

1. a) Analytics process model

1. Define the business problems to be solved using analytics.

2. All source-data need to be identified that could be of potential interest. (Select of
data will have a deterministic impact on the analytical model).

3. All data will be gathered in a staging area which could be data mart/ data
warehouse. Basic exploratory analysis will be considered, for example: OLAP
(Online Analytical Processing) facilities for multi

4. Data Cleaning steps to get rid of all in
outliers and duplicate data. Additional transformations may also be considered,
such as binning, alphanumeric to numeric coding, geographical aggregation etc.

5. In the analytics steps, an analytical model will be e
and transformed data. Once the model is built, it will be interpreted and evaluated
by the business experts. Many trivial patterns will be detected by the model.

Knowledge Pattern: Unexpected yet interesting and actionable pat
knowledge pattern). Once analytical model has been appropriately validated and
approved, it can be put into production as an analytical application.

b) Missing Values

Missing values can occur because of various reasons.

 Information can be non-applicable

 Information can also be undisclosed

Define the business problems to be solved using analytics.

data need to be identified that could be of potential interest. (Select of
data will have a deterministic impact on the analytical model).

be gathered in a staging area which could be data mart/ data
warehouse. Basic exploratory analysis will be considered, for example: OLAP
(Online Analytical Processing) facilities for multi-dimensional data analysis.

Data Cleaning steps to get rid of all inconsistencies – like missing data / values,
outliers and duplicate data. Additional transformations may also be considered,
such as binning, alphanumeric to numeric coding, geographical aggregation etc.

In the analytics steps, an analytical model will be estimated on the pre
and transformed data. Once the model is built, it will be interpreted and evaluated
by the business experts. Many trivial patterns will be detected by the model.

Knowledge Pattern: Unexpected yet interesting and actionable patterns (referred to as
knowledge pattern). Once analytical model has been appropriately validated and
approved, it can be put into production as an analytical application.

Missing values can occur because of various reasons.

applicable

Information can also be undisclosed

data need to be identified that could be of potential interest. (Select of

be gathered in a staging area which could be data mart/ data
warehouse. Basic exploratory analysis will be considered, for example: OLAP

dimensional data analysis.

like missing data / values,
outliers and duplicate data. Additional transformations may also be considered,
such as binning, alphanumeric to numeric coding, geographical aggregation etc.

stimated on the pre-processed
and transformed data. Once the model is built, it will be interpreted and evaluated
by the business experts. Many trivial patterns will be detected by the model.

terns (referred to as
knowledge pattern). Once analytical model has been appropriately validated and

Missing data can also originate an error during merging. Some analytical techniques (e.g.,
decision trees) can directly deal with missing values. They are:

 Replace (impute)
 Delete
 Keep

Replace: This implies replacing the missing value with a known value. Consider the table
1.2 one could calculate the missing credit bureau scores with the average or median of
the known values. For marital status the mode can then be used.
Delete: This is the most straight forward option and consists of deleting observations or
variables with lots of missing values. This, of course assumes that information is missing
at random and has not meaningful interpretation and/or relationship to the target.

Keep: Missing values can be meaningful (e.g a customer didn’t disclose his/her income
because if he/she is currently unemployed). Obviously, this is clearly related to the target
(e.g good/bad risk or churn) and needs to be considered as a separate category.

SAMPLING

Sampling is to take a subset of past customer data and use that to build an
analytical model.

 With the availability of high performance computing facilities (e.g grid
computing and cloud computing) one could also directly analyze the full data
set.

 Key requirement for a good sample is, it should be representative of the
 future customers on which the analytical model will be run.
 Timing aspect becomes important because customers of today are more

similar to customers of tomorrow than customers of yesterday.

 Choosing the optimal time window for the sample involves the trade-off
between the lost data and the recent data.

 The sample should also be taken from an average business period to get a
picture of the target population that is as accurate as possible.

2. a) It is important to appropriately consider the different types of data elements at the start
of the analysis. The different types of data elements can be considered:

 Continuous
 Categorical

Continuous: These are data elements that are defined on an interval that can be limited or
unlimited. Examples include income, sales, RFM (recency, frequency, monetary).

Categorical: The categorical data elements are differentiated as follows:

 Nominal: These are data elements that can only take on a limited let of values with no
meaningful
 ordering in between. Examples: marital status, profession, purpose of loan.

 Ordinal: These are data elements that can only take on a limited set of values with a
meaningful

 ordering in between. Examples: credit rating; age coded as young, middle aged, and old.
 Binary: These are data elements that can only take on two values. Example: gender,
employment
 status.

Appropriately distinguishing between these different data elements is of key importance
to start the analysis when importing the data into an analytics tool. For example, if
marital status were to be incorrectly specified as a continuous data element, then the
software would calculate its mean, standard deviation, and so on, this is obviously
meaningless.

b) To calculate the Z-scores and detect the outlier for the given data, we will proceed step by step. The Z-
score formula is:

\[

Z = \frac{{X - \mu}}{\sigma}

\]

Where:

- \(Z \) is the Z-score

- \(X \) is the value from the dataset

- \(\mu \) is the mean (which is 40)

- \(\sigma \) is the standard deviation (which is 20)

Step 1: Calculate Z-scores

The dataset provided is: \(30, 50, 10, 40, 60, 80 \).

We will use the Z-score formula for each data point.

