the following i) Web browsers ii) URL iii) MIME

i) Web browsers

Web server operations:

 All the communications between a web client and a web server use the HTTP

 When a web server begins execution, it informs the OS under which it is running & it

runs as a background process

 A web client or browser, opens a network connection to a web server, sends information

requests and possibly data to the server, receives information from the server and closes

the connection.

 The primary task of web server is to monitor a communication port on host machine,

accept HTTP commands through that port and perform the operations specified by the

commands.

 When the URL is received, it is translated into either a filename or a program name

General characteristics of web server:

 The file structure of a web server has two separate directories

 The root of one of these is called document root which stores web documents

 The root of the other directory is called the server root which stores server and its

support software’s

 The files stored directly in the document root are those available to clients through top

level URLs

 The secondary areas from which documents can be served are called virtual document

trees.

 Many servers can support more than one site on a computer, potentially reducing the

cost of each site and making their maintenance more convenient. Such secondary hosts

are called virtual hosts.

 Some servers can serve documents that are in the document root of other machines on

the web; in this case they are called as proxy servers

ii) URL

 Uniform Resource Locators (URLs) are used to identify different kinds of resources on

Internet.

 If the web browser wants some document from web server, just giving domain name is

not sufficient because domain name can only be used for locating the server.

 It does not have information about which document client needs. Therefore, URL should

be provided.

 The general format of URL is: scheme: object-address

Example: http: www.vtu.ac.in/results.php

 The scheme indicates protocols being used. (http, ftp, telnet...)

 In case of http, the full form of the object address of a URL is as follows:

//fully-qualified-domain-name/path-to-document

 URLs can never have embedded spaces

 It cannot use special characters like semicolons, ampersands and colons

 The path to the document for http protocol is a sequence of directory names and a

filename, all separated by whatever special character the OS uses. (Forward or

backward slashes)

 The path in a URL can differ from a path to a file because a URL need not include all

 directories on the path

 A path that includes all directories along the way is called a complete path.

Example: http://www.gumboco.com/files/f99/storefront.html

 In most cases, the path to the document is relative to some base path that is specified in

the configuration files of the server. Such paths are called partial paths.

 Example: http://www.gumboco.com/storefront.htm

 iii) MIME

 MIME stands for Multipurpose Internet Mail Extension.

 The server system apart from sending the requested document, it will also send MIME

information.

 The MIME information is used by web browser for rendering the document properly.

 The format of MIME is: type/subtype

 Example: text/html , text/doc , image/jpeg , video/mpeg

 When the type is either text or image, the browser renders the document without any

problem

 However, if the type is video or audio, it cannot render the document

 It has to take the help of other software like media player, win amp etc.,

 These softwares are called as helper applications or plugins

 These non-textual information are known as HYPER MEDIA

 Experimental document types are used when user wants to create a customized

information & make it available in the internet

 The format of experimental document type is: type/x-subtype

Example: database/x-xbase , video/x-msvideo

 Along with creating customized information, the user should also create helper

applications.

 This helper application will be used for rendering the document by browser.

 The list of MIME specifications is stored in configuration file of web server.

Q1b) Explain request phase and response phase of HTTP.

http://www.gumboco.com/storefront.htm

Q2a) List and Explain different types of lists in XHTML with an example

1) Unordered List

The tag, which is a block tag, creates an unordered list. Each item in a list is specified with an

tag (li is an acronym for list item). Any tags can appear in a list item, including nested lists. When

displayed, each list item is implicitly preceded by a bullet

2) Ordered List

Ordered lists are lists in which the order of items is important. This ordered-ness of a list is shown in the

display of the list by the implicit attachment of a sequential value to the beginning of each item. The

default sequential values are Arabic numerals, beginning with 1.

An ordered list is created within the block tag . The items are specified and displayed just as are

those in unordered lists, except that the items in an ordered list are preceded by sequential values

instead of bullets.

3) Definition List

As the name implies, definition lists are used to specify lists of terms and their definitions, as in

glossaries. A definition list is given as the content of a <dl> tag, which is

a block tag. Each term to be defined in the definition list is given as the content of a

<dt>tag. The definitions themselves are specified as the content of <dd> tags. The defined terms of a

definition list are usually displayed in the left margin; the definitions are usually shown indented on the

line or lines following the term.

Q2b) Create a Registration form to accept name, gender, date of birth, qualification,

address and provide Reset and Submit buttons.

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>New document</title>

</head>

<body>

<form method=" " action=" ">

 <h1 align="center">Registration Form</h1>

 <table align='center'>

 <tr>

 <td>Enter Name</td>

 <td><input type="text" name="name1"/></td>

 </tr>

<tr>

 <td>Enter Gender</td>

 <td><input type="radio" name="gender"/>Male

< input type="radio" name="gender"/>Female</</td>

 </tr>

<tr>

 <td>Enter Date of Birth</td>

 <td><input type="date" name="dob"/></td>

 </tr>

<tr>

 <td>Enter your highest qualification</td>

 <td><input type="text" name="qualification"/></td>

 </tr>

 <tr>

 <td>Enter Address</td>

 <td><input type="text" name="add"/></td>

 </tr>

 <tr><td><input type="reset" value="CLEAR"/></td>

 <td><input type="submit" value="INSERT</td>

 </tr>

 </table>

</form>

</body>

</html>

Q3a)Discuss various selectors of CSS Explain its usage with an example

1) Simple Selector Forms:

In case of simple selector, a tag is used. If the properties of the tag are changed, then it reflects at

all the places when used in the program. The selector can be any tag. If the new properties for a

tag are not mentioned within the rule list, then the browser uses default behaviour of a tag.

Eg:

h1 { font-size : 24pt; }

h2, h3{ font-size : 20pt; }

body b em { font-size : 14pt; }

Only applies to the content of ‘em’ elements that are descendent of bold element in the body of

the document. This is a contextual selector

2) Class Selectors:

Class selectors are used to allow different occurrences of the same tag to use different style

specifications.

Eg

<head>

<style type = "text/css">

p.one { font-family: 'Lucida Handwriting'; font-size: 25pt; color: Red; }

p.two{ font-family: 'Monotype Corsiva'; font-size: 50pt; color: green; }

</style>

</head>

<body>

<p class = "one">Web Technology</p>

<p class = "two">Web Technology</p>

</body>

3) Generic Selectors:

Sometimes it is convenient to have a class of Style specification that applies to the content of

more than one kind of tag. This is done by using a generic class, which is defined without a tag

name in its name. In place of the tag name, you use the name of the generic class, which must

begin with a period.

Eg

<head>

<style type = "text/css">

.sale{ font-family: 'Monotype Corsiva'; color: green; }

</style>

</head>

<body>

<p class = "sale">Weekend Sale</p>

<h1 class = "sale">Weekend Sale</h1>

<h6 class = "sale"> Weekend Sale</h6>

</body>

4) id Selectors:

An id selector allows the application of a style to one specific element.

Eg:

<head>

<style type = "text/css">

#one { font-family: 'Lucida Handwriting'; font-size: 25pt; color: Red; }

#two { font-family: 'Monotype Corsiva'; font-size: 50pt; color: green; }

</style>

</head>

<body>

<p id = "one">Web Technology</p>

<p id = "two">Web Technology</p>

</body>

5) Universal Selectors:

The universal selector, denoted by an asterisk (*), applies its style to all elements in a document.

