
DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

DBMS-BCS403 SOLUTION JUNE/JULY 2024

MODULE 1

Q1a. Define database. Elaborate component modules of DBMS and their
interactions.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

A database is a collection of logically coherent data with some inherent
meaning, representing aspects of the real world, organized in such a way that it
can be easily accessed, managed, and updated.

A DBMS consists of the following major components:

● Storage Manager: Manages the storage of data and meta-data.
● Query Processor: Converts user queries into low-level instructions for

efficient access.
● Transaction Manager: Manages the execution of transactions while

ensuring ACID properties (Atomicity, Consistency, Isolation, and
Durability).

● Concurrency Control Manager: Ensures transactions do not interfere
with each other.

These modules interact to process user queries, ensure data consistency, manage
concurrent access, and store the data efficiently .

1. Interactive Query Interface

● Casual or occasional users interact with the database through an
interactive query interface.

● Queries go through a query compiler that parses and validates them for
correctness (syntax, file names, etc.), and converts them into an internal
form.

● The query optimizer improves the query by rearranging operations,
eliminating redundancies, and choosing efficient search algorithms, using
statistics from the system catalog. This results in executable code that is
passed to the runtime processor.

2. Application Programs

● Application programmers write programs using languages like Java, C,
or C++ which interact with the database.

● A precompiler extracts DML (Data Manipulation Language)
commands from the program, which are compiled separately by the DML
compiler.

● The rest of the program is compiled by the host language compiler, and the
two parts (DML commands and the main program) are linked together to
form a canned transaction.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

● Canned transactions are executed repeatedly by users who supply
parameters (e.g., in a bank payment transaction, account number, payee,
and amount are parameters). This approach is becoming popular with
scripting languages like PHP and Python.

3. Runtime Database Processor

● The runtime database processor executes privileged commands,
executable query plans, and canned transactions with parameters.

● It interacts with the system catalog and may update statistics related to the
database. It also works with the stored data manager, which handles I/O
operations between the disk and main memory.

● Buffer management is handled either by the DBMS or the operating
system. The DBMS also includes concurrency control and
backup/recovery modules for transaction management.

4. Client-Server Architecture

● Typically, the client program runs on a separate computer (client) that
accesses the database, which resides on a database server.

● In some cases, the client accesses a middle-tier application server, which
in turn accesses the database server.

● The operating system schedules disk accesses and DBMS processing if
the system is shared by many users. If dedicated, the DBMS may control
memory buffering of disk pages directly.

5. DBMS Interaction with the OS

● The DBMS interacts with the operating system when it needs to perform
disk accesses (for the database or catalog).

● The DBMS can also interface with compilers for host programming
languages and with client programs through the system network
interface.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

Q1b. Describe the three-schema architecture. Why do we need mappings
among schema levels?

The three-schema architecture separates the user’s view from the physical
database and defines three levels:

1. Internal Level: Describes the physical storage structure.
2. Conceptual Level: Describes the structure of the database for a

community of users.
3. External Level: Defines different views for users.

Mappings among these schemas are essential to transform a request from an

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

external schema to the conceptual schema and then to the internal schema. This
ensures data independence at different levels​.

Q1c. Explain the difference between logical and physical data independence.

● Logical data independence allows changing the conceptual schema
without affecting the external schemas or application programs.

● Physical data independence allows changing the internal schema without
affecting the conceptual schema

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

Q2a. Draw an ER diagram for a company database with employee,
department, project as strong entities, and dependent as a weak entity.

Here is a simplified explanation for the ER diagram:

● Entities: Employee, Department, Project (Strong), Dependent (Weak)
● Relationships: Employee works in a Department, Employee works on a

Project, Dependent is related to Employee
● Constraints: Employee has one Department, and works on multiple

projects, Dependent weak entity relies on Employee.

The diagram would look similar to the one in the textbook showing employees,
departments, and dependents​.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

Q2b. Define the following terms with examples using ER notations: Entity,
attribute, composite attribute, multivalued attribute, participation role.