1. **For \(X = 30 \):**

\[

Z = \frac{{30 - 40}}{20} = \frac{{-10}}{20} = -0.5

\]

2. **For \(X = 50 \):**

\[

Z = \frac{{50 - 40}}{20} = \frac{{10}}{20} = 0.5

\]

3. **For \(X = 10 \):**

\[

Z = \frac{{10 - 40}}{20} = \frac{{-30}}{20} = -1.5

\]

4. **For \(X = 40 \):**

\[

Z = \frac{{40 - 40}}{20} = \frac{0}{20} = 0

\]

5. **For \(X = 60 \):**

\[

Z = \frac{{60 - 40}}{20} = \frac{{20}}{20} = 1

\]

6. **For \(X = 80 \):**

\[

Z = \frac{{80 - 40}}{20} = \frac{{40}}{20} = 2

\]

Step 2: Z-Scores Summary

| Data Value (X) | Z-Score |

|----------------|----------|

| 30 | -0.5 |

| 50 | 0.5 |

| 10 | -1.5 |

| 40 | 0 |

| 60 | 1 |

| 80 | 2 |

Step 3: Detect the Outlier

An **outlier** is typically a data point that lies far from other points. One common method to detect
outliers is by using Z-scores. Generally:

- A Z-score greater than **+3** or less than **-3** is considered an outlier in most cases.

For this dataset:

- The Z-scores range from **-1.5** to **2**, which is within the normal range.

- Therefore, **none of the data points are extreme outliers** according to the Z-score rule (i.e., no Z-
scores exceed the ±3 threshold).

c) Characteristics of Big Data – 4 V’s
(i) Volume – The name Big Data itself is related to a size which is enormous. Size of data plays a
very crucial role in determining value out of data. Also, whether a particular data can actually
be considered as a Big Data or not, is dependent upon the volume of data. Hence, 'Volume' is
one characteristic which needs to be considered while dealing with Big Data.
(ii) Variety – Variety refers to heterogeneous sources and the nature of data, both structured
and unstructured. During earlier days, spreadsheets and databases were the only sources of
data considered by most of the applications. Nowadays, data in the form of emails, photos,
videos, monitoring devices, PDFs, audio, etc. are also being considered in the analysis
applications. This variety of unstructured data poses certain issues for storage, mining and
analyzing data.
(iii) Velocity – The term 'velocity' refers to the speed of generation of data. How fast the data is
generated and processed to meet the demands, determines real potential in the data.Big Data
Velocity deals with the speed at which data flows in from sources like business processes,
application logs, networks, and social media sites, sensors, Mobile devices, etc. The flow of data
is massive and continuous.
(iv) Variability – This refers to the inconsistency which can be shown by the data at times, thus
hampering the process of being able to handle and manage the data effectively.

3 a) Data Discovery:

Data discovery allows business users to interact with enterprise data visually to uncover hidden
patterns and trends. Data discovery, in the context of IT, is the process of extracting actionable
patterns from data. The extraction is general performed by humans or, in certain cases, by artificial
intelligence systems.

Lot of buzz in the industry about data discovery, used to describe the new wave of business
intelligence that enables users to explore data, make discoveries and uncover insights in a dynamic
and intuitive way.

There are two software companies that stand out in the crowd by growing their business are:
Tableau Software and QlikTech International. They grew through a model called as “land and
expand”.

It basically works by getting intuitive software in the hands of some business users to get in the door
and grow upward. In order to succeed at the BI game of the “land and expand model” we need a
product that is easy to use with lots of effective outputs.

The company’s cofounder and chief scientist Pat Harahan: he invented the technology that helped to
change the world of animation film. Even though Pat Harahan was not a software BI, he was able to
bring the new creative lens in to BI software market. When we have a product that is “easy to use”,
it is also called as “self-service approach” named by Harahan and his colleagues. Analytics and
reporting are produced by the people using the results. IT provides the infrastructure, but business
people create their own reports and dashboards.

Predictive Analytics:

Predictive analytics is a branch of advanced analytics that uses historical data, statistical
algorithms, and machine learning techniques to predict future outcomes. By analyzing patterns in
existing data, predictive models can forecast future events, behaviors, or trends, providing
valuable insights for decision-making.

Components of Predictive Analytics:

1. Data Collection:
o Predictive analytics begins with data collection from various sources, including historical

datasets, databases, and real-time data feeds. The more comprehensive and relevant
the data, the more accurate the predictions.

2. Data Processing:
o Collected data is cleaned, preprocessed, and transformed into a format suitable for

analysis. This may involve handling missing values, removing duplicates, normalizing the
data, and transforming categorical variables.

3. Modeling:
o A variety of statistical models and machine learning algorithms are applied to the

processed data. The choice of the model depends on the type of data, the problem
being addressed, and the desired outcome. Some common models include:

 Linear regression: For continuous outcome predictions.

 Logistic regression: For binary outcomes (e.g., yes/no).
 Decision trees: For classification and regression tasks.
 Neural networks: For complex, non-linear patterns and deep learning.
 Time-series analysis: For data with a time component, such as stock prices or

sales forecasting.
4. Evaluation and Tuning:

o Once the model is built, its accuracy and performance are evaluated using statistical
metrics like Mean Squared Error (MSE), Root Mean Squared Error (RMSE), accuracy
score, precision, recall, etc. The model is then fine-tuned by adjusting its parameters and
hyperparameters to achieve the best results.

5. Prediction:
o After tuning, the model is applied to new, unseen data to generate predictions. The

predictions can range from numerical outcomes (e.g., sales revenue, temperature) to
categorical outcomes (e.g., churn/no churn, fraud/no fraud).

b) Crowdsourcing: Crowdsourcing is a great way to capitalize on the resources that can build
algorithms and predictive models

Kaggle: Kaggle describes itself as “an innovative solution for statistical/analytics outsourcing.”
That’s a very formal way of saying that Kaggle manages competitions among the world’s best data
scientists. Here’s how it works: Corporations, governments, and research laboratories are
confronted with complex statistical challenges. They describe the problems to Kaggle and provide
data sets. Kaggle converts the problems and the data into contests that are posted on its web site.
The contests feature cash prizes ranging in value from $100 to $3 million. Kaggle’s clients range in
size from tiny start-ups to multinational corporations such as Ford Motor Company and government
agencies such as NASA.

