






Module 1 
1.a What is NLP? Explain the different levels of NLP with eg. (10M) , 5 -Exp,5-Examples 

 
Language is the Primary means of communication used by human beings. It is the tool used to express 
our ideas and emotions. It shapes thoughts, has a structure and carries meaning. 

Natural Language Processing is concerned with development of computational models of aspects of 
human language processing. 

The two main reasons for this development are: 

 To develop automated tool for language processing. 

 To gain a better understanding of human communication. 
To build computational models with human language-processing abilities requires a knowledge of how 
human acquire, store, and process language. It also requires a knowledge of the world and of language. 
The two major approaches to NLP - 

1. Rationalist Approach 
2. Empiricist Approach 

I. Rationalist Approach: 

 Early NLP research is based on rationalist approach, which assumes the existence of some 
language faculty in human brain. 

 Supporters argued that it is not possible for children to learn a complex thing like natural 
language from limited sensory input. 

II. Empiricist: 

 Empiricists do not believe in existence of language faculty. 

 They believe in the existence of some general organization principles such as pattern 
recognition, generalization and association. 

 Learning of detailed structures is therefore possible through the application of these principles 
on sensory inputs available to the child. 

Relation between language and knowledge: 

 Language is the medium of expression in which knowledge is deciphered. 

 We are considering the text as the language and the content of it as knowledge. 

 Language is the outer form of the content it expresses. 
 The same content can be expressed in different languages. 

 To process a language is to process the content of it. 

 As computers are not able to understand natural language, methods are developed to map its 
content in a formal language 

Language Processing 
Language or text processing has different levels and each level involves different types of knowledge. 

Various levels of processing text and the types of knowledge it involves 

 



I. Lexical Analysis: 

 The simplest level of analysis is lexical analysis which involves analysis of words. (Lexical - 
relating to the words or vocabulary of a language) 

 Words are the most fundamental unit of any natural language text. ➢ Word-level processing 
requires morphological knowledge. 

 Morphological knowledge - knowledge about the structure and formation of words from basic 
units called morphemes. 

 The rules for forming words from morphemes are language specific 
 

Morphological Analysis: 

 Morphological analysis is a field of linguistics that studies the structure of words. 

 It identifies how a word is produced through the use of morphemes. 
 Morphemes are the smallest meaningful words which cannot be divided further. It is the 

smallest element of a word that has grammatical function and meaning. 

 Free morpheme and bound morpheme are the two types of morphemes. 

 A single free morpheme can become a complete word. For instance, a bus, a bicycle, and so 
forth. 

 A bound morpheme, on the other hand, cannot stand alone and must be joined to a free 
morpheme to produce a word. ing, un, and other bound morphemes are examples. 

Unsuccessfull 
 

un success ful 
(prefix) (stem) (suffix) 

 
II. Syntactic Analysis: 

 Syntactic analysis considers a sequence of words as a unit, usually a sentence and finds its 
structure. 

 Syntactic analysis decomposes a sentence by looking into its constituents (or words) and 
identifies how they relate to each other. 

 It captures grammaticality or non-grammaticality of sentences by looking at constraints like 
word order, number, and case agreement. 

 This level of processing requires syntactic knowledge. Syntactic Knowledge: 
 Syntactic knowledge is knowledge about how words are combined to form larger units such 

as phrases and sentences and what constraints are imposed on them. 

 Not every sequence of words results in a sentence - For example, ‘I went to the market’ is a 
valid sentence whereas ‘went the I market to’ is not 

This level of analysis requires detailed knowledge about the rules of grammar 
 

III. Semantic Analysis: 

 Semantic analysis is associated with the meaning of the language. 

 It is concerned with creating meaningful representation of linguistic inputs. 
 Defining meaning components is difficult as grammatically valid sentences can be 

meaningless. 

 Humans apply all sorts of knowledge - lexical, syntactic, semantic, discourse, pragmatic, and 
world knowledge to arrive at the meaning of a sentence. 

 The starting point in semantic analysis is lexical semantics (meaning of words). 
 A word can have any number of possible meanings associated with it. But in a given context, 

only one of those meanings will be applied. 

 The meaning of a sentence cannot be composed solely on the basis of meaning of its words. 



 Consider the following sentences: 
– Kabir and Ayan are married. 
– Kabir and Suha are married. 

 Both sentences have identical structures, and the meaning of individual words are clear. But 
most of us end up with two different interpretations. 

 We may interpret the second sentence to mean that Kabir and Suha are married to each other, 
but this interpretation does not occur from the first sentence. 

 Syntactic structure and compositional semantics fail to explain these interpretations. 

 Here we make use of pragmatic information. 

 Hence semantic analysis requires pragmatic knowledge besides semantic and syntactic 
knowledge. 

 Pragmatic analysis deals with outside word knowledge, which means knowledge that is 
external to the documents and/or queries. 

 
IV. Discourse Analysis: 

 Discourse-level processing attempts to interpret the structure and meaning of even larger 
units, e.g., at the paragraph and document level, in terms of words, phrases, clusters and 
sentences. 

 It requires the resolution of anaphoric references and identification of discourse structure. 

 It requires discourse knowledge - knowledge of how the meaning of a sentence is determined 
by preceding sentences. – example, how a pronoun refers to the preceding noun and how to 
determine the function of a sentence in the text 

 Pragmatic knowledge may be needed for resolving the anaphoric references. 
 In the following sentences, pragmatic knowledge is required to resolve the anaphoric 

reference - ‘they’. The district administration refused to give the trade union permission for 
the meeting because they feared violence. The district administration refused to give the trade 
union permission for the meeting because they oppose government. 

 The highest level of processing is pragmatic analysis, which deals with the purposeful use of 
sentences in situations. 

 It requires knowledge of the world i.e., knowledge that extends beyond the content of the text 
 
 
 

1.b Explain the following with suitable example (10 M) , Exp-5, Eg-5 

i) X bar theory: 

The x bar theory is one of the central concepts in GB. Instead of defining several phrase structures 

and the sentence structure with separate sets of rules, Xbar theory defines them both as maximal 

projections of some head. Hence the entities defined become language independent. 

Noun phrase (NP) is the maximal projection of Noun (N) 

verb phrase (VP) is the maximal projection of Verb (V) 

adjective phrase (AP) is the maximal projection of Adjective (A) 

preposition phrase (PP) is the maximal projection of Preposition (P) 

They can be represented as head X of their corresponding phrase (where X = {N, V, A, P} Even the 

sentence structure S’ - which is a projection of sentence can be regarded as the maximal projection of 

inflection (INFL). 