● Entity: Represents a real-world object, e.g., Employee.
● Attribute: Property of an entity, e.g., Employee’s name.
● Composite Attribute: Attribute with components, e.g., Name (First

Name, Last Name).
● Multivalued Attribute: Attribute that can hold multiple values, e.g.,

Phone Numbers.
● Participation Role: Refers to an entity’s role in a relationship, e.g.,

Employee works in Department

MODULE 2

Q3a. Discuss update operations and constraint violations with examples.

Update operations include Insert, Delete, and Update. These can violate
constraints such as:

1. Relational Model Operations

● The operations of the relational model are categorized into retrievals and
updates.

● Retrieval operations are typically expressed using relational algebra or
relational calculus (introduced in later chapters). Relational algebra forms
a new relation by applying algebraic operators on existing relations, which
helps in querying the database.

● Update operations modify the database state, including the Insert,
Delete, and Update (Modify) operations.

2. Insert Operation

● Insert adds new tuples (records) to a relation. However, integrity
constraints must be maintained:

○ Domain constraints ensure that each value belongs to the proper
domain (data type or value range).

○ Key constraints prevent duplicate primary key values.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

○ Entity integrity ensures that primary key attributes cannot be
NULL.

○ Referential integrity ensures that foreign keys reference valid
tuples in other relations.

● Examples:
○ Inserting a tuple with a NULL primary key violates entity integrity

and is rejected.
○ Inserting a tuple with an existing primary key value violates key

constraints and is rejected.
○ Inserting a tuple with an invalid foreign key violates referential

integrity.
○ A valid insert operation satisfies all constraints.

3. Delete Operation

● Delete removes tuples from a relation, and it can only violate referential
integrity.

○ Referential integrity violation occurs if other tuples reference the
tuple being deleted. For example, deleting an EMPLOYEE tuple
could cause issues if other relations like WORKS_ON or
DEPENDENT reference it.

● Options for Handling Violations:
○ Restrict: Reject the deletion.
○ Cascade: Delete the referencing tuples as well (e.g., deleting related

WORKS_ON tuples).
○ Set Null or Set Default: Modify the referencing attributes, either by

setting them to NULL or to a default value.

4. Update Operation

● Update modifies attribute values in existing tuples. It can violate several
constraints:

○ Domain constraints if the new value is not of the correct type.
○ Key constraints if updating the primary key duplicates an existing

value.
○ Referential integrity if modifying a foreign key references a

non-existing tuple.
● Examples:

○ Updating an employee’s salary or department number is acceptable
as long as it doesn't violate any integrity constraints.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

○ Updating a primary key or foreign key might require checking for
consistency with other tuples or relations.

5. Handling Constraint Violations

● The DBMS can reject operations that violate integrity constraints by
default or provide corrective options such as asking for valid inputs.

● Similar handling options for Update as with Delete, like restrict, cascade,
or set null.

Q3b. Relational algebra operators for select and project operations.

● Select (σ): Retrieves rows that satisfy a condition, e.g., σ(Salary >
30000)(Employee).

● Project (π): Retrieves specific columns, e.g., π(Name, Salary)(Employee)​.

Q3c. Characteristics of relations that make them different from ordinary
data.

1. Tabular Structure (Relations are Tables)

● A relation is represented as a table of rows and columns. Each row
represents a tuple (or record), and each column represents an attribute (or
field).

● Tuples in a relation are ordered conceptually but not physically, meaning
the order of rows does not affect the relation.

2. Attributes and Domains

● Each column (attribute) in a relation is associated with a domain, which
defines the permissible values the attribute can take. For example, a
domain for a "Date of Birth" column might only accept valid date values.

● Attributes must maintain atomicity, meaning every value in a relation
must be atomic or indivisible (not a set or list of values).

3. Uniqueness of Tuples

● In a relational model, each tuple must be unique. No two rows can have
identical values for all attributes. This is enforced by the primary key, a
unique identifier for each tuple.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

● Primary keys ensure the integrity of the data and allow the database to
reference individual records precisely.