As per Anthony Goldbloom, Kaggle’s founder and CEO: The idea is that someone comes to us
with a problem, we put it up on our website, and then people from all over the world can compete to
see who can produce the best solution.”

 Kaggle’s approach is that it is truly a win-win scenario—contestants get access to real-

 world data (that has been carefully “anonymized” to eliminate privacy concerns) and prize

 sponsors reap the benefits of the contestants’ creativity.

 Crowdsourcing is a disruptive business model whose roots are in technology but is
 extending beyond technology to other areas.

 There are various types of crowd sourcing, such as crowd voting, crowd purchasing,
 wisdom of crowds, crowd funding, and contests.

 Take for example:

 99designs.com/, which does crowdsourcing of graphic design
 agentanything.com/, which posts “missions” where agents vie for to run

errands
 33needs.com/, which allows people to contribute to charitable programs

that make a social impact

Inter- and Trans-Firewall Analytics

Over the last 100 years, supply chain has evolved to connect multiple companies and enable them to
collaborate to create enormous value to the end
(collaborative planning, forecasting and replenishment
leverage the Internet and electronic data interchange to reduce inventories and expenses while
improving customer service), VMI (vendor
which manufacturers receive sales data to forecast consumer demand more accurately), etc.

Decision sciences will witness a similar trend as enterprises begin to collaborate on insights across
the value chain. For instance, in the healthcare ind
collaborating on data and insights from the health insurance provider, pharmacy delivering the
drugs and the drug manufacturer. In fact, this is not necessarily limited to companies within the
traditional demand-supply chain.

There are instances where a retailer and a social media company can come together to share insights
on consumer behaviour that will benefit both concerns. Some of the more progressive companies
will take this a step further and work
such as social data, location data, etc.

In other words, it will not be long before internal data and insights from within the enterprise
firewall is no longer a differentiator. We call this tre
firewall analytics. Yesterday, companies were doing functional silo
doing intra- firewall analytics with data within the firewall. Tomorrow they will be collaborating on
insights with other companies to do inter
to do trans- firewall analytics.

Figure given below depicts, setting up inter
However, it does present some challenges.

They are:
As one moves outside the firewall, the information
requirements on analytical methods and technology requirements

Firewall Analytics

Over the last 100 years, supply chain has evolved to connect multiple companies and enable them to
collaborate to create enormous value to the end-consumer through concepts like CPFR

planning, forecasting and replenishment—a collection of business practices that
leverage the Internet and electronic data interchange to reduce inventories and expenses while
improving customer service), VMI (vendor-managed inventory—a technique used by cu
which manufacturers receive sales data to forecast consumer demand more accurately), etc.

Decision sciences will witness a similar trend as enterprises begin to collaborate on insights across
the value chain. For instance, in the healthcare industry, rich consumer insights can be generated by
collaborating on data and insights from the health insurance provider, pharmacy delivering the
drugs and the drug manufacturer. In fact, this is not necessarily limited to companies within the

supply chain.

There are instances where a retailer and a social media company can come together to share insights
on consumer behaviour that will benefit both concerns. Some of the more progressive companies
will take this a step further and work on leveraging the large volumes of data outside the firewall
such as social data, location data, etc.

In other words, it will not be long before internal data and insights from within the enterprise
firewall is no longer a differentiator. We call this trend the move from intra- to inter
firewall analytics. Yesterday, companies were doing functional silo-based analytics. Today they are

firewall analytics with data within the firewall. Tomorrow they will be collaborating on
ith other companies to do inter-firewall analytics as well as leveraging the public domain

Figure given below depicts, setting up inter- and trans-firewall analytics will add significant value.
me challenges.

As one moves outside the firewall, the information-to-noise ratio increases putting additional
requirements on analytical methods and technology requirements

Over the last 100 years, supply chain has evolved to connect multiple companies and enable them to
consumer through concepts like CPFR

a collection of business practices that
leverage the Internet and electronic data interchange to reduce inventories and expenses while

a technique used by customers in
which manufacturers receive sales data to forecast consumer demand more accurately), etc.

Decision sciences will witness a similar trend as enterprises begin to collaborate on insights across
ustry, rich consumer insights can be generated by

collaborating on data and insights from the health insurance provider, pharmacy delivering the
drugs and the drug manufacturer. In fact, this is not necessarily limited to companies within the

There are instances where a retailer and a social media company can come together to share insights
on consumer behaviour that will benefit both concerns. Some of the more progressive companies

on leveraging the large volumes of data outside the firewall

In other words, it will not be long before internal data and insights from within the enterprise
to inter- and trans-

based analytics. Today they are
firewall analytics with data within the firewall. Tomorrow they will be collaborating on

firewall analytics as well as leveraging the public domain

firewall analytics will add significant value.

noise ratio increases putting additional

Organizations are often limited by a fear of collaboration and overreliance on proprietary
information

b) Mobile Business Intelligence and Big Data
Analytics on mobile devices is what some refer to as putting BI in your pocket. Mobile drives straight to
the heart of simplicity and ease of use that has been a major barrier to BI adoption since day one.

Kerzner explains his view on this topic:

We have been working on Mobile BI for a while but the iPad was the inflection point where I
think it started to become mainstream. I have seen customers over the past decade who
focused on the mobile space generally and mobile applications in particular. One client in
particular told me that he felt like he was pushing a boulder up a hill until he introduced
mobility to enhance productivity. Once the new smart phones and tablets arrived, his phone
was ringing off the hook and he was trying to figure out which project to say yes to, because
he couldn’t say yes to everyone who suddenly wanted mobile analytics in the enterprise.