GB envisages projection at 2 levels: 

1. The projection of the head at semi-phrase level, denoted by X bar 



2. The maximal projection at the phrase level, denoted by the X double barFor 

sentences – the first level projection is denoted as S and the second level maximal 

projection is defined as S’. 
 

 
ii) Theta Theory 

 

GB puts restrictions on lexical heads through which it assigns certain roles to its arguments. These 

roles are pre-assigned and cannot be violated at any syntactic level as per the projection principle. 

These role assignments are called theta roles and are related to ‘semantic selection. 

Theta Theory ( θ-theory) or the Theory of Thematic Relations 



Theta-role and theta-criterion 

There are certain thematic roles from which a head can select. These are called theta-roles and they 

are mentioned in the lexicon. 

Ex: The verb ‘eat’ can take arguments with θ-roles ‘(Agent-Theme)’. 

Agent is a special type of role which can be assigned by a head to outside arguments (external 

arguments) whereas other roles are assigned within its domain (internal arguments). 

 

 
 
 
 
 
 

 
2.a Define n-gram model. Derive expression for n-gram model. Solve the below example using bi- 

gram: (10 M) Exp-5,types-5 

 

 A statistical language model is a probability distribution P(s) over all possible word sequences 

(or any other linguistic unit like words, sentences, paragraphs, documents, or spoken 

utterances). 

 Statistical Language Modelling is the development of probabilistic models that can predict the 
next word in the sequence of words given the words that precedes it. 

 A number of statistical language models have been proposed in literature. The dominant 
approach in modelling is the n-gram model 

The goal of a statistical language model is to estimate the probability of a sentence. This is achieved 

by decomposing sentence probability into a product of conditional probabilities using the chain rule 

as follows: 

P(s) = P (w1, w2, w3, …,wn) 
= P (w1) P (w2/w1) P (w3/w1 w2) P (w4/w1 w2 w3) … P (wn/ w1 w2 … wn-1) 

= ∏ P (wi / hi) 
i=1 to n where hi is the history of the word wi defined as w1 w2 …wi-1 

 

 To find the sentence probability, we need to calculate the probability of a word, given the 

sequence of words preceding it. 

 The n-gram model simplifies the task by approximating the probability of a word given all the 

previous words by the conditional probability given previous n-1 words only. 



 An n-gram model calculates the probability of a word by modeling language as the Markov 

model of order n-1, that is, by looking at previous n-1 words only. 

 A model that limits the history to the previous one word only is termed a bi-gram (n = 1) model. 

A model that conditions the probability of a word to the previous two words, is called a tri- 

gram (n = 2) model. 

Using bi-gram and tri-gram estimates, the probability of a sentence can be calculated as 

P(s)=∏ P (wi / wi-1) i=1 to n 

and 

P(s) = ∏ P (wi /wi-2 wi-1) 

 

 A special word (pseudoword) <s> is introduced to mark the beginning of the sentence in bi- 

gram estimation. 

 The probability of the first word in the sentence is conditioned on <s>. Similarly, in tri-gram 

estimation, two pseudo words <s1><s2> are introduced. 

 Estimation of probabilities is done by training the n-gram model on the training corpus. n-gram 

parameters are estimated using the Maximum Likelihood Estimation (MLE) technique, that is, 

using relative frequencies. 

 We count a particular n-gram in the training corpus and divide it by the sum of all n-grams that 

share the same prefix. 
 

Example: 

 

P (wi / wi-n+1, …, wi-1 ) = C (wi-n+1, …, wi-1, wi)  / C (wi-n+1, …, wi-1) 



2.b What is LFG model? Explain c-structure and f-structure concept in language modelling. Find c- 

structure and f-structure for the following sentences (10 M)  Exp-5, Eg-5 

She saw stars in the sky 

CFG rules to handle this sentence are: 

S -> NP VP 

VP -> V {NP} {NP} PP* {S’} 

PP -> P NP 

NP -> Det N {PP} 

S’ -> Comp S’ 

 
Lexical functional grammar (LFG) is a constraint-based grammar framework in theoretical linguistics. 

It posts two separate levels of syntactic structure 

1. A phrase structure grammar representation of word order and constituency, 

2. A representation of grammatical functions such as subject and object, similar to dependency 

grammar 

 
The term ‘lexical functional’ is composed of two parts: 

1. The lexical part - is derived from the fact that the lexical rules can be formulated to help define the 

structure of a sentence 

2. The functional part - is derived from grammatical functions such as subject and object or roles 

played by various arguments in a sentence. 

LFG represents sentences at two syntactic levels – 

1. Constituent structure (c-structure) 

2. Functional structure (f-structure) 

C-Structure 

The c-structure is derived from the phrase and sentence structure syntax.. C-Structure is used for 

encoding linear order constituency and hierarchical relations. 

 
F-structure 

f-structure encodes the information obtained from phrase and sentence structure rules and functional 

specifications. As the grammatical functional role cannot be derived directly from phrase and sentence 

structure, functional specifications are annotated as the nodes of c-structure, which when applied to 

sentences, results in f-structure. 

 
Example: She saw stars in the sky 

CFG rules to handle this sentence are: 

S -> NP VP 

VP -> V {NP} {NP} PP* {S’} 

PP -> P NP 

NP -> Det N {PP} 



S’ -> Comp S 

where 

S: sentence; V: verb; 

P: preposition, N: noun; 

S’: clause; Comp: complement 

{} optional; 

*: Phrase can appear any number of times including blank. 

 
 
 
 
 

 
Lexical entries of the words in the sentence - She saw Stars  

 

 

C-Structure of the sentence - She saw stars 



 
 

 

Finally, the f-structure is the set of attribute-value pairs, represented as 
 

 

Module 2 

3.a Draw the NFA for the language consisting of all strings containing only 'a's and 'b's and ending 

with 'baa'. Draw the state transition table. Find the Regular Expression (R.E.) for the above 

language. (10 Marks) 

1. NFA Construction: 

Let's construct an NFA (Non-deterministic Finite Automaton) for the language that consists of all 

strings containing only 'a's and 'b's and ending with "baa". 

States: 

o q0q_0q0: Start state 

o q1q_1q1: State after reading 'b' 

o q2q_2q2: State after reading 'ba' 

o q3q_3q3: Final state after reading 'baa' 



Transitions: 

o From q0q_0q0: 

 On 'a', stay in q0q_0q0 (loop) 

 On 'b', move to q1q_1q1 

o From q1q_1q1: 

 On 'a', move to q2q_2q2 

 On 'b', stay in q1q_1q1 (loop) 

o From q2q_2q2: 

 On 'a', move to q3q_3q3 (final state) 

 On 'b', move to q1q_1q1 

o From q3q_3q3: 

 On 'a' or 'b', move back to q0q_0q0 (optional loop, depending on 

interpretation) 

 
The regular expression for the language can be derived as: 

 
R.E. = (a|b)*baa 

 

This denotes any combination of 'a's and 'b's followed by the specific string "baa". 
 

 

 

 
3.b Write the algorithm for minimum edit distance and compute the minimum edit distance 

between "Peaceful" and "Peacefull". (10 Marks) 



 

 
Table for Minimum Edit Distance between "peaceful" and "peaceful": 

 

 

 The first row and column are initialized with values representing the number of edits needed 

to transform an empty string into the first iii or jjj characters of the respective string. 

 Since the two strings are identical, every diagonal value (i.e., dp[i][j]dp[i][j]dp[i][j] when 

comparing the same characters) is taken from the previous diagonal value without adding 

any additional cost, hence all these cells are 0. 

 The rest of the table entries show the cumulative cost of editing, which is 0 in this case. 

4(a): Write the CYK parsing algorithm. Find the sequence of states created by the CYK algorithm 

while parsing the sentence: "The man read this book". Consider the following simplified grammar 

in CNF. (10 M)



 
 



 
 



4(b): Derive a top-down, depth-first, left-to-right parse tree for the given sentence: "The 

angry bear chased the frightened little squirrel." Use the following grammar rules to create 

the parse tree: (10M) 

Grammar Rules: 

S → NP VP 

NP → Det Nom 

VP → V NP 

Nom → Adj Nom | N 

Det → the 

Adj → little | angry | frightened 

N → squirrel | bear 

V → chased 

Parse Tree Construction: 

1. Start with the sentence: "The angry bear chased the frightened little squirrel." 

2. Apply Grammar Rules: 

o S → NP VP 

 NP → Det Nom (for "The angry bear") 

 Det → the 

 Nom → Adj Nom (for "angry bear") 

 Adj → angry 

 Nom → N (for "bear") 

 N → bear 

 VP → V NP (for "chased the frightened little squirrel") 

 V → chased 

 NP → Det Nom (for "the frightened little squirrel") 

 Det → the 

 Nom → Adj Nom (for "frightened little squirrel") 

 Adj → frightened 

 Nom → Adj Nom (for "little squirrel") 

 Adj → little 

 Nom → N (for "squirrel") 

 N → squirrel 



 

Module 3 
 

 
5 a. With a neat diagram, explain the learning framework architecture.(10 M) 

ANS- 

Only the preparation of documents is performed outside of this framework 
 

 

 Document Preparation: 

The documents are official diagnostic reports hierarchically structured in several sections and 

subsections, written by using MS-Word, extracting text from such documents, while preserving the 



content structure, is a difficult task. A program has been written which that reads the XML document 

tree and for each section with a specified label extracts the pure text and stores it in a new XML. 

 Tagging: 

The part-of-speech (POS) tagger that we used is a probabilistic tagger with parameter files for tagging 

several languages: German, English, French, or Italian. 

The more problematic issue is that of words marked with the stem <unknown>. 

Their POS is usually correctly induced, but we are specifically interested in the stem information. 

The two reasons for an <unknown> label are: 

a) the word has been misspelled 

b) the word is domain specific, and as such not seen during the training of the tagger. 

On the positive side, selecting the words with the <unknown> label directly create the list of domain 

specific words, useful in creating a domain lexicon. Before trying to solve the problem of providing 

stems for words with the label, one should determine whether the stemming information 

substantially contributes to the further processing of text. Since we could not know that in advance, 

we manually provided stems for all words labelled as. Then, during the learning 

process we performed a set of experiments, where: 

a) no stem information at all was used 

b) all words had stem information (tagger + manually created list of stems). 
 

 

 Parsing: 

Syntactical parsing is one of the most important steps in the learning framework since the produced 

parse trees serve as input for the creation of features used for learning. Since we are interested in 

getting qualitative parsing results, three different parsers are used and they are: the Stanford parser, 

the BitPar parser and the Sleepy parser. 

What these parsers have in common is that they all are based on unlexicalized probabilistic context 

free grammars (PCFG) trained on the same corpus of German, Negra. 

o Stanford Parser – 

The Stanford parser is an ambitious project that tackles the task of generating parse trees from 

unlabelled data independently of the language. For the moment, the parser is distributed with 

parameter files for parsing 

English, German, and Chinese. We tested the parser on our data and noticed that the POS tags were 

often inaccurate induced (in the sentence with only 8 words of ), which then resulted in inaccurate 

parse trees. But, in those cases when the tagging was performed correctly, the parse trees were also 

correct. Still, the parser could not parse long sentences, 

perhaps since it was trained in the part of the Negra corpus with sentences having up to 10 words. 

Trying the parser with long English sentences instead, produced excellent results. 

o BitPar Parser – 



This parser is composed of two parts, the parser itself and the parameter files (chart rules, lexicon, 

etc.). Published experimental results claim robust performance, due to the use of sophisticated 

annotation and transformation 

schemata for modelling grammars. Another advantage of the parser is that its lexicon can be 

extended very 

easily with triples of domain dependent words, their tags, their frequency counts in a corpus, thus 

avoiding the tagging errors typical for unlexicalized parsers. These tagging errors damage the parse 

results, as can be seen from 

the results of the Stanford parser. Our critique for the described BitPar is that it usually produces 

trees with 

more nodes than the other parsers and the annotation of nodes contains specialized linguistic 

information, not very appropriate for creating features for learning. 

o Sleepy Parser- 

This parser has been specifically tuned for the German language, and while it is a statistical parser 

like the others, it uses different annotation schemas and incorporates grammatical functions (SB- 

subject, OC-clausal object, MO- 

modifier, HD-head, etc.) or long- distance dependencies between terms. In contrast to the two other 

parsers, it also has a highly tuned suffix analyser for guessing POS tags (8), which contributes to more 

accurate tagging results 

than the other parsers, although some domain-dependent words are not always correctly tagged. 

Erroneous parsing is also encountered for very long sentences. 

 

 

 Tree Representation: 

The bracketed parse tree and the stem information of tagging serve as input for the step of creating a 

tree data structure. The tree is composed of terminals (leaf nodes) and non-terminals (internal 

nodes), all of them known as constituents of the tree. For export purposes as well as for performing 

exploration or annotation of the corpus. 

The tree data structures are stored in XML format. The created tree, when visualized in Tiger Search. 

The terminals are labelled with their POS tags and contain the corresponding words and stems; the 

inside nodes are labelled with. their phrase types (NP, PP, etc.), and the branches have labels, too, 

corresponding to the grammatical functions of the nodes. 

 

 

 Feature Creation: 

Features are created from the parse tree of a sentence. A feature vector is created for every 

constituent of the tree, containing some features unique to the constituent, some features common 

to all constituents of the sentence, and some others calculated with respect to the target constituent 

(the predicate verb). 

 Annotation: 



To perform the manual annotation, the Salsa annotation tool (publicly available) is used. The Salsa 

annotation tool reads the XML representation of a parse tree and displays it . The user can add 

frames and roles as well as to attach them to a desired target verb. Such an assignment can be easily 

performed using point-and-click. After this process, an element is added to the XML. representation 

of the sentence, containing information about the frame. 

 Active Learning: 

Research in IE has indicated that using an active learning approach for acquiring labels from a human 

annotator has advantages over other approaches of selecting instances for labelling. 

5,b. Write a note on: (10 M) 

i) Global security org: 

InFact has been the search behind the GlobalSecurity.org site (www.globalsecurity.org). 

GlobalSecurity.org is the most authoritative online destination for those in need of both 

reliable background information and breaking news. 

GlobalSecurity.org’s unique positioning enables it to reach both a targeted and large 

diversified audience. 

The content of the website is updated hourly, as events around the world develop, providing 

in depth coverage of complicated issues. 

The breadth and depth of information on the site ensures a loyal repeat audience. This is 

supplemented by GlobalSecurity.org’s unique visibility in the mass media, which drives 

additional growth. The director of GlobalSecurity.org, John Pike, regularly provides 

commentary and analysis on space and security issues to PBS, CNN, MSNBC, Fox, ABC, CBS, 

NBC, BBC, NPR, and numerous print and online publications. 

In powering this site, InFact serves the information search needs of a well-established user 

community of 100,000, consisting of news reporters, concerned citizens, subject matter 

experts, senior leaders, and junior staff and interns. 

Usability Considerations: 

In deploying InFact on the GlobalSecurity.org site, our goal was to serve the information 

needs of a wide community of users, the majority of which are accustomed to 

straightforward keyword search. Therefore, on this site, by default, InFact acts as a keyword 

search engine. However, we also started experimenting with ways to progressively migrate 

users away from keyword search and towards natural language search or “fact search.” 

Analysis of Query Logs : 

We wish to quantify the relative popularity of natural language (Fact) search versus keyword 

search. In addition, we wish to compare the relative success of alternative strategies we 

adopted to overcome usability issues. This study of log data reflects four ways users submit a 

natural language query to InFact: 

1) they click on the Hot Search link. 

http://www.globalsecurity.org/


2) they click on a keyword tip. 

3) they click on an example in the Query Generator or Help page. 

4) they attempt to type an explicit relationship or fact search using the IQL syntax. 

ii) InFact System: 

InFact consists of an indexing and a search module. 

InFact models text as a complex multivariate object using a unique combination of deep 

parsing, linguistic normalization and efficient storage. 

The storage schema addresses the fundamental difficulty of reducing information contained 

in parse trees into generalized data structures that can be queried dynamically. 

InFact handles the problem of linguistic variation by mapping complex linguistic structures 

into semantic and syntactic equivalents. 
 

 
In Fact’s Indexing Service performs in order: 

i) Document Processing 

The first step in document processing is format conversion, which is handled through native 

format converters, which can convert 370 different input file types. 

Customized document parsers address the issue that a Webpage may not be the basic unit 

of content, but it may consist of separate sections with an associated set of relationships and 

metadata. 



Next we apply logic for sentence splitting in preparation for clause processing. 

Last, we extract morphological stems and compute frequency counts, which are then 

entered in the index. 

ii) Clause Processing 

The indexing service takes the output of the sentence splitter and feeds it to a deep linguistic 

parser. 

Indices are created automatically, without using predefined extraction rules, and it captures 

all information, not just predefined patterns. 

The parser performs a full constituency and dependency analysis, extracting part-of-speech 

(POS) tags and grammatical roles for all tokens in every clause. 

Next it captures inter-clause links, through: 

○ Explicit tagging of conjunction or pronouns that provide the link between the syntactic 

structures for two adjacent clauses in the same sentence 

○ pointing to the list of annotated keywords in the antecedent and following sentence 

iii) Linguistic Normalization 

Apply normalization rules at the syntactic, semantic, or even pragmatic level. 

Our approach to coreferencing and anaphora resolution make use of syntactic agreement 

and/or binding theory constraints. 

Binding theory places syntactic restrictions on the possible coreference relationships 

between pronouns and their antecedents. 

Example: 

■  “John works by himself,” “himself” must refer to John, 

■  “John bought him a new car,” “him” must refer to some other individual mentioned 

in a previous sentence. 

Coreferencing and anaphora resolution models also benefit from preferential weighting 

based on dependency attributes. Apply a transformational grammar to map multiple surface 

structures into an equivalent deep structure. 

A common example is the normalization of a dependency structure involving a passive verb 

form into the active, and recognition of the deep subject of such clause. 

At the more pragmatic level, apply rules to normalize composite verb expressions, capture 

explicit and implicit negations, or to verbalize noun or adjectives 

For instance, the sentences “Bill did not visit Jane,” which contains an explicit negation, and 

“Bill failed to visit Jane,” where the negation is rendered by a composite verb expression, are 

mapped to the same structure. 



6 a. Explain shortest dependency path hypothesis. Show various shortest dependency 

path among the relations in the “Jellise created an atmosphere of terror in the camp by 

killing, abusing and threatening the detainees” (10M) 

If e1 and e2 are two entities mentioned in the same sentence such that they are observed to 

be in a relationship R, then the contribution of the sentence dependency graph to 

establishing the relationship R (e1, e2) is almost exclusively concentrated in the shortest 

path between e1 and e2 in the undirected version of the dependency graph. 

 

If entities e1 and e2 are arguments of the same predicate, then the shortest path between 

them will pass through the predicate, which may be connected directly to the two entities, 

or indirectly through prepositions. 

If e1 and e2 belong to different predicate-argument structures that share a common 

argument, then the shortest path will pass through this argument. 

This is the case with the shortest path between ‘stations’ and ‘workers’, passing through 

‘protesters,’ which is an argument common to both predicates ‘holding’ and ‘seized’. 
 

 

All these paths support the Located relationship. 

For the first path, it is reasonable to infer that if a Person entity (e.g., ‘protesters’) is doing 

some action (e.g., ‘seized’) to a Facility entity (e.g., ‘station’), then the Person entity is 

Located at that Facility entity. 

The second path captures the fact that the same Person entity (e.g., ‘protesters’) is doing 

two actions (e.g., ‘holding’ and ‘seized’) , one action to a Person entity (e.g., ‘workers’), and 



the other action to a Facility entity (e.g., ‘station’). A reasonable inference in this case is that 

the 

 
 
 
 
 
 
 

‘workers’ are Located at the ‘station’. 

To find the shortest dependency paths among the relations in the sentence "Jellisc created 

an atmosphere of terror in the camp by killing, abusing, and threatening the detainees," we 

need to identify the relationships between the entities (e.g., "Jellisc," "atmosphere of 

terror," "camp," "killing," "abusing," "threatening," "detainees") and find the shortest paths 

in the dependency tree that connect them. 

In example there exist multiple shortest paths in the dependency graph between the same 

two entities– there are actually two different paths, with each path replicated into three 

similar paths due to coordination. Our current approach considers only one of the shortest 

paths, nevertheless it seems reasonable to investigate using all of them as multiple sources 

of evidence for relation extraction. 

There may be cases where e1 and e2 belong to predicate-argument structures that have no 

argument in common. However, because the dependency graph is always connected, we are 

guaranteed to find a shortest path between the two entities. In general, we shall find a 

shortest sequence of predicate-argument structures with target predicates P1,P2,...,Pn such 

that e1 is an argument of P1, e2 is an argument of Pn, and any two consecutive predicates Pi 

and Pi+1 share a common argument (where by “argument” we mean both arguments and 

complements). 

6 b. What is Annotation? Explain the strategies used in active learning approach for 

acquiring labels using committee based classification scheme. (10M) 

Annotation refers to the process of labeling text data with frames (semantic structures) and 

roles (the functions that entities play within those frames), which helps in understanding the 

relationships and meanings within the text. 

Research in IE has indicated that using an active learning approach for acquiring labels from 

a human annotator has advantages over other approaches of selecting instances for 

labeling. 

The possibilities for designing an active learning strategy are manifold; the one we have 

implemented uses a committee-based classification scheme that is steered by corpus 

statistics. 

The strategy consists of the following steps: 



a) Divide the corpus in clusters of sentences with the same target verb. If a cluster has fewer 

sentences than a given threshold, group sentences with verbs evoking the same frame into 

the same cluster. 

b) Within each cluster, group the sentences (or clauses) with the same parse sub tree 

together. 

c) Select sentences from the largest groups of the largest clusters and present them to the 

user for annotation. 

d) Bootstrap initialization: apply the labels assigned by the user to groups of sentences with 

the same parse sub-tree. e) Train all the classifiers of the committee on the labeled 

instances; apply each trained classifier to the unlabeled sentences. 

f) Get a pool of instances where the classifiers of the committee disagree and present to the 

user the instances belonging to sentences from the next largest clusters not yet manually 

labeled. 

g) Repeat steps d)–f) a few times until a desired accuracy of classification is achieved. 

Steps a), b), c): In these steps, statistics about the syntactical structure of the corpus are 

created, with the intention of capturing its underlying distribution, so that representative 

instances for labeling can be selected. 

 

 
Step d): This step has been regarded as applicable to our corpus, due to the nature of the 

text. Our corpus contains repetitive descriptions of the same diagnostic measurements on 

electrical machines, and often, even the language used has a repetitive nature. Actually, this 

does not mean that the same words are repeated. Rather, the kind of sentences used to 

describe the task has the same syntactic structure. 

 

 
Step e): The committee of classifiers consists of a maximum entropy (MaxEnt) classifier from 

Mallet, a Winnow classifier from SNoW, and a memory-based learner (MBL) from TiMBL. For 

the MBL, we selected k=5 as the number of the nearest neighbours. The classification is 

performed as follows: if at least two classifiers agree on a label, the label is accepted. If there 

is disagreement, the cluster of labels from the five nearest neighbours is examined. If the 

cluster is not homogenous (i.e., it contains different labels), the instance is included in the 

set of instances to be presented to the user for manual labeling. 
 

 
Step f): If one selects new sentences for manual annotation only based on the output of the 

committee-based classifier, the risk of selecting outlier sentences is high. Thus, from the 

instances’ set created by the classifier, we select those belonging to large clusters not 

manually labeled yet. 



Module 4 
7.a) Explain latent semantic analysis feedback and topic models feedback system. 
(10M). 

Latent Semantic Analysis (LSA) 
Latent Semantic Analysis (LSA) uses statistical computations to extract and represent the 

meaning of words. Meanings are represented in terms of their similarity to other words in a 

large corpus of documents. LSA begins by finding the frequency of terms used and the 

number of co-occurrences in each document throughout the corpus and then uses a 

powerful mathematical transformation to find deeper meanings and relations among words, 

very short documents may not be able to receive the full benefit of LSA. 

 

 
To construct an LSA corpus matrix, a collection of documents are selected. A document may 

be a sentence, a paragraph, or larger unit of text. A term-document frequency (TDF) matrix X 

is created for those terms that appear in two or more documents. The row entities 

correspond to the words or terms (hence the W) and the column entities correspond to the 

documents (hence the D). The matrix is then analysed using Singular Value 

Decomposition (SVD), that is the TDF matrix X is decomposed into the product of three 

other matrices 

(a) vectors of derived orthogonal factor values of the original row entities W. 

(b) vectors of derived orthogonal factor values of the original column entities D. 

(c) scaling values (which is a diagonal matrix) S. 

The product of these three matrices is the original TDF matrix. 

{X} = {W}{S}{D} 
 

 
The dimension (d) of {S} significantly affects the effectiveness of the LSA space for any 

particular application. 

The similarity of terms is computed by taking the cosine of the corresponding term vectors. 

A term vector is the row entity of that term in the matrix W. In iSTART, the documents are 

sentences from texts and trainees’ explanations of those sentences. These documents 

consist of terms, which are represented by term vectors; hence, the document can be 

represented as a document vector which is computed as the sum of the term 

vectors of its terms: 

 



The similarity between two documents (i.e., the cosine between the two document vectors) 

is computed as: 

 

 
The rating is based on formulae that use weighted sums of the four LSA cosines between the 

explanation and each of the four benchmarks. 

The four benchmarks include: 

a) the words in the title of the passage (“title”). 

b) the words in the sentence (“current sentence”). 

c) words that appear in prior sentences in the text that are causally related to the sentence 

(“prior text”), and 

d) words that did not appear in the text but were used by two or more subjects who 

explained the sentence during experiments (“world knowledge”). 

when LSA was combined with a fully automated word-based system and we found that 

world knowledge benchmark could be dropped. Hence, only three benchmarks are used for 

LSA-based factors: 

1) the words in the title of the passage. 

2) the words in the sentence, and 

3) the words in the two immediately prior sentences. 

From the word-based values we include: 

4) the number of content words matched in the target sentence. 

5) the number of content words matched in the prior sentences. 

6) the number of content words matched in the subsequent sentences, and 

7) the number of content words that were not matched in 4, 5, or 6. 

Topic models 

 
Topic modeling is a technique in natural language processing (NLP) used to identify the 

underlying topics within a collection of documents. It helps in understanding the structure 

and themes present in large text datasets. Here are a few examples of topic modeling 

algorithms: 

1. Latent Dirichlet Allocation (LDA): 



○ LDA is a generative probabilistic model that assumes documents are mixtures 

of topics, and topics are mixtures of words. It helps in discovering hidden 

topics in a set of documents. 

○ Example: Given a set of news articles, LDA might identify topics such as 

politics, sports, technology, and health, with each topic represented by a set 

of words like: 

■  Politics: election, government, policy, vote 

■  Sports: game, team, player, match 

■  Technology: software, computer, internet, device 

■  Health: doctor, disease, treatment, medicine 

2. Non-Negative Matrix Factorization (NMF): 

○ NMF factorizes the term-document matrix into two non-negative matrices: 

one representing the document-topic distribution and the other representing 

the topic-word distribution. 

○ Example: In a collection of research papers, NMF might identify topics like 

machine learning, data science, and biology, with each topic characterized by 

specific terms: 

■  Machine Learning: algorithm, model, training, neural 

■  Data Science: data, analysis, statistical, visualization 

■  Biology: cell, DNA, protein, organism 

3. Latent Semantic Analysis (LSA): 

○ LSA uses singular value decomposition (SVD) to decompose the term- 

document matrix and capture the latent relationships between terms and 

documents. 

○ Example: Analyzing customer reviews, LSA might reveal topics such as 

product quality, customer service, and delivery experience, with each topic 

identified by relevant terms: 

■  Product Quality: durable, reliable, excellent, value 

■  Customer Service: helpful, support, response, friendly 

■  Delivery Experience: fast, timely, package, tracking 

7.b)With a neat diagram explain the evolutionary model for KDT(Knowledge discovery 

from Text). (10M) 

Ans- 



Semantically guided model for evolutionary Text Mining which is domain-independent but 

genre-based. Unlike other approaches to Knowledge Discovery from Texts (KDT), this 

approach does not rely on external resources or descriptions hence its domain independent. 

Instead, it performs the discovery only using information from the original corpus of text 

documents and from the training data generated from them. 

Genetic Algorithms (Gas) are the central approach to KDT. However, for proper GA-based 

KDT there are important issues to be addressed including representation and guided 

operations to ensure that the produced offspring are semantically coherent. 

In order to deal with issues regarding representation and new genetic operations so to 

produce an effective KDT process, our working model has been divided into two phases. The 

first phase is the preprocessing step aimed to produce both training information for further 

evaluation and the initial population of the GA. The second phase constitutes the knowledge 

discovery itself, in particular this aims at producing and evaluating explanatory unseen 

hypotheses. 

 

In order to generate an initial set of hypotheses, an initial population is created by building 

random hypotheses from the initial rules, that is, hypotheses containing predicate and 

rhetorical information from the rules are constructed. The GA then runs for a number of 

generations until a fixed number of generations is achieved. At the end, a small set of the 

best hypotheses are obtained. 

8.a)Describe the following with example (10M) 

i) iSTART 

ii) Cohesion and Cohesion Matrix 



i) iSTART 
 

 
∙ iSTART (Interactive Strategy Training for Active Reading and Thinking) is an intelligent 

tutoring system designed to help students improve their reading comprehension skills. A 

word matching feedback system in iSTART can provide immediate feedback to users based 

on their input. Here’s an algorithm for such a system: 

Algorithm: Word Matching Feedback System 

1. Input: 

o User input text (user_text) 

o Reference text (reference_text) 

2. Preprocessing: 

o Tokenize user_text and reference_text into words. 

o Convert all tokens to lowercase to ensure case insensitivity. 

o Remove any punctuation or special characters from the tokens. 

3. Word Matching: 

o Initialize an empty list feedback to store feedback messages. 

o For each word in the reference_text tokens: 

▪ Check if the word exists in the user_text tokens. 

▪ If the word exists, append a positive feedback message to feedback. 

▪ If the word does not exist, append a corrective feedback message to 

feedback. 

4. Additional Feedback (Optional): 

o Calculate the similarity score between user_text and reference_text using a 

similarity metric (e.g., cosine similarity, Jaccard similarity). 

o Provide additional feedback based on the similarity score (e.g., overall similarity 

percentage, areas for improvement). 

5. Output: 

o Return or display the feedback list to the user. 

Psuedocode 

def word_matching_feedback_system(user_text, reference_text): # Preprocessing 

user_tokens = preprocess_text(user_text) 



reference_tokens = preprocess_text(reference_text) 
 

 
# Word Matching 

feedback = [] 

for word in reference_tokens: 

if word in user_tokens: 

feedback.append(f"Good job! You used the word '{word}'.") else: 

feedback.append(f"Try to include the word '{word}'.") 

# Additional Feedback (Optional) 

similarity_score = calculate_similarity(user_text, reference_text) feedback.append(f"Overall 

similarity score: {similarity_score:.2f}") 

return feedback 

def preprocess_text(text): 

# Tokenize, convert to lowercase, and remove punctuation 

tokens = text.lower().split() 

tokens = [token.strip('.,!?') for token in tokens] 

return tokens 

def calculate_similarity(text1, text2): 

# Calculate similarity score between two texts (e.g., using cosine similarity) # This is a 

placeholder implementation 

return 0.85 # Example similarity score 

# Example Usage 

user_text = "The cat chased the mouse." 

reference_text = "The cat was chasing a mouse." 

feedback = word_matching_feedback_system(user_text, reference_text) for message in 

feedback: 

print(message) 

ii) Cohesion and Cohesion Matrix 

Cohesion refers to the degree to which elements within a text or set of texts are 

semantically related or stick together in a meaningful way. In topic modeling, cohesion 

usually pertains to the semantic similarity of words within a topic. Higher cohesion indicates 



that the words within a topic are closely related in meaning, which makes the topics more 

interpretable. 

Example: 

● A topic with high cohesion might include words like "doctor," "nurse," "hospital," and 

"patient," all related to the theme of healthcare. 

● A topic with low cohesion might include unrelated words like "doctor," "car," 

"software," and "economy," making it harder to interpret the theme. 

Cohesion Matrix 

A cohesion matrix (or coherence matrix) is used to evaluate the quality of the topics 

generated by a topic model. It provides a numerical representation of the cohesion between 

different elements (e.g., words within a topic). 

Types of Cohesion Measures: 

1. Pointwise Mutual Information (PMI): 

○ PMI measures the association between pairs of words within a topic. Higher 

PMI values indicate that words co-occur more frequently than would be 

expected by chance. 

○ Example: If the words "doctor" and "patient" frequently co-occur in 

documents about healthcare, their PMI would be high, indicating strong 

cohesion. 

2. Cosine Similarity: 

○ Cosine similarity measures the cosine of the angle between two vectors in a 

multi-dimensional space, indicating how similar the vectors are. 

○ Example: In a vector space model, if the word vectors for "computer" and 

"software" are close to each other, their cosine similarity would be high, 

suggesting they belong to a cohesive topic. 

3. Word Co-occurrence: 

○ This measures how often words appear together within a certain context 

window in the text. High co-occurrence rates indicate strong cohesion. 

○ Example: In a collection of articles about technology, the words "internet" 

and "browser" might frequently appear together, indicating a cohesive topic. 

Applications of Cohesion and Cohesion Matrix: 

● Model Evaluation: Assessing the quality and interpretability of the topics generated 

by a topic model. 

● Parameter Tuning: Helping in the selection of optimal parameters for topic modeling 

algorithms, such as the number of topics. 



● Comparison of Models: Comparing different topic modeling approaches or 

algorithms to determine which provides more coherent and meaningful topics. 

8.b)Explain SVM(Support Vector Machine) learning in sequence model estimation.(10 M) 

In the case of determining the conditioned word probabilities p(w|x, y), words that have 

been observed in the training data would be assigned lower probabilites than the maximum 

likelihood estimates, whereas unobserved words would be assigned higher probabilities 

than their maximum likelihood estimates. Statistical learning methods, e.g., [10, 11], 

uti?lizing methods of regularization theory, allow us to determine the tradeoff between 

memorization and generalization more principled than the smoothing techniques 

mentioned above. The learning method adopted here for estimating the sequence model is 

a Support Vector Machine[10] (SVM). It is commonly known that Support Vector Machines 

are well suited for text applications given a small number of train?ing examples [12]. This is 

an important aspect for the commercial use of the system, since the process of gathering, 

preparing, and cleaning up training examples is time consuming and expensive. 

Support Vector Machines solve a binary classification problem. The SVM score associated 

with an instance of the considered events is its signed distance to the separating hyperplane 

in units of the SVM margin. In order to solve multiclass problems, a series of Support Vector 

Machines have to be trained, e.g., in the case of a one-vs-all training schema, the number of 

SVMs trained is given by the number of classes. The scores between these different 

machines are not directly compara?ble and the scores must be calibrated such that at least 

for a given classification instance the scores are on an equal scale. In this application, the 

scores not only must be comparable between classes for a given classification instance 

(page), but also between different classification instances (pages), i.e., the SVM scores must 

be mapped to probabilities. Platt [13] uses SVM scores that are calibrated to class 

membership probabilities by adopting the interpretation of the score being propor?tional to 

the logarithmic ratio of class membership probability. He determines the class membership 

probability as a funcion of the SVM score by fitting a sigmoid function to the empirically 

observed class membership probabilities as a function of the SVM score. The fit parameters 

are the slope of the sigmoid function and/or a translational offset. The latter parameter, 

given the interpretation of the SVM scores discussed above, is the logarithmic ratio of the 

class prior probabilities. The method used here [14] fixes the translational offset and only fits 

the slope parame?ter. In addition, the Support Vector Machines are trained using cost 

factors for the positive as well as for the negative class and optimize the two costs 

independently. Empirical studies performed by the authors showed that cost factor 

optimization in conjunction with fitting the slope parameter of the mapping function from 

SVM scores to probabilities yields superior probability estimates than fitting the slope and 

the translational offset without cost factor optimization, fitting the slope and the 

translational offset with cost factor optimization, and fitting the slope only. 

Module 5 

9.a) Explain the architecture of an information retrieval system with a neat diagram.(10M)



● The process of IR begins with the user’s information need. 

● Based on the need the user formulates a query. 

● The IR system returns documents that seem relevant to the query. 

● The retrieval is performed by matching the query representation with document 

representation. 

● The actual text of the document is not used in the retrieval process. Instead documents in 

a collection are frequently represented through a set of index terms or keywords. 
 
 
 

 
approaches used in Information Retrieval- 

a)   Indexing 

● In a small collection of documents, an IR system can access a document to decide its 

relevance to a query. However, in a large collection of documents, the same 

technique poses practical problems. 

● A collection of raw documents is usually transformed into an easily accessible 

representation. This process of transforming a collection of raw documents into an 

easily accessible representation is known as indexing. 

●  Indexing technique involves identifying good document descriptors such as 

keywords or terms. 

● Indexing is simply the representation of text (both query and document) as a set of 

terms whose meaning is equivalent to some content of the original text. 

● Indexing is the process of creating data structures that allow for efficient retrieval of 

information from a large dataset. In the context of information retrieval, indexing 

involves organizing documents or data in a way that makes it easier and faster to 

search and retrieve relevant information. 



● Inverted Index: An inverted index maps terms to the documents that contain them. 

This allows for quick lookup of documents based on the presence of specific terms. 

Algorithm: 

● Tokenization: Break down documents into individual terms or tokens. 

● Normalization: Convert tokens to a standard form (e.g., lowercase). 

● IndexCreation: Create a dictionary where each term points to a list of documents 

(and optionally, positions within the documents) that contain the term. 

 

 
Example 

 

 
b)  Stop words elimination 

● Stop words elimination is the process of removing common words that are unlikely to 

be useful in retrieving relevant documents. These words (e.g., "the," "is," "in," "and") 

occur frequently but do not carry significant meaning in the context of a search 

query. 

