
Model Question Paper-I with effect from 2022(CBCS Scheme)
USN

 Fourth Semester B.E Degree Examination

OPTIMIZATION TECHNIQUES (BCS405C)

TIME:03Hours Max.Marks:100

Note:

1. Answer any FIVE full questions, choosing at least ONE question from each

MODULE

2. VTU Formula Hand Book is Permitted

3. M: Marks, L: RBT levels, C: Course outcomes.

 Module - 1 M L C

Q.1 a Let 𝑓(𝑥1 , 𝑥2) = 𝑒𝑥1𝑥22 where 𝑥1 = 𝑡 cos 𝑡 and 𝑥2 = tsin 𝑡 find
𝑑𝑓𝑑𝑡 . 7 L2 CO1

b Obtain the gradient of scalar 𝜙 = 4𝑥0 + 2𝑥1 − 3𝑥2 + 𝑥4 with respect to

the matrix �⃗� = [𝑥0 𝑥1𝑥2 𝑥3]. 6 L2 CO1

c Obtain the power series expansion of 𝑓(𝑥 , 𝑦) = 𝑥2𝑦 + 3𝑦 − 2 in terms

of (𝑥 − 1) and (𝑦 + 2) up to second degree.

7 L3 CO1

OR

Q.2 a Discuss the gradient of vectors with respect to matrices. 7 L2 CO1

b If �⃗� , �⃗� ∈ ℝ2 and 𝑦1 = −2𝑥1 + 𝑥2 , 𝑦2 = 𝑥1 + 𝑥2. Show that the

Jacobian determinant |det 𝑱| = 3.

6 L3 CO1

c Find the second order Taylor’s series approximation of the function 𝑓(𝑥1 , 𝑥2) = 𝑥12𝑥2 + 5𝑥1𝑒𝑥2 about the point 𝑎 = 1 , 𝑏 = 0.

7 L3 CO1

Module – 2

Q.3 a
Draw a computation graph of the function: 𝑓(𝑥) = √𝑥2 + 𝑒𝑥2 + cos(𝑥2 + 𝑒𝑥2). Also find

𝜕𝑓𝜕𝑥 using automatic

differentiation.

8 L3 CO2

b Obtain the gradient of quadratic cost. 6 L3 CO2

c
Find the output at neuron 5, if input vector [0.7, 0.3] using the activation

function ReLU.

6 L3 CO2

OR

Q.4 a Let 𝑓(𝑥1 , 𝑥2) = log(𝑥1) + 𝑥1𝑥2 − sin(𝑥2).
(i) Draw a computational graph of 𝑓(𝑥1 , 𝑥2).

(ii) Evaluate 𝑓 at (𝑥1 , 𝑥2) = (2 , 5) by forward trace.

8 L3 CO2

b
Assume that the neuron have a sigmoid activation function, perform a

forward pass and a backward pass on the network. Assume that the actual

output of 𝑦 is 0.5 and learning rate is 1. Perform another forward pass.

12 L3 CO2

Module – 3

Q.5 a Describe Local and Global optima.

List out the differences between Local and Global optima.
5 L2 CO3

b
Define Hessian matrix. Using the Hessian matrix, classify the relative

extreme for the function 38
3

1
),(23 xyxyxyxf

7 L3 CO3

c
Explain the algorithm of sequential search. Using the sequential search, for

an array of size 7 with elements 13, 9, 21, 15, 39, 19, and 27 that starts

with 0 and ends with size minus one, 6 locate the position of number 39.

8 L3 CO3

OR

Q.6

a
 Minimize

2

221

2

12121 22),(xxxxxxxxf starting from

0

0
0X

7 L3 CO3

b Write the algorithm for Fibonacci search method. 6 L2 CO3

c Using 3-point interval search method, find)5()(xxxfMax on 20,0

with 1.0

7 L3 CO3

Module – 4

Q.7 a
Use steepest Descent method for f(x, y) = 𝑥1–𝑥2 + 2 𝑥12 + 2𝑥1𝑥2 + 𝑥22

starting from the point 𝑥1 = (0, 0)
7 L3 CO4

b Explain how the Gradient Descent Algorithm works? 6 L2 CO4

c
Find the Linear Regression Coefficients using Gradient Descent

Method.
7 L2 CO4

OR

Q.8 a
Use the NR method to find the smallest and the second smallest positive

roots of the equation tan x = 4x correct to 4 decimal places. 7 L3 CO4

b Write the differences between Stochastic Gradient Descent and Mini

Batch Gradient Descent methods.
6 L2 CO4

c Write the Stochastic Gradient Descent Algorithm. 7 L2 CO4

Module – 5

Q.9 a Explain in brief

1. Adagrad optimization strategy

2. RMSprop

10 L2 CO5

b
What is the difference between convex optimization and

non-convex optimization 5 L2 CO5

c Describe the saddle point problem in machine learning 5 L2 CO5

OR

Q.10 a Write a short notes on

1.Stochastic gradient descent with momentum

2.ADAM

10 L2 CO5

b What is the best optimization algorithm for machine learning 5 L2 CO5

c Briefly explain the advantages of RMSprop over Adagrad 5 L2 CO5

Model Question Paper-II with effect from 2022(CBCS Scheme)
USN

 Fourth Semester B.E Degree Examination

OPTIMIZATION TECHNIQUES (BCS405C)