Ease of Mobile Application Deployment

Three elements that have impacted the viability of mobile BI:

1. Location—the GPS component and location . . . know where you are in
time as well as the movement.

2. It’s not just about pushing data; you can transact with your smart phone
based on information you get.

3. Multimedia functionality allows the visualization pieces to really come
into play.

4. Managing standards for rolling out these devices.

5. Managing security (always a big challenge).

6. Managing “bring your own device,” where you have devices both owned by the company and
devices owned by the individual, both contributing to productivity.

5. a)

We live in the data age. It’s not easy to measure the total volume of data stored
electronically, but an International Data Corporation (IDC) estimate put the size of the
“digital universe” at 1.48 zettabytes in 2016 and is forecasting a tenfold growth by 2020
to 4.8 zettabytes. A zettabyte is 1021 bytes, or equivalently one thousand exabytes, one
million petabytes, or one billion terabytes. That is roughly the same order of magnitude as
one disk drive for every person in the world.

Today’s rapidly growing big data is called data flooding. It represents an immense opportunity
for forward-thinking marketers. But to fully leverage the potential that exists within massive
streams of structured and unstructured data, organizations must quickly optimize ad delivery,
evaluate campaign results, improve site selection and retarget ads.

Some of the sources of data flood are:

 New York Stock Exchange generates 1 TB of new trade data per day

 Facebook hosts about 10 billion photos taking up 1 PB (=1,000 TB) of storage

 Internet Archive stores around 2 PB, and is growing at a rate of 20 TB per month

 Ancestry.com, the genealogy site, stores around 2.5 petabytes of data.

 The Large Hadron Collider near Geneva, Switzerland, will produce about 15 petabytes of data per
year.

Most of the data is locked up in the largest web properties (like search engines), or scientific or financial
institutions, isn’t it? Does the advent of “Big Data,” as it is being called, affect smaller organizations or
individuals?

Sources of Data Flooding:

1. Social media platforms (e.g., Twitter during live events)
2. IoT devices (e.g., smart sensors in a smart city)
3. High-frequency trading platforms
4. Log files from servers
5. Satellite imagery or geospatial data

6 a) Volunteer Computing projects work by breaking the problem they are trying to solve into small
chunks called work units, which are sent to computers around the world to analyse.
Example: SETI@home: It works as follows:

 It sends a work unit of 0.35 MB of radio telescope data and takes hours or days to analyse on a
typical home computer. When the analysis is completed, results are sent back to the server.

 SETI, the Search for Extra-Terrestrial Intelligence, runs a project called SETI@home in which
volunteers donate CPU time from their otherwise idle computers to analyze radio telescope data
for signs of intelligent life outside earth.

 others include the Great Internet Mersenne Prime Search (to search for large prime numbers)

 and Folding@home (to understand protein folding and how it relates to disease).

 Volunteer computing projects work by breaking the problem they are trying to solve into chunks
called work units, which are sent to computers around the world to be analyzed.

 For example, a SETI@home work unit is about 0.35 MB of radio telescope data, and takes hours
or days to analyze on a typical home computer.

 When the analysis is completed, the results are sent back to the server, and the client gets another
work unit.

 As a precaution to combat cheating, each work unit is sent to three different machines and needs
at least two results to agree to be accepted.

Now the question is how MapReduce is different from Volunteer Computing.

 MapReduce also works in the similar way of breaking a problem into independent pieces that
work in parallel.

 Volunteer computing problem is very CPU intensive, which makes it suitable for running on
hundreds of thousands of computers across the world because the time to transfer the work unit is
dwarfed by time to run the computation time.

 Volunteers are donating CPU cycle not the bandwidth.

 MapReduce is designed to run jobs that last minutes or hours on trusted, dedicated hardware
running in a single data center with very high aggregate bandwidth interconnects.

 It is clear that volunteer computing runs a perpetual computation on untrusted machines on the
Internet with highly variable connection speeds and no data locality.

b)
History of Hadoop

 Created by Doug Cutting, the creator of Apache Lucene, text search library

 Has its origin in Apache Nutch, an open source web search engine, a part of the Lucene
project.

 ‘Hadoop’ was the name that Doug’s kid gave to a stuffed yellow elephant toy

 In 2002, Nutch was started

 A working crawler and search system emerged

 Its architecture wouldn’t scale to the billions of pages on the Web

 In 2003, Google published a paper describing the architecture of Google’s
distributed filesystem, GFS
 In 2004, Nutch project implemented the GFS idea into the Nutch Distributed
Filesystem, NDFS
 In 2004, Google published the paper introducing MapReduce

 In 2005, Nutch had a working MapReduce implementation in Nutch

 By the middle of that year, all the major Nutch algorithms had been ported to
run using MapReduce and NDFS

 In Feb. 2006, Doug Cutting started an independent subproject of Lucene, called Hadoop

 In Jan. 2006, Doug Cutting joined Yahoo!

 Yahoo! Provided a dedicated team and the resources to turn Hadoop into a
system at web scale

 In Feb. 2008, Yahoo! announced its search index was being generated by a 10,000
core Hadoop cluster
 In Apr. 2008, Hadoop broke a world record to sort a terabytes of data

 In Nov. 2008, Google reported that its MapReduce implementation sorted one
terabytes in 68 seconds.
 In May 2009, Yahoo! used Hadoop to sort one terabytes in 62 seconds

Hadoop releases:

There are a few active release series. The 1.x release series is a continuation of the 0.20 release series, and
contains the most stable versions of Hadoop currently available. This series includes secure Kerberos
authentication, which prevents unauthorized access to Hadoop data. Almost all production clusters use
these releases, or derived versions (such as commercial distributions).
The 0.22 and 0.23 release series are currently marked as alpha releases (as of early 2012), but this is likely
to change by the time you read this as they get more real-world testing and become more stable (consult
the Apache Hadoop releases page for the latest status). 0.23 includes several major new features:

 A new MapReduce runtime, called MapReduce 2, implemented on a new system called YARN
(Yet Another Resource Negotiator), which is a general resource management system for running
distributed applications. MapReduce 2 replaces the classic runtime in previous releases. It is
described in more depth in “YARN”.

 HDFS federation, which partitions the HDFS namespace across multiple namenodes to support
clusters with very large numbers of files.

 HDFS high-availability, which removes the namenode as a single point of failure by supporting
standby namenodes for failover.

The following figure shows the configuration of Hadoop 1.0 and Hadoop 2.0.

7 a) HDFS Concepts

The HDFS concepts covers:

 Blocks

 Namenode and Datanode

 HDFS Federation

 HDFS High Availability

Blocks:

Definition: A disk has a block size, which is the minimum amount of data that it can
read or write. Filesystems for a single disk build on this by dealing with data in blocks,
which are an integral multiple of the disk block size. Filesystem blocks are typically a
few kilobytes in size, while disk blocks are normally 512 bytes.

HDFS too has the concept of a block, but it is a much larger unit of 64 MB or 128MB
by default. Like in a filesystem for a single disk, files in HDFS are broken into block-
sized chunks, which are stored as independent units. Unlike a filesystem for a single
disk, a file in HDFS that is smaller than a single block does not occupy a full blocks
worth of underlying storage. There are tools to perform filesystem maintenance, such as
df and fsck, that operate on the filesystem block level.
Benefits of using block abstraction

1. A file can be larger than any single disk in the network: There’s nothing that
requires the blocks from a file to be stored on the same disk, so they can take
advantage of any of the disks in the cluster. In fact, it would be possible, if
unusual, to store a single file on an HDFS cluster whose blocks filled all the
disks in the cluster.

2. Making the unit of abstraction a block rather than a file simplifies the storage
subsystem: Simplicity is something to strive for all in all systems, but is
especially important for a distributed system in which the failure modes are so
varied.

3. Blocks are just a chunk of data to be stored—file metadata such as permissions
information does not need to be stored with the blocks, so another system can handle
metadata separately. Blocks fit well with replication for providing fault tolerance and
availability. To insure against corrupted blocks and disk and machine failure, each
block is replicated to a small number of physically separate machines (typically
three). If a block becomes unavailable, a copy can be read from another location in
a way that is transparent to the client.

Name node and data node:

A HDFS cluster has two types of node operating in a master-worker pattern: a namenode
(the master) and a number of datanodes (workers).
The Namenode manages the filesystem namespace. It maintains the filesystem tree and
the metadata for all the files and directories in the tree. This information is stored
persistently on the local disk in the form of two files:

 The namespace image (fsImage)

 The edit log

The namenode also knows the datanodes on which all the blocks for a given file are
located, however, it does not store block locations persistently, since this information is
reconstructed from datanodes when the system starts. A client accesses the filesystem on
behalf of the user by communicating with the namenode and datanodes.

Datanodes are the workhorses of the filesystem. They store and retrieve blocks when
they are told to (by clients or the namenode), and they report back to the namenode
periodically with lists of blocks that they are storing.

b) File system operations:

The filesystem is ready to be used, and we can do all of the usual filesystem operations

% hadoop fs -mkdir books

Creates a directory called books on the Hadoop File system. In the above command
hadoop indicates it is a Hadoop command

fs file system command

-mkdir command to execute on hdfs, ie creation of a directory Books

% hadoop fs -ls .

Found 2 items

drwxr-xr-x - tom supergroup 0 2009-04-02 22:41 /user/tom/books

-rw-r--r-- 1 tom supergroup 118 2009-04-02 22:29 /user/tom/quangle.txt

The information returned is very similar to the Unix command ls -l, with a few minor
differences. The first column shows the file mode. The second column is the replication
factor of the file (something a traditional Unix filesystem does not have). Remember we
set the default replication factor in the site-wide configuration to be 1, which is why we
see the same value here. The entry in this column is empty for directories since the

concept of replication does not apply to them—directories are treated as metadata and
stored by the namenode, not the datanodes. The third and fourth columns show the file
owner and group. The fifth column is the size of the file in bytes, or zero for directories.
The sixth and seventh columns are the last modified date and time. Finally, the eighth
column is the absolute name of the file or directory.

%hadoop fs -help <<command>>

– to get detailed help on every command.

% hadoop fs -copyFromLocal input/docs/quangle.txt

hdfs://localhost/user/tom/quangle.txt

% hadoop fs -copyFromLocal input/docs/quangle.txt

/user/tom/quangle.txt

% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt

 Start by copying a file from the local filesystem to HDFS

% Hadoop fs -copyToLocal hdfs://Buangle.txt c:/input/docs/Buangle.txt

 Start by copying a file from the HDFS to local filesystem

Hadoop FS changing the file
permissions

Command: chmod
hadoop fs -chmod [-R] <MODE[,MODE]...| OCTALMODE> URI [URI …]

 Change the permissions of files. With -R, make the change recursively
through the directory structure. The user must be the owner of the file, or else
a super-user.

% hadoop fs -chmod 744 /user/training/samplezero.txt

– The above command changes the samplezero.txt permission

8. a) File read :

Anatomy of a File Read

To get an idea of how data flows between the client interacting with HDFS, the name-
node and the datanodes, consider Figure 3-2, which shows the main sequence of
events

when reading a file.

The client opens the file it wishes to read by calling open() on the FileSystem object,
which for HDFS is an instance of DistributedFileSystem (step 1 in Figure 3
DistributedFileSystem calls the namenode, using RPC, to determine the locations of
the blocks for the first few blocks in the file (step 2). For each block, the namenode
returns the addresses of the datanodes that have a copy of that block. Furthermore, the

datanodes are sorted according to their proximity to the client (according to the top
ology of the cluster’s network; see “Network Topology and Hadoop” on page 71). If

the client is itself a datanode (in the case of a MapReduce task, for instance), then it
will read from the local datanode, if it hosts a copy of the block (see also Figure 2

The DistributedFileSystem returns an FSDataInputStream (an input stream that sup
ports file seeks) to the client for it to read data from. FSDataInputStream in turn wraps

a DFSInputStream, which manages the datanode and namenode I/O.
The client then calls read() on the stream (step 3). DFSInputStream, which has stored
the datanode addresses for the
(closest) datanode for the first block in the file. Data is streamed from the datanode
back to the client, which calls read() repeatedly on the stream (step 4). When the end
of the block is reached, DFSInputStream will close the connection to the datanode, then
find the best datanode for the next block (step 5). This happens transparently to the
client, which from its point of view is just reading a continuous stream.
Blocks are read in order with the
datanodes
as the client reads through the stream. It will also call the namenode to retrieve the

The client opens the file it wishes to read by calling open() on the FileSystem object,
an instance of DistributedFileSystem (step 1 in Figure 3

DistributedFileSystem calls the namenode, using RPC, to determine the locations of
the blocks for the first few blocks in the file (step 2). For each block, the namenode

the datanodes that have a copy of that block. Furthermore, the

datanodes are sorted according to their proximity to the client (according to the top
ology of the cluster’s network; see “Network Topology and Hadoop” on page 71). If

a datanode (in the case of a MapReduce task, for instance), then it
will read from the local datanode, if it hosts a copy of the block (see also Figure 2

The DistributedFileSystem returns an FSDataInputStream (an input stream that sup
s) to the client for it to read data from. FSDataInputStream in turn wraps

a DFSInputStream, which manages the datanode and namenode I/O.
The client then calls read() on the stream (step 3). DFSInputStream, which has stored
the datanode addresses for the first few blocks in the file, then connects to the first
(closest) datanode for the first block in the file. Data is streamed from the datanode
back to the client, which calls read() repeatedly on the stream (step 4). When the end

DFSInputStream will close the connection to the datanode, then
find the best datanode for the next block (step 5). This happens transparently to the
client, which from its point of view is just reading a continuous stream.
Blocks are read in order with the DFSInputStream opening new connections to

as the client reads through the stream. It will also call the namenode to retrieve the

The client opens the file it wishes to read by calling open() on the FileSystem object,
an instance of DistributedFileSystem (step 1 in Figure 3-2).

DistributedFileSystem calls the namenode, using RPC, to determine the locations of
the blocks for the first few blocks in the file (step 2). For each block, the namenode

the datanodes that have a copy of that block. Furthermore, the

datanodes are sorted according to their proximity to the client (according to the top-
ology of the cluster’s network; see “Network Topology and Hadoop” on page 71). If

a datanode (in the case of a MapReduce task, for instance), then it
will read from the local datanode, if it hosts a copy of the block (see also Figure 2-2).

The DistributedFileSystem returns an FSDataInputStream (an input stream that sup-
s) to the client for it to read data from. FSDataInputStream in turn wraps

The client then calls read() on the stream (step 3). DFSInputStream, which has stored
first few blocks in the file, then connects to the first

(closest) datanode for the first block in the file. Data is streamed from the datanode
back to the client, which calls read() repeatedly on the stream (step 4). When the end

DFSInputStream will close the connection to the datanode, then
find the best datanode for the next block (step 5). This happens transparently to the

DFSInputStream opening new connections to

as the client reads through the stream. It will also call the namenode to retrieve the

datanode locations for the next batch of blocks as needed. When the client has finished
reading, it calls close() on the FSDataInputStream (step 6).

During reading, if the DFSInputStream encounters an error while communicating with
a datanode, then it will try the next closest one for that block. It will also remember
datanodes that have failed so that it doesn’t needlessly retry them for later blocks. The
DFSInputStream also verifies checksums for the data transferred to it from the
datanode.
If a corrupted block is found, it is reported to the namenode before the DFSInput
Stream attempts to read a replica of the block from another datanode.
One important aspect of this design is that the client contacts datanodes directly to
retrieve data and is guided by the namenode to the best datanode for each block. This
design allows HDFS to scale to a large number of concurrent clients, since the data
traffic is spread across all the datanodes in the cluster. The namenode meanwhile
merely
has to service block location requests (which it stores in memory, making them very

efficient) and does not, for example, serve data, which would quickly become a bot-
tleneck as the number of clients grew.

b) **File System Interface in Big Data Analytics**

In the context of Big Data Analytics, a **file system interface** refers to the mechanism that provides
access to the storage system, enabling users or applications to read, write, organize, and manage data
files. This interface allows users to interact with large volumes of data stored across distributed systems.
It abstracts the complexity of physical data storage, allowing operations like file creation, deletion,
reading, and updating, while providing an organized way to store massive amounts of data.

Big Data environments often rely on specialized file systems that handle distributed and parallel storage
across multiple machines. These file systems must efficiently manage high-throughput, scalable storage
and ensure fault tolerance, making them different from traditional file systems.

Types of File System Interfaces in Big Data Analytics

1. **Hadoop Distributed File System (HDFS)**:

 - **HDFS** is the core file system interface for the Hadoop ecosystem. It is designed for storing large
data sets distributed across multiple nodes in a cluster. HDFS handles massive amounts of unstructured

data by splitting files into blocks and distributing them across various nodes. It is optimized for large-
scale data processing and fault tolerance.

 - **Key features**:

 - Data is stored in a distributed manner (blocks are replicated across nodes for redundancy).

 - Fault-tolerant, ensuring data availability even if some nodes fail.

 - Optimized for batch processing with high throughput.

 - Example operations: `hdfs dfs -put`, `hdfs dfs -get`, `hdfs dfs -ls`.

2. **Amazon S3 (Simple Storage Service)**:

 - **Amazon S3** is a scalable, object-based storage service commonly used in cloud environments. It
provides a file system-like interface but is object storage-based. S3 is used in conjunction with various big
data processing tools (like Amazon EMR or Hadoop) to store and retrieve data.

 - **Key features**:

 - Infinite scalability and durability.

 - Cost-effective cloud storage for large datasets.

 - Accessible via API for direct application integration.

 - Example operations: `s3 cp`, `s3 sync`.

3. **Google Cloud Storage (GCS)**:

 - **Google Cloud Storage** is another cloud-based object storage system with a file system interface.
It is used in data-intensive applications like machine learning and big data analytics.

 - **Key features**:

 - High availability and durability.

 - Suitable for both structured and unstructured data.

 - Integration with Google’s big data processing tools (e.g., BigQuery, Dataflow).

 - Example operations: `gsutil cp`, `gsutil ls`.

4. **Azure Data Lake Storage (ADLS)**:

 - **Azure Data Lake Storage** is a file system interface designed for big data workloads, integrated
into Microsoft's Azure cloud services. It supports hierarchical file structures, similar to HDFS, making it a
preferred choice for Hadoop and Spark workloads.

 - **Key features**:

 - Unlimited scalability with hierarchical namespace.

 - Built for distributed data processing applications.

 - Tight integration with Azure services.

 - Example operations: `az storage fs directory create`, `az storage blob upload`.

5. **MapR File System (MapR-FS)**:

 - **MapR-FS** is a distributed file system that is part of the MapR Data Platform. It is optimized for big
data processing and analytics, combining the benefits of HDFS with additional features like native
support for containers and POSIX compliance.

 - **Key features**:

 - Unified storage for files, tables, and streams.

 - High availability and low-latency operations.

 - Supports real-time applications and file-level data processing.

 - Example operations: `maprcli`, `hadoop fs`.

10 a) The MapReduce algorithm contains two important tasks, namely Map and Reduce.

 The Map task takes a
set of data and
converts it into
another set of data,
where individual
elements are broken
down into tuples
(key-value pairs).

 The Reduce task takes
the output from the
Map as an input and
combines those data

tuples (key- value
pairs) into a smaller
set of tuples.

The reduce task is always performed after the map job.

Let us now take a close look at each of the phases and try to understand their significance.

 Input Phase − Here we have a Record Reader that translates each record in

an input file and sends the parsed data to the mapper in the form of key-
value pairs.

 Map − Map is a user-defined function, which takes a series of key-value pairs
and processes each one of them to generate zero or more key-value pairs.

 Intermediate Keys − They key-value pairs generated by the mapper are known
as intermediate keys.

 Combiner − A combiner is a type of local Reducer that groups similar data from
the map phase into identifiable sets. It takes the intermediate keys from the
mapper as input and applies a user-defined code to aggregate the values in a
small scope of one mapper. It is not a part of the main MapReduce algorithm; it
is optional.

 Shuffle and Sort − The Reducer task starts with the Shuffle and Sort step. It
downloads the grouped key-value pairs onto the local machine, where the
Reducer is running. The individual key-value pairs are sorted by key into a larger
data list. The data list groups the equivalent keys together so that their values can
be iterated easily in the Reducer task.

 Reducer − The Reducer takes the grouped key-value paired data as input and
runs a Reducer function on each one of them. Here, the data can be aggregated,
filtered, and combined in a number of ways, and it requires a wide range of
processing. Once the execution is over, it gives zero or more key-value pairs to
the final step.

 Output Phase − In the output phase, we have an output formatter that translates
the final key-value pairs from the Reducer function and writes them onto a file
using a record writer.

Let us try to understand the two tasks Map &f Reduce with the help of a small
diagram – Word Count Example.

b) Hadoop Streaming
Hadoop provides an API to MapReduce that allows you to write your map
and reduce
functions in languages other than Java. Hadoop Streaming uses Unix standard
streams
as the interface between Hadoop and your program, so you can use any
language that
can read standard input and write to standard output to write your MapReduce
program.
Streaming is naturally suited for text processing (although, as of version
0.21.0, it can
handle binary streams, too), and when used in text mode, it has a line-oriented
view of

data. Map input data is passed over standard input to your map function,
which pro-
cesses it line by line and writes lines to standard output. A map output key-
value pair

is written as a single tab-delimited line. Input to the reduce function is in the
same

format—a tab-separated key-value pair—passed over standard input. The
reduce func-
tion reads lines from standard input, which the framework guarantees are
sorted by

key, and writes its results to standard output.

Let’s illustrate this by rewriting our MapReduce program for finding
maximum tem-
peratures by year in Streaming.

Different Streaming Methods in Big Data

Streaming methods in Big Data refer to the real-time or near-real-time processing of continuous
data streams. In contrast to batch processing, where data is processed in large, discrete chunks,
streaming allows for ongoing, instantaneous data analysis as it is generated. Hadoop Streaming is
just one approach, but several other frameworks and methods exist to handle streaming data in
Big Data contexts. These include:

1. Apache Storm:

Apache Storm is a distributed real-time computation system for processing data streams. It is
highly scalable and fault-tolerant, designed to process vast amounts of data in parallel across a
cluster of nodes.

 Key Features:
o Real-time processing: Unlike batch processing, Storm processes data in real-time as it

arrives.
o Distributed architecture: It distributes tasks across a cluster for parallel computation.
o Reliability: Storm ensures data processing even in the event of node failures.
o Low Latency: Storm processes events in milliseconds, providing near-instantaneous

insights.
 Use Case: Apache Storm is used for real-time analytics, machine learning, and

continuous monitoring tasks such as fraud detection or log analysis.

2. Apache Spark Streaming:

Apache Spark Streaming is an extension of the core Apache Spark framework that provides
scalable and fault-tolerant stream processing. It allows real-time data to be processed as a series
of micro-batches, thus bridging the gap between batch processing and stream processing.

 Key Features:
o Micro-batching: Spark Streaming collects real-time data in small batches and processes

them in parallel across the cluster.
o Integration with batch processing: Spark Streaming allows for the use of the same code

and APIs as batch jobs, making it easy to transition between batch and streaming modes.
o Fault tolerance: Spark’s resilient distributed datasets (RDDs) ensure that data is not lost

in case of failures.
 Use Case: Spark Streaming is widely used for real-time data analytics, like monitoring

server logs, real-time marketing campaigns, or real-time anomaly detection in data
streams.

3. Apache Flink:

Apache Flink is a powerful stream processing framework that provides low-latency data
processing for both bounded and unbounded datasets. It is designed to handle both batch and
stream processing in a unified manner.

 Key Features:
o Event-driven processing: Flink processes data based on events, allowing for real-time

data analytics.
o Time-based windows: Flink supports advanced time-based windows, such as sliding and

tumbling windows, for stream processing.
o Exactly-once semantics: Flink guarantees that data is processed exactly once, avoiding

duplication or data loss.
 Use Case: Flink is used in applications like real-time fraud detection, streaming analytics,

and IoT (Internet of Things) data processing.

4. Kafka Streams:

Kafka Streams is a client-side library that allows applications to process and transform data
streams in real-time within an Apache Kafka cluster. Kafka Streams is designed to work natively
with Kafka topics, offering scalability and reliability.

 Key Features:
o Stream Processing within Kafka: Kafka Streams provides stream processing directly

inside Kafka, reducing overhead and increasing efficiency.
o High throughput and scalability: Kafka Streams is designed for high-performance and

fault-tolerant stream processing.
o Windowing and aggregation: It supports operations like windowing, joining, and

aggregations on data streams.

 Use Case: Kafka Streams is widely used in financial services for real-time transaction
analysis and in retail for processing real-time customer activity data.

5. Kinesis (AWS Kinesis Data Streams):

Amazon Kinesis is a fully managed service for real-time data streaming in the AWS ecosystem.
It allows developers to build applications that can continuously collect and process large streams
of data in real-time.

 Key Features:
o Seamless integration with AWS services: Kinesis integrates with AWS Lambda, Redshift,

and other services for real-time data analytics.
o Serverless architecture: Kinesis abstracts the complexity of managing the underlying

infrastructure, allowing developers to focus on their data pipelines.
o Horizontal scaling: Kinesis can scale to process terabytes of data per hour.

 Use Case: Amazon Kinesis is used in scenarios like monitoring real-time sensor data,
processing log files, and analyzing video streams.

10 a) 1. Mapper for maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text,

IntWritable> {

private static final int MISSING = 9999;

@Override

public void map(LongWritable key, Text value, Context context) throws

IOException,InterruptedException {

String line = value.toString();

String year = line.substring(15, 19);

int airTemperature;

if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs

airTemperature = Integer.parseInt(line.substring(88, 92));

} else {

airTemperature = Integer.parseInt(line.substring(87, 92));

}

String quality = line.substring(92, 93);

if (airTemperature != MISSING && quality.matches("[01459]")) {

context.write(new Text(year), new IntWritable(airTemperature));

}

}

}

2. Reducer for maximum temperature example

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer extends Reducer<Text, IntWritable, Text,

IntWritable> {

@Override

public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;

for (IntWritable value : values) {

maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));

}

}

b) Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster,
so it pays
to minimize the data transferred between map and reduce tasks. Hadoop
allows the

user to specify a combiner function
combiner func-
tion’s output forms the input to the reduce function. Since the combiner
function is an

optimization, Hadoop does not provide a guarantee of how many times it will
call it

for a particular map output record,
combiner func-
tion zero, one, or many times should produce the same output from the
reducer.

w IntWritable(maxValue));

Combiner Functions
Many MapReduce jobs are limited by the bandwidth available on the cluster,

to minimize the data transferred between map and reduce tasks. Hadoop

user to specify a combiner function to be run on the map output—the

tion’s output forms the input to the reduce function. Since the combiner

optimization, Hadoop does not provide a guarantee of how many times it will

for a particular map output record, if at all. In other words, calling the

tion zero, one, or many times should produce the same output from the

Many MapReduce jobs are limited by the bandwidth available on the cluster,

to minimize the data transferred between map and reduce tasks. Hadoop

the

tion’s output forms the input to the reduce function. Since the combiner

optimization, Hadoop does not provide a guarantee of how many times it will

if at all. In other words, calling the

tion zero, one, or many times should produce the same output from the

Scaling out:

You’ve seen how MapReduce works for small inputs; now it’s time to take a
bird’s-eye
view of the system and look at the data flow for large inputs. For simplicity,
the
examples so far have used files on the local filesystem. However, to scale out,
we need
to store the data in a distributed filesystem, typically HDFS (which you’ll
learn about
in the next chapter), to allow Hadoop to move the MapReduce computation to
each
machine hosting a part of the data. Let’s see how this works.