Algorithm: 

1. Create a List of Stop Words: This list contains words to be removed during 

preprocessing. 

2. Tokenization: Break down documents into individual terms. 

3. Stop Words Removal: Remove terms that are present in the stop words list. 
 

 
Example: Given the document: 

"Information retrieval is fun and important" 

● Stop words list: ["is", "and"] 

● After removal: "Information retrieval fun important" 



c)  Stemming 

●  Stemming is the process of reducing words to their base or root form. The goal is to 

treat words with the same root as identical for retrieval purposes, which helps in 

matching documents to queries more effectively. 

Algorithm: 

Step1:Removecommonsuffixes (e.g., "ing," "ed," "s"). Step2:Applytransformations to handle 

plural forms and past tense. ○ 

Step3:Further reductions to handle derivational suffixes. 

Step4:Final cleanup to ensure the word is in its simplest form 
 

 
Example: 

Given the words: "running," "runner," "runs" 

Stemmer reduces these to: "run," "run," "run" 

9.b) A user submitted a query to an IR system. Out of the first 15 documents returned by 

the system,those ranked 1,2,5,8,12 were relevant compute non-interpolated average 

precision for this retrieval. Assume that total number of relevant document is 6.(10 M) 

 

 
To compute the non-interpolated average precision (AP), we need to consider the positions 

of the relevant documents in the retrieved list. The formula for non-interpolated AP is: 

AP=1total number of relevant documents×∑k=1nPrecision@k×rel(k)\text{AP} = 

\frac{1}{\text{total number of relevant documents}} \times \sum_{k=1}^{n} 

\text{Precision@k} \times \text{rel}(k)AP=total number of relevant documents1×k=1∑n 

Precision@k×rel(k) 

where: 

 Precision@k\text{Precision@k} ,  Precision@k is the precision at rank k, 

 rel(k)\text{rel}(k) ,rel(k) is a binary function that equals 1 if the document at rank k 

is relevant, and 0 otherwise, 

 nn is the total number of documents retrieved (15 in this case), 

 The total number of relevant documents is given as 6. 

The relevant documents are at ranks: 1, 2, 5, 8, and 12. 

Steps: 

1. Compute Precision@k for each relevant document: 

o Precision at rank 1: 11=1\frac{1}{1} = 111=1 



o Precision at rank 2: 22=1\frac{2}{2} = 122=1 

o Precision at rank 5: 35=0.6\frac{3}{5} = 0.653=0.6 

o Precision at rank 8: 48=0.5\frac{4}{8} = 0.584=0.5 

o Precision at rank 12: 512≈0.4167\frac{5}{12} \approx 0.4167125≈0.4167 

2. Sum of precisions for relevant documents: 

1+1+0.6+0.5+0.4167≈3.51671 + 1 + 0.6 + 0.5 + 0.4167 \approx 

3.51671+1+0.6+0.5+0.4167≈3.5167 

3. Compute non-interpolated AP: 

AP=16×3.5167≈0.5861\text{AP} = \frac{1}{6} \times 3.5167 \approx 0.5861AP=61 

×3.5167≈0.5861 

The non-interpolated average precision for this retrieval is approximately 0.5861. 

10.a) Define the following with respect to IR 

(10M) i)Wordnet 

          ii)Framenet     

i)Wordnet 

WordNet is a large lexical database for the English language, developed and maintained at 

the Cognitive Science Laboratory, Princeton University, under the direction of George A. 

Miller. Inspired by psycholinguistic theories, WordNet organizes information into three 

databases: one for nouns, one for verbs, and one for both adjectives and adverbs. The 

database is structured around sets of synonymous words called synsets, each representing a 

base concept. These synsets are interconnected by lexical and semantic relations, where 

lexical relations occur between word forms (senses) and semantic relations occur between 

word meanings. These relations include synonymy, hypernymy/hyponymy, antonymy, 

meronymy/holonymy, and troponymy. A word can appear in multiple synsets and parts of 

speech, with its different meanings, or senses, each associated with a specific synset. 

WordNet's sense-entries consist of a set of synonyms and a gloss, providing a 

comprehensive representation of word meanings and their relationships. 
 



ii) Framenet 

FrameNet is a large database of semantically annotated English sentences. It is based on 

principles of frame semantics. The basic philosophy involved is that each word evokes a 

particular situation with particular participants. FrameNet aims at capturing these situations 

through case-frame representation of words (verbs, adjectives, and nouns). It defines a 

tagset of semantic roles called frame elements. The word that invokes a frame is called the 

target word or predicate, and the participant entities are defined using semantic roles, which 

are called frame elements. Sentences from the British National Corpus are tagged with these 

frame elements. Each frame contains a main lexical item as the predicate and associated 

frame-specific semantic roles, such as AUTHORITIES, TIME, and SUSPECT in the ARREST 

frame. The FrameNet ontology can be viewed as a semantic level representation of 

predicate argument structure. 

 

 
Example 1: The sentence below is annotated with the semantic roles AUTHORITIES and 

SUSPECT. 

 [Authorities The police] nabbed [Suspect the snatcher].

Example 2: The COMMUNICATION frame has the semantic roles ADDRESSEE, 

COMMUNICATOR, TOPIC, and MEDIUM. 

 A JUDGEMENT frame contains roles such as JUDGE, EVALUEE, and REASON.

Example 3: The sentence below is annotated with the roles JUDGE, EVALUEE, and REASON. 

 [Judge She] [Evaluee blames the police] [Reason for failing to provide enough 

protection].

Example 4: A frame may inherit roles from another frame. For example, a STATEMENT frame 

may inherit from a COMMUNICATION frame and contain roles such as SPEAKER, ADDRESSEE, 

and MESSAGE. 

 [Speaker She] told [Addressee me] [Message ‘I’ll return by 7:00 pm today’].
 

 
FrameNet data can be used for: 

 Automatic semantic parsing

 Information extraction

 Question answering system

 Information retrieval

 Machine translation

 Text summarization



10.b) Explain the following classical models with example (10M) 

i) Boolean Model 

Boolean model is the oldest of the three classical models. It is based on Boolean logic and 

classical set theory. 

• In this model documents are represented as a set of keywords, usually stored in an 

inverted file. 

• An inverted file is a list of keywords, and identifiers of the documents in which they occur. 

• Users are required to express their queries as a boolean expression consisting of keywords 

connected with boolean logical operators (AND, OR, NOT). 

• Retrieval is performed based on whether or not document contains the query terms 
 

 

 



ii) Vector Space model 
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