TIME:03Hours Max.Marks:100

Note:

1. Answer any FIVE full questions, choosing at least ONE question from each

MODULE

2. VTU Formula Hand Book is Permitted

3. M: Marks, L: RBT levels, C: Course outcomes.

 Module - 1 M L C

Q.1 a Let 𝑓(𝑥1 , 𝑥2) = 𝑥12 + 2𝑥2 where 𝑥1 = sin 𝑡 and 𝑥2 = cos 𝑡 find
𝑑𝑓𝑑𝑡 . 7 L2 CO1

b
Obtain the gradient of matrix 𝑓 = [sin(𝑥0 + 2𝑥1) 2𝑥1 + 𝑥32𝑥0 + 𝑥2 cos(2𝑥2 + 𝑥3)]
with respect to the matrix �⃗� = [𝑥0 𝑥1𝑥2 𝑥3].

7 L3 CO1

c Obtain the partial derivatives for

(i) 𝑓(𝑥 , 𝑦) = (𝑥 + 2𝑦3)2 (ii) 𝑓(𝑥 , 𝑦) = 𝑥2𝑦 + 𝑥𝑦3

6 L3 CO1

OR

Q.2 a Discuss (i) Gradient of a matrix with respect to a vector.

 (ii) Gradient of a matrix with respect to a matrix.

10 L2 CO1

b Find the Taylor’s series expansion of the function 𝑓(𝑥 , 𝑦) = 𝑥2 + 2𝑥𝑦 +𝑦3 at (𝑥0 , 𝑦0) = (1 , 2) up to third degree.

10 L3 CO1

Module – 2

Q.3 a
Draw a computation graph of the function: 𝑓(𝑥) = √𝑥2 + 𝑒𝑥2 + cos(𝑥2 + 𝑒𝑥2). Also find

𝜕𝑓𝜕𝑥 using automatic

differentiation.

8 L3 CO2

b Obtain the gradient of quadratic cost. 6 L3 CO2

c
Find the output at neuron 5, if input vector [0.7, 0.3] using the activation

function ReLU.

6 L3 CO2

OR

Q.4 a Let 𝑓(𝑥1 , 𝑥2) = log(𝑥1) + 𝑥1𝑥2 − sin(𝑥2).
(i) Draw a computational graph of 𝑓(𝑥1 , 𝑥2).

(ii) Evaluate 𝑓 at (𝑥1 , 𝑥2) = (2 , 5) by forward trace.

8 L3 CO2

b
Assume that the neuron have a sigmoid activation function, perform a

forward pass and a backward pass on the network. Assume that the actual

output of 𝑦 is 0.5 and learning rate is 1. Perform another forward pass.

12 L3 CO2

Module – 3

Q.5 a Describe Local and Global optima.

List out the differences between Local and Global optima.
5 L2 CO3

b
Define Hessian matrix. Using the Hessian matrix, classify the relative

extreme for the function 38
3

1
),(23 xyxyxyxf

7 L3 CO3

c
Explain the algorithm of sequential search. Using the sequential search, for

an array of size 7 with elements 13, 9, 21, 15, 39, 19, and 27 that starts

with 0 and ends with size minus one, 6 locate the position of number 39.

8 L2 CO3

OR

Q.6

a
 Minimize

2

221

2

12121 22),(xxxxxxxxf starting from

0

0
0X

8 L3 CO3

b Write the algorithm for Fibonacci search method. 6 L3 CO3

c Using 3-point interval search method, find)5()(xxxfMax on 20,0

with 1.0

6 L2 CO3

Module – 4

Q.7 a
Use steepest Descent method for f(x, y) = 𝑥1–𝑥2 + 2 𝑥12 + 2𝑥1𝑥2 + 𝑥22

starting from the point 𝑥1 = (0, 0)
7 L2 CO4

b Explain how the Gradient Descent Algorithm works? 6 L2 CO4

c
Find the Linear Regression Coefficients using Gradient Descent

Method.
7 L2 CO4

OR

Q.8 a
Use the NR method to find the smallest and the second smallest positive

roots of the equation tan x = 4x correct to 4 decimal places. 7 L2 CO4

b Write the differences between Stochastic Gradient Descent and Mini

Batch Gradient Descent methods.
7 L2 CO4

c Write the Stochastic Gradient Descent Algorithm. 6 L2 CO4

Module – 5

Q.9 a Explain in brief

1. Adagrad optimization strategy

2. RMSprop

10 L2 CO5

b
What is the difference between convex optimization and

non-convex optimization 5 L2 CO5

c Describe the saddle point problem in machine learning 5 L2 CO5

OR

Q.10 a Write a short notes on

1.Stochastic gradient descent with momentum

2.ADAM

10 L2 CO5

b What is the best optimization algorithm for machine learning 5 L2 CO5

c Briefly explain the advantages of RMSprop over Adagrad 5 L2 CO5

156 Vector Calculus

collects partial derivatives. For example, if we compute the gradient of an
m× n matrix A with respect to a p× q matrix B, the resulting Jacobian
would be (m×n)×(p×q), i.e., a four-dimensional tