VISVESVARAYA TECHNOLOGICAL UNIVERSITY Jnana Sangama, Belagavi - 590 018

Performance Analysis of channel estimation techniques for MIMO OFDM systems

PhD Thesis Submitted in Partial Fulfillment for the Award of Degree of

Doctor of Philosophy

in

Faculty of Electrical and Electronics Engineering Sciences

(Electronics and Communication Engineering)

By

Pappa M (USN: 1CR12PEN02)

Under the Supervision and Guidance of

Dr. Ramesh C


Professor, Department of Electronics and Communication Engineering

Research Center Department of Electronics and Communication Engineering

> CMR INSTITUTE OF TECHNOLOGY BENGALURU – 560 037 JUNE 2022

Research Centre DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING CMR Institute of Technology, Bengaluru-560 037

CERTIFICATE

This is to certify that Pappa Mwith USN: 1CR12PEN02, Research Scholar Department of Electronics and Communication Engineering, CMR Institute of Technology, Bengaluru, registered for Ph.D. under the guidance of Dr.Ramesh Chas successfully completed the research work entitled "Performance analysis of channel estimation techniques for MIMO OFDM systems" and is submitting her thesis in partial fulfillment of the requirements for the award of degree of "DOCTOR OF PHILOSOPHY" in Electrical Engineering Sciences, by VISVESVARAYATECHNOLOGICAL UNIVERSITY, Belagavi.

Signature of the Guide Dr.Ramesh C

Department of Electronics and Communication Engineering CMR Institute of Technology Bangalore-560 037

Name of Examiners

P.E. Lal

Signature of the Head of Research Centre Dr. R. Elumalai

Department of Electronics and Communication Engineering CMR Institute of Technology Bangalore-560 037

Signature of Head of the Institutencipal CIDT.ISanjaygath Technolog Bangalore - 560037

Signature with date

1.

2.

DECLARATION

I hereby declare that the entire work embodied in this Doctoral Thesis entitled, "Performance analysis of channel estimation techniques for MIMO OFDM systems" submitted to Visvesvaraya Technological University, Belagaviis carried out by me at Research Centre, Department of Electronics and Communication Engineering, CMR Institute of Technology, Bengaluru, under the guidance ofDr.Ramesh C, Professor, Department of Electronics and Communication Engineering, Bengaluru. This thesis has not been submitted in part or full for the award of any Degree or Diploma of this or any other University.

Date : $|\int \cdot |2 \cdot 2022$ Place : Bengaluru

M. per

(**Pappa M**) Research Scholar USN: 1CR12PEN02

ACKNOWLEDGEMENT

I make a move to pass my appreciation on to for their help, care and assistance during my doctoral studies, which has led to the successful completion of thesis.

First of all, I might want to say thanks to God Almighty for giving me the opportunity as well as guidance to complete this thesis successfully.

I might want to offer my true thanks to my guide Professor Dr.Ramesh C, for the nonstop help of my Ph.D review and related research, for his sympathetic, encouragement, and incredible information. His path helped me in all the hour of study and composing of this thesis.

I am thankful to the **Management of CMR Institute of Technology**, for giving the conveniences to do the research. I'm exceptionally obliged to communicate my profound feeling of gratitude to **Dr.Sanjay Jain, Principal**, and **Dr.B.NarasimhaMurthy, Vice Principal, CMR Institute of Technology**, for their support and necessary resources to complete this research. My heartfelt thanks to **Dr.Elumalai R**, **HOD/ECE Department**, for his valuable suggestions and continuous motivation.

My sincere thanks to my fellow colleagues of ECE Department, CMR Institute of Technology for their support and encouragement throughout my research.

I dedicate this research work to my husband Late. C.Palaniappan, who has been a constant source of support and encouragement during my challenges of research. I appreciate my son **Kishore Palaniappan**, for his patience and unconditional love displayed during my postulation composing. Words could never say that I am so thankful to both of you.

My genuine respects to my folks, sisters, my better half's loved ones for their adoration and moral help.

PAPPA M

List of Figures

1.1	OFDM transmitter system	6
1.2	OFDM receiver system	6
1.3	OFDM signal with cyclic prefix	7
1.4	Multi-path spread	8
1.5	Illustration of the Doppler fading effect	9
1.6	SISO simulation under Rayleigh and Doppler fading channel, f_d is Doppler	
	shift factor	10
1.7	MIMO structure	12
1.8	MIMO OFDM structure	13
1.9	Spectral efficiency Versus Energy efficiency for multiple access systems	15
1.10	Sum-rate capacity with Dirty Paper Coding in the downlink for multiple users	
	In intervening scenarios	15
1.11	Time slot for FDD as well as TDD systems with channel estimation	17
1.12	Pilot contamination example when both users transmit mutually non-orthogonal	
	training sequences	18
1.13	Typical Block Diagram for Telecommunication System	19
1.14	NOMA-MIMO system model	22
2.1	Basic wireless communication system	26
3.1	Massive MIMO scenario	33
3.2	Implementation methodology	34
3.3	Plot of Bit Error Rate Versus Signal to Noise ratio for blind channel in massive	
	MIMO environment	38
3.4	Performance Analysis of conventional MIMO with blind channel	39
3.5	Performance Analysis of massive MIMO with the effect of	
	Training-based channel	39
3.6	Performance Analysis of conventional MIMO with the effect of	
	Training based channel (2 x2)	39
3.7	Comparative analysis of conventional and massive MIMO	40
3.8	BER Comparison graph (LS and CS MMSE)	44
3.9	BER Comparison graph (Conventional MMSE and CS MMSE)	45
		vi

3.10	BER Comparison graph (Conventional LS, MMSE and CS MMSE)	45
4.1	SIC Receiver	49
4.2	AWGN Channel Simulink Design Model	49
4.3	Rayleigh Channel Simulink Design Model	50
4.4	Error Correcting Code Design Model	50
4.5	Combining Two User in NOMA using Power Allocation	51
4.6	8-PSK Constellation	52
4.7	Modulation Error Rate and Error Vector Magnitude quantities for 8-PSK	
	Modulator	52
4.8	BER vs SNR for Downlink of AWGN fading Channel	53
4.9	BER vs SNR for Uplink of AWGN fading Channel	54
4.10	Performance of Rayleigh fading Channel in the downlink	54
4.11	Performance of Rayleigh fading Channel in the uplink	55
4.12	Simulation Output for Encoder	55
4.13	Error Correcting Decoder Simulation	56
4.14	Multiple Access Technologies	58
4.15	NOMA Technology	59
4.16	Averaging in Iterative Algorithm	60
4.17	MIMO Principle	61
4.18	Illustration of (a) NOMA (b) OMA for two user scenario	62
4.19	Method of Channel parameters prediction with and without NOMA	62
4.20	Flow Chart to calculate different SNR to different users	63
4.21	Average sum rate versus SNR	68
4.22	Plot of Logarithmic variation of Average sum rate VS SNR	69
4.23	BER performance analysis for 2x2 and 4x4 of MIMO-NOMA-OFDM	
	Combinations	73
4.24	LMMSE reduction with iterations for 64 QAM modulation techniques	74
4.25	SNR level with various antennas representing channel capacity	
10-	Enhancement	74
4.26	NOMA with MIMO vs OFDM performance metric analysis	75

List of Tables

3.1	Performance of BER VS SNR for the two modulation schemes	36
	in training-based estimates of channel	
3.2	Performance of BER Versus SNR for the two modulation schemes	38
	in blind parameter estimates of the channel	
3.3	BER comparison values for conventional LS, MMSE and CS MMSE	46
4.1	Average sum Rate versus SNR with and without NOMA	67
4.2	Logarithmic values of Average sum Rate versus SNR with and	68
	without NOMA	
4.3	Comparison of proposed NOMA-MIMO system and OFDM system	
	in term of SNR and BER under different K values and different	
	levels of QAM modulation	76