4. No Duplicates

● Relations do not allow duplicate tuples. Each tuple must be distinct, as a
relation is a set of tuples and sets do not contain duplicate elements.

5. Unordered Tuples and Attributes

● Tuples (rows) in a relation are not ordered. Unlike arrays or lists in
programming, the order of tuples is irrelevant, and the DBMS does not
enforce a particular order.

● Attributes (columns) are also unordered, meaning the left-to-right order of
columns does not affect the definition or behavior of the relation.

6. Integrity Constraints

● Relations are subject to various integrity constraints that ensure the
correctness and consistency of the data:

○ Domain constraints: Values in each column must come from the
attribute's domain.

○ Key constraints: The primary key must be unique for every tuple.
○ Referential integrity: A foreign key in one relation must reference

a valid tuple in another relation.
○ Entity integrity: The primary key must not be NULL.

7. Relational Operations

● Relations support specific operations defined by relational algebra,
including:

○ Selection: Retrieving rows based on conditions.
○ Projection: Retrieving specific columns.
○ Join: Combining two relations based on a related attribute.
○ Union, Intersection, and Difference: Set-based operations to

combine or compare relations.

8. Data Independence

● Relations are abstract representations of data, which provides data
independence. Changes to the physical storage of data do not affect the

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

logical structure of relations, meaning users interact with data at a higher
level of abstraction.

9. Set-Based Theory

● Relations are fundamentally based on set theory and predicate logic.
They are considered sets of tuples where set operations like union,
intersection, and difference can be performed. This makes relations
different from ordered data structures in programming.

10. Null Values

● Relations can accommodate NULL values, which represent unknown,
missing, or inapplicable information. However, certain constraints, like
primary keys, may disallow NULL values.

11. Normalization

● Relations can be normalized to reduce redundancy and improve data
integrity. Normalization organizes data into smaller, related relations to
eliminate anomalies during insertion, deletion, or update operations.

●

a. Perform the following:
(i) Student U Instructor
(ii) Student ⋂ Instructor
(iii) Student - Instructor (iv) Instructor - Student on the following tables:

● Student: Fname, Lname
● Instructor: Fname, Lname

i)

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

ii)

iii)

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

iv)

b. Consider the following relational database schema and write the queries
in relational algebra expressions:
EMP(Eno, Ename, Salary, Address, Phone, DNo)
DEPT(DNo, Dname, Dloc, MgrEno)
DEPENDENT(Eno, DepName, Relation, Dage)

1. List all the employees who reside in ‘Belagavi’.
2. List all the employees who earn between 30000 and 40000.
3. List all the employees who work for the ‘Sales’ department.
4. List the employees who have at least one dependent.
5. List the department names along with the names of the managers.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

MODULE 3

Module 3:

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

Q5a. Informal design guidelines for relation schema design.

● Making sure that the semantics of the attributes is clear in the
schema

● Reducing the redundant information in tuples
● Reducing the NULL values in tuples
● Disallowing the possibility of generating spurious tuples

14.1.1 Clear Semantics

● Definition: Relation attributes should have clear real-world meanings.
● Importance: A well-designed relation schema is easier to explain and

interpret.
● Example: The EMPLOYEE schema clearly represents employee data,

with attributes like name and department number, indicating an implicit
relationship with the DEPARTMENT schema.

● Guideline: Design schemas to ensure each relation corresponds to a single
entity or relationship to avoid semantic ambiguity.

14.1.2 Redundant Information and Update Anomalies

● Redundancy: Grouping attributes can lead to repeated information across
tuples, wasting space.

● Anomalies:
○ Insertion Anomalies: Difficulty adding new data (e.g., a new

employee) without needing to fill in all department details.
○ Deletion Anomalies: Removing a record can unintentionally lose

essential data (e.g., deleting the last employee removes department
info).

○ Modification Anomalies: Changes require updates in multiple
places, risking inconsistencies.

● Guideline: Structure schemas to prevent these anomalies.

14.1.3 NULL Values in Tuples

● Problem: Excessive NULL values can complicate understanding and
operations.

● Guideline: Minimize attributes with frequent NULL values and consider
separate relations for those attributes to maintain clarity.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

14.1.4 Generation of Spurious Tuples

● Concern: Poorly designed relations can lead to unexpected tuples in
results when joining or querying.

● Example: Combining multiple entities or relationships can create tuples
that do not accurately represent the intended relationships.

● Guideline: Ensure design avoids configurations that could lead to spurious
data.

Q5b.Explain 1NF, 2NF, and 3NF with examples.

● 1NF (First Normal Form): Ensures atomicity of values.
● 2NF (Second Normal Form): Ensures no partial dependency, every

non-key attribute must depend on the whole primary key.
● 3NF (Third Normal Form): Ensures no transitive dependency, i.e.,

non-key attributes do not depend on other non-key attributes​.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

Q5c. SQL Commands for INSERT, UPDATE, and DELETE.

● INSERT: INSERT INTO Employee VALUES ('John', 'Doe', 30000);
● UPDATE: UPDATE Employee SET Salary = 35000 WHERE Name =

'John Doe';
● DELETE: DELETE FROM Employee WHERE Name = 'John Doe';​.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

6a). Discuss insertion, deletion, and modification anomalies. Why are they
considered bad? Illustrate with examples.

In relational databases, anomalies occur when data is stored redundantly in a
poorly designed schema, typically in a non-normalized table. These anomalies
can be classified into three main types: insertion, deletion, and modification
anomalies. They are considered bad because they compromise the integrity of the
data and may result in inconsistencies or the loss of important information.

1. Insertion Anomaly:

An insertion anomaly occurs when it is impossible to insert data into the table
without also inserting unrelated or redundant information. This happens in a
non-normalized schema where certain columns depend on each other and require
values even when the actual information is not available.

Example: Consider a table that stores employee and department information:

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

EmpI
D

EmpNam
e

DeptI
D

DeptNam
e

101 John 10 HR

If you want to add a new department (say "Finance") without assigning any
employee to it, you cannot insert it into this table unless you also provide some
employee information. This dependency creates an insertion anomaly, as you
can't insert department data without inserting employee data.

2. Deletion Anomaly:

A deletion anomaly occurs when deleting data about one entity inadvertently
causes loss of data about another entity. This is common in non-normalized
tables where data is stored redundantly.

Example: Using the same table from above:

EmpI
D

EmpNam
e

DeptI
D

DeptNam
e

101 John 10 HR

102 Susan 20 Finance

If you delete the row for employee Susan, you also lose information about the
Finance department (DeptID 20), even though that department may still exist.

3. Modification Anomaly:

A modification anomaly occurs when data is stored redundantly and needs to be
updated in multiple places. If you update it in one place and forget to update it
elsewhere, the database will have inconsistent data.

Example: If the department name HR changes to Human Resources, you would
need to update all rows where DeptID is 10. If you forget to update some rows,
the database will have inconsistent data, where DeptID 10 refers to both HR and

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

Human Resources.

EmpI
D

EmpNam
e

DeptI
D

DeptName

101 John 10 HR

103 Mary 10 Human
Resources

Why are these anomalies considered bad?

● Data Redundancy: Storing the same information multiple times leads to
redundancy, which wastes storage space and makes the system harder to
manage.

● Data Inconsistency: If the same information is stored in multiple places,
there’s a risk that it will become inconsistent over time due to modification
anomalies.

● Difficulty in Data Management: Anomalies make it harder to insert,
update, or delete records without affecting unrelated data. This increases
the complexity of the database and the risk of errors.

● Loss of Information: Deletion anomalies can lead to the unintended loss of
important data, compromising the integrity of the database.

Normalization as a Solution:

Normalization, particularly to 3NF (Third Normal Form) or higher, is used to
eliminate these anomalies. By organizing the data into separate, well-defined
tables with appropriate keys and relationships, insertion, deletion, and
modification anomalies can be avoided, ensuring consistency and integrity of the
data.

6b)Illustrate the following with suitable examples:

● (i) Datatypes in SQL
● (ii) Substring Pattern Matching in SQL

(i) SQL provides various data types to define the type of data that can be stored

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

in a column of a table. Here are some common SQL datatypes:

INT: Stores integer values (e.g., 100, -45).

CREATE TABLE Employees (

ID INT,

Name VARCHAR(50),

Age INT

);

●

VARCHAR(size): Stores variable-length string data (e.g., John, Database).

CREATE TABLE Students (

StudentID INT,

Name VARCHAR(100)

);

●

FLOAT: Stores floating-point numbers (e.g., 10.5, -2.75).

CREATE TABLE Products (

ProductID INT,

Price FLOAT

);

●

DATE: Stores date values in the format YYYY-MM-DD (e.g., 2023-09-20).

CREATE TABLE Orders (

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

OrderID INT,

OrderDate DATE

);

BOOLEAN: Stores true/false values.

CREATE TABLE Flags (

FlagID INT,

IsActive BOOLEAN

);

(ii)

SQL provides the LIKE operator for pattern matching using wildcards, and it is
commonly used to search for substrings in string data. The two main wildcards
used with LIKE are:

● %: Represents zero or more characters.
● _: Represents a single character.

Examples:

Find names that start with 'A':

SELECT Name

FROM Students

WHERE Name LIKE 'A%';

● This query retrieves all names that begin with the letter 'A'.

Find names that end with 'son':

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

SELECT Name

FROM Employees

WHERE Name LIKE '%son';

●

Find names where the second letter is 'a':

SELECT Name

FROM Employees

WHERE Name LIKE '_a%';

●

Find names that contain 'dat':

SELECT Name

FROM Employees

● WHERE Name LIKE '%dat%';

MODULE 4

Q7a. Consider the following relations:

● Student(Snum, Sname, Branch, level, age)
● Class(Cname, meet_at, room, fid)
● Enrolled(Snum, Cname)
● Faculty(fid, fname, deptid)

Write the following queries in SQL. No duplicates should be printed in any of the
answers.

(i) Find the names of all Juniors (level = JR) who are enrolled in a class

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

taught by I. Teach.

SELECT DISTINCT S.Sname
FROM Student S, Enrolled E, Class C, Faculty F
WHERE S.Snum = E.Snum
AND E.Cname = C.Cname
AND C.fid = F.fid
AND S.level = 'JR'
AND F.fname = 'I. Teach';

This query joins the Student, Enrolled, Class, and Faculty tables to find the
students who are at the junior level and enrolled in a class taught by a specific
faculty member.

(ii) Find the names of all classes that either meet in room R128 or have five
or more students enrolled.

SELECT DISTINCT C.Cname
FROM Class C
WHERE C.room = 'R128'
UNION
SELECT C.Cname
FROM Class C, Enrolled E
WHERE C.Cname = E.Cname
GROUP BY C.Cname
HAVING COUNT(E.Snum) >= 5;

This query uses a UNION to combine the results of two conditions: classes
meeting in room R128 or classes with five or more students enrolled.

(iii) For all levels except JR, print the level and the average age of students
for that level.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

SELECT S.level, AVG(S.age) AS Avg_Age
FROM Student S
WHERE S.level <> 'JR'
GROUP BY S.level;

This query calculates the average age of students for each level except for
juniors.

(iv) For each faculty member that has taught classes only in room R128,
print the faculty member’s name and the total number of classes he or she
has taught.

SELECT F.fname, COUNT(C.Cname) AS Total_Classes
FROM Faculty F, Class C
WHERE F.fid = C.fid
AND C.room = 'R128'
GROUP BY F.fname
HAVING COUNT(DISTINCT C.room) = 1;

This query finds faculty members who have only taught classes in room R128
and returns their name and the total number of classes they have taught.

(v) Find the names of students not enrolled in any class.

SELECT S.Sname
FROM Student S
WHERE S.Snum NOT IN (SELECT E.Snum FROM Enrolled E);

This query retrieves the names of students who are not enrolled in any class by
using a NOT IN subquery.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

Q7b. What do you understand by correlated and nested queries in SQL?
Explain with a suitable example.

● Correlated Query: A correlated query is a subquery that refers to a
column from the outer query. It is executed repeatedly, once for each row
selected by the outer query.

Example:

SELECT Sname, age
FROM Student S
WHERE age > (SELECT AVG(age) FROM Student WHERE Branch =
S.Branch);

Here, the inner query refers to the outer query's Branch, and for each student, the
average age of students in that branch is calculated.

● Nested Query: A nested query is a query within another query, where the
inner query is executed once and its result is passed to the outer query.

Example:

SELECT Sname, age
FROM Student
WHERE age > (SELECT AVG(age) FROM Student);

Here, the inner query calculates the average age once, and the result is used to
compare against the age of each student.

Q7c. Discuss the ACID properties of a database transaction.

The ACID properties ensure that database transactions are processed reliably.
They are:

1. Atomicity: Ensures that all operations within a transaction are completed.
If any part of the transaction fails, the entire transaction is rolled back, and
the database remains unchanged.
Example: If a bank transfer transaction debits one account but fails to

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

credit another, the entire transaction is reversed.
2. Consistency: Ensures that a transaction brings the database from one valid

state to another. The database must meet all the rules and constraints after
the transaction.
Example: If a transaction violates any constraints, such as a foreign key
constraint, the database should be rolled back.

3. Isolation: Ensures that transactions are executed in isolation from one
another. Intermediate results of a transaction are not visible to other
transactions until the transaction is committed.
Example: If two users try to update the same account balance
simultaneously, isolation ensures that both transactions are handled in a
serializable manner.

4. Durability: Ensures that once a transaction is committed, it remains so,
even in the event of a system crash. The results of the transaction are
permanently stored in the database.
Example: Once a bank transfer transaction is committed, it is reflected in
the database even if the system crashes immediately afterward.

Q8a. What are the views in SQL? Explain with examples.

Views in SQL are virtual tables based on the result of an SQL query. They do not
store data themselves but provide a way to look at and manipulate the result of a
query as if it were a table.

Example:

CREATE VIEW HighSalaryEmployees AS
SELECT EmpID, EmpName, Salary
FROM Employees
WHERE Salary > 50000;

In this example, a view called HighSalaryEmployees is created based on the
result of a query that selects employees with a salary greater than 50,000. Once
the view is created, you can query it as if it were a table:

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

SELECT * FROM HighSalaryEmployees;

Benefits of Views:

1. Simplicity: They simplify complex queries by encapsulating them in a
view.

2. Security: You can restrict access to certain data by allowing users to query
a view instead of the base table.

3. Data Abstraction: Views provide an abstraction layer over the database
schema.

Q8b. In SQL, write the usage of GROUP BY and HAVING clauses with
suitable examples.

● GROUP BY: The GROUP BY clause is used to group rows that have the
same values in specified columns. It is often used with aggregate functions
(COUNT, SUM, AVG, etc.).

● HAVING: The HAVING clause is used to filter the groups based on certain
conditions, similar to WHERE but for groups.

Example:

SELECT DeptID, COUNT(EmpID) AS EmployeeCount

FROM Employees

GROUP BY DeptID

HAVING COUNT(EmpID) > 5;

● GROUP BY DeptID groups the rows by department.
● HAVING COUNT(EmpID) > 5 filters the groups to only those

departments with more than 5 employees.

In this query, we count the number of employees in each department and return

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

only the departments with more than 5 employees.

Q8c. Discuss the types of problems that may encounter with transactions
that run concurrently.

When transactions run concurrently, several problems can arise, affecting the
consistency and isolation of the database. These problems include:

1. Lost Update: Occurs when two transactions simultaneously update the
same data. The update of one transaction may overwrite the other, leading
to lost data.
Example:

○ Transaction A reads a value of 100 from the database.
○ Transaction B also reads the value 100, increments it to 110, and

writes it back.
○ Transaction A increments its original value (100) to 105 and writes

it back, thus "losing" the update made by Transaction B.
2. Dirty Read: Occurs when a transaction reads data that has been written by

another transaction but not yet committed. If the second transaction is
rolled back, the first transaction has read invalid data.
Example:

○ Transaction A updates a row, but before committing, Transaction B
reads that updated data.

○ If Transaction A rolls back, the data read by Transaction B is
invalid.

3. Non-Repeatable Read: Happens when a transaction reads the same data
multiple times and gets different values due to modifications by other
concurrent transactions.
Example:

○ Transaction A reads a row.
○ Transaction B updates that row and commits.
○ Transaction A reads the same row again and finds different data.

4. Phantom Read: Occurs when a transaction reads a set of rows that satisfy a
certain condition, but when it repeats the query, new rows satisfying the
condition appear due to insertions by other transactions.
Example:

○ Transaction A reads all rows where Salary > 50000.
○ Transaction B inserts a new row with Salary = 60000.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

○ When Transaction A re-executes the query, it gets different results
due to the newly inserted row.

MODULE 5

a. What is the two-phase locking protocol? How does it guarantee
serializability?

The two-phase locking (2PL) protocol is a concurrency control method used to
ensure serializability of database transactions. A transaction is said to follow the
two-phase locking protocol if all locking operations (acquiring locks) precede the
first unlock operation (releasing locks). This divides the transaction into two
phases:

● Growing Phase: The transaction acquires all required locks and cannot
release any lock.

● Shrinking Phase: The transaction releases the locks and cannot acquire
any more.

By enforcing that no new locks can be acquired after the release of any lock, 2PL
guarantees that the transactions will be executed in a serializable manner, i.e., the
result of concurrently running transactions will be the same as if they were
executed sequentially

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

b. Describe the wait-die and wound-wait protocols for deadlock prevention.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TAWait-Die Protocol: In this protocol, if an older transaction requests a lock held by

a younger transaction, the older transaction waits. If a younger transaction
requests a lock held by an older transaction, the younger transaction is aborted
("dies") and restarted later with the same timestamp.
Wound-Wait Protocol: In this scheme, if an older transaction requests a lock held
by a younger transaction, the younger transaction is aborted ("wounded") and
restarted later. However, if a younger transaction requests a lock held by an older
transaction, the younger transaction waits​

c. List and explain the four major categories of NoSQL systems.

The four major categories of NoSQL systems are:

1. Document-based NoSQL Systems: Store data as documents in formats
like JSON or BSON, accessible via document IDs.

2. Key-Value Stores: Simple data models that store data as key-value pairs
for fast access.

3. Column-Based (Wide Column) NoSQL Systems: Partition data into
columns or families of columns, optimized for queries across a few
columns.

4. Graph-Based NoSQL Systems: Represent data in graphs, where nodes
are entities, and edges represent relationships between entities. These
systems are optimal for relationship-heavy queries.

Document-Based NoSQL:

{

"_id": 1,

"name": "John",

"age": 30,

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

"email": "john@example.com"

}

Key-Value Store:

{

"John": {"age": 30, "email": "john@example.com"}

}

Column-Based Store:

| Row Key | Name | Age | Email |

|---------|-------|-----|--------------------|

| 1 | John | 30 | john@example.com |

Graph-Based (Neo4j):

(John)-[:FRIEND_OF]->(Jane)

a. What is Multiple Granularity Locking? How is it implemented using
intention locks? Explain.

Multiple granularity locking allows a database system to lock data items at
different levels of granularity (e.g., entire databases, files, pages, or records)
efficiently. The system uses intention locks to indicate at higher levels of the
hierarchy the intention to lock data at finer levels.

● Intention Shared (IS): Indicates that a shared lock is requested on a

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

lower-level data item.
● Intention Exclusive (IX): Indicates that an exclusive lock is requested on

a lower-level data item.
● Shared-Intention Exclusive (SIX): Indicates that a shared lock is held on

a higher-level item, with the intention of locking lower-level items
exclusively​

.

The compatibility table of the three intention locks, and the actual shared and
exclusive locks, is shown in Figure 21.8. In addition to the three types of
intention locks, an appropriate locking protocol must be used. The multiple
granularity locking (MGL) protocol consists of the following rules:

1. The lock compatibility (based on Figure 21.8) must be adhered to.

2. The root of the tree must be locked first, in any mode.

3. A node N can be locked by a transaction T in S or IS mode only if the parent
node N is already locked by transaction T in either IS or IX mode.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the
parent of node N is already locked by transaction T in either IX or SIX mode.

5. A transaction T can lock a node only if it has not unlocked any node (to
enforce the 2PL protocol).

6. A transaction T can unlock a node, N, only if none of the children of node N
are currently locked by T

b. Discuss the following MongoDB CRUD operations with their formats:
Insert: Adds new documents into a collection using the command:

db.collection.insert(document)

Delete: Removes documents from a collection using the command:

db.collection.remove(query)

Read: Retrieves documents from a collection using the command:

db.collection.find(query)

Each operation corresponds to creating, reading, updating, or deleting data in the
MongoDB database​.
update, delete).
Documents can be created and inserted into their collections using the insert

operation, whose format is:
db..insert() The parameters of the insert operation can include either a single

document or an array of documents.
The delete operation is called remove, and the format is:
db..remove()
The documents to be removed from the collection are specified by a Boolean

condition on some of the fields in the collection documents. There is also an
update operation, which has a condition to select certain documents, and a $set
clause to specify the update.

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

It is also possible to use the update operation to replace an existing document
with another one but keep the same ObjectId. For read queries, the main
command is called find, and the format is: db..find() General Boolean conditions
can be specified as , and the documents in the collection that return true are
selected for the query result. For a full discussion of the MongoDb CRUD
operations, see the MongoDB online documentation in the chapter references.

c. Briefly discuss about Neo4j data model.

The Neo4j data model is based on a graph structure where:

● Nodes: Represent entities such as people, places, or objects, and can have
properties.

● Relationships: Represent connections between nodes and are directed.
They can also have properties.

● Properties: Key-value pairs associated with nodes or relationships.
● Labels: Group nodes into sets for querying. Nodes can have zero or

multiple labels.

The graph-based model is flexible and well-suited for complex queries involving
relationships, as seen in social networks, fraud detection, and recommendation
systems

1. Labels and Properties

● Labels categorize nodes. For example, in Figure 24.4(a), the nodes are
labeled as EMPLOYEE, DEPARTMENT, PROJECT, and
LOCATION.

● Properties are attributes stored in curly brackets {...}. Nodes can have
multiple labels, such as PERSON:EMPLOYEE:MANAGER. This is
similar to an entity and its subclasses in entity-relationship models (ER
and EER).

2. Relationships and Relationship Types

● Relationships define connections between nodes. For example, Figure
24.4(b) shows relationships like WorksFor, Manager, LocatedIn, and
WorksOn.

● WorksOn has properties, such as Hours, which specify more details about
the relationship.

● Relationships can be traversed in either direction, even if they are shown

DB
MS

-S
olu
tio
n_
20
24
-R
EN
CI
TA

with arrows (→) indicating a specific direction.

3. Paths

● A path is a sequence of nodes and relationships that form part of a query.
It helps to navigate the graph and retrieve data matching a specific pattern.

● The concept is similar to path expressions in object databases (OQL) or
XML query languages (XPath, XQuery).

4. Optional Schema

● Neo4j can function without a predefined schema. However, version 2.0
introduced schema-related functions like indexes and constraints. For
instance, a key constraint can ensure that a certain property (e.g., EmpId)
is unique within a label (e.g., EMPLOYEE).

5. Indexing and Node Identifiers

● When a node is created, Neo4j assigns it a unique system-defined
identifier.

● Users can create indexes based on node properties for efficient retrieval.
For example, EmpId could be used to index EMPLOYEE nodes, and Dno
for DEPARTMENT nodes.