<head>

<style type = "text/css">

 { font-family: 'Lucida Handwriting'; font-size: 25pt; color: Red; }

</style>

</head>

<body>

<p>Web Technology</p>

<p>Web Technology</p>

</body>

 Q3b) Explain box model in detail with an example

Q4a) Give example for pattern matching methods of strings in JavaScript

Q4b) Write a JavaScript program to accept a number and display the reserve of a given

number

<!DOCTYPE HTML>

<?xml version="1.0" encoding="UTF-8"?>

<html>

<head>

<script type ="text/javascript">

function rev_num()

{

 var num = prompt("Enter the number to be reveresed :", " ");

 var n= num;

 var rev = 0, rem;

 while (n>0)

 {

 rem = n % 10;

 rev = rev * 10 + rem ;

 n = Math.floor(n/10);

 }

 document.write("The given number is : " +num+ "
 The reversed number is : "

+rev+ "\n");

}

</script>

</head>

<body onload = "rev_num();">

</body>

</html>

Q5a) List out the various bootstrap button classes for different styles of button. Explain

their use with code snippet.

Anything that is given a class of .btn will inherit the default look of a gray button with rounded corners.
However, you can add color to the buttons by adding extra classes

<button type="button" class="btn">Base class</button>

<button type="button" class="btn btn-primary">Primary</button>

<button type="button" class="btn btn-secondary">Secondary</button>

<button type="button" class="btn btn-success">Success</button>

<button type="button" class="btn btn-danger">Danger</button>

<button type="button" class="btn btn-warning">Warning</button>

<button type="button" class="btn btn-info">Info</button>

<button type="button" class="btn btn-light">Light</button>

<button type="button" class="btn btn-dark">Dark</button>

<input class="btn btn-primary" type="submit" value="Submit">

Button Sizes
If you need larger or smaller buttons, simply add .btn-large, .btn-small, or .btn mini to links or buttons

Button Group
Button groups allow multiple buttons to be stacked together (see Figure 3-3). This is useful when you
want to place items like alignment buttons together. To create a button group, simply wrap a series of
anchors or buttons in a <div> that has .btn-group as a class:

Buttons with Dropdowns

To add a dropdown to a button, simply wrap the button and dropdown menu in a .btn-group. You can

also use to act as an indicator that the button is a dropdown

Btn checkbox

<div class="btn-group" >

 <input type="checkbox" class="btn-check" id="btncheck1">

 <label class="btn btn-outline-primary" for="btncheck1">Checkbox 1</label>

 <input type="checkbox" class="btn-check" id="btncheck2" >

 <label class="btn btn-outline-primary" for="btncheck2">Checkbox 2</label>

 <input type="checkbox" class="btn-check" id="btncheck3" >

 <label class="btn btn-outline-primary" for="btncheck3">Checkbox 3</label>

</div>

Btn radio

<div class="btn-group" >

 <input type="radio" class="btn-check" name="btnradio" id="btnradio1" checked>

 <label class="btn btn-outline-primary" for="btnradio1">Radio 1</label>

 <input type="radio" class="btn-check" name="btnradio" id="btnradio2" >

 <label class="btn btn-outline-primary" for="btnradio2">Radio 2</label>

 <input type="radio" class="btn-check" name="btnradio" id="btnradio3" >

 <label class="btn btn-outline-primary" for="btnradio3">Radio 3</label>

</div>

Q5b) Explain how to create custom forms in Bootstraps with an example

Bootstrap 4 enables to customize the browser’s default form and control layouts. The customized

form can be created by using Bootstrap 4 like checkbox, radio buttons, file inputs and more.

Bootstrap simplifies the process of alignment and styling of web pages in many forms like label,

input, field, textarea, button, checkbox, etc.

Custom Checkbox: The .custom-control and .custom-checkbox classes are used in <div> element

to wrap the container element. The .custom-control-input class is used with input

type=”checkbox” to create custom input textbox

. <div class="custom-control custom-checkbox mb-3">

 <input type="checkbox" class="custom-control-input"
 id="customCheckBox" name="checkbox1">
 <label class="custom-control-label" for="customCheckBox">
 Custom checkbox
 </label>
 </div>

Custom switch: The .custom-control and .custom-switch classes are used to wrap the input

checkbox. The .custom-control-input class is used with label tag. Bootstrap switch/toggle is a

simple component used for activating one of two predefined options. Commonly used as an

on/off button. A toggle button allows the user to change a setting between two states.

<div class="custom-control custom-switch">
 <input type="checkbox" class="custom-control-input"
 id="customSwitch" name="switch">
 <label class="custom-control-label" for="customSwitch">
 Toggle Off
 </label>
 </div>

Custom Radio button: It is the same as a checkbox. It uses .custom-radio instead of .custom-

input on the label tag. Checkbox and radio buttons are made to support HTML-based form

validation and give brief, friendly labels.

<div class="custom-control custom-radio">
 <input type="radio" class="custom-control-input"

 id="customRadio" name="radioButton">
 <label class="custom-control-label" for="customRadio">
 Radio Button Off
 </label>
 </div>

Q6a) With suitable code snippets explain Grid system of Bootstrap

Default Grid System

The default Bootstrap grid (see Figure 1-1) system utilizes 12 columns, making for a 940px-wide container without

responsive features enabled. With the responsive CSS file added, the grid adapts to be 724px or 1170px wide,

depending on your viewport. Below 767px viewports, such as the ones on tablets and smaller devices, the columns

become fluid and stack vertically. At the default width, each column is 60 pixels wide and offset 20 pixels to the

left. An example of the 12 possible columns is in Figure 1-1

 Figure 1-1. Default grid

Basic Grid HTML

To create a simple layout, create a container with a <div> that has a class of .row and add the appropriate amount

of .span* columns. Since we have a 12-column grid, we just need the amount of .span* columns to equal 12. We

could use a 3-6-3 layout, 4-8, 3-5-4, 2-8-2… we could go on and on, but I think you get the gist.

The following code shows .span8 and .span4, which adds up to 12:

<div class="row">
<div class="span8">...</div>
<div class="span4">...</div>
</div>

Offsetting Columns
You can move columns to the right using the .offset* class. Each class moves the span over that width. So an
.offset2 would move a .span7 over two columns (see Figure 1-2):

<div class="row">
<div class="span2">...</div>
<div class="span7 offset2">...</div>
</div>

Nesting Columns
To nest your content with the default grid, inside of a .span*, simply add a new .row with enough .span* that it
equals the number of spans of the parent container (see Figure 1-3):

Fluid Grid System
The fluid grid system uses percentages instead of pixels for column widths. It has the same responsive capabilities
as our fixed grid system, ensuring proper proportions for key screen resolutions and devices. You can make any
row “fluid” by changing .row to .row-fluid. The column classes stay exactly the same, making it easy to flip between
fixed and fluid grids. To offset, you operate in the same way as the fixed grid system— add .offset* to any column
to shift by your desired number of columns:

Nesting a fluid grid is a little different. Since we are using percentages, each .row resets the column count to 12.
For example, if you were inside a .span8, instead of two .span4 elements to divide the content in half, you would
use two .span6 divs (see Figure 1-4). This is the case for responsive content, as we want the content to fill 100% of
the container:

Q6b) Describe different containers in Bootstrap with example

Containers are the most basic layout element in Bootstrap and are required when

using our default grid system. Containers are used to contain, pad, and (sometimes)

center the content within them. While containers can be nested, most layouts do not

require a nested container.

Bootstrap comes with three different containers:

 .container, which sets a max-width at each responsive breakpoint

 .container-fluid, which is width: 100% at all breakpoints

 .container-{breakpoint}, which is width: 100% until the specified breakpoint

The table below illustrates how each container’s max-width compares to the

original .container and .container-fluid across each breakpoint.

Q7a) Demonstrate the use of different methods for adding and removing classes with

suitable code example

Q7b) Explain the following:

i)bind()

ii) evntTypeName()

iii) One()

iv) Unbind()

Q8a) Discuss the commands for showing and hiding elements with an example

Q8b) Explain how to use child, container and attribute selectors in JQuery

Q9a) Discuss different types of expressions in Angular JS with an example

Q9b) What is $scope and explain how to use controllers with an example

Q10a) Explain the following directives with example i)ng-app ii)ng-model iii)ng-init iv) ng-

repeat

Q10b) What is filter? Explain uppercase, lowercase, order by and currency with an

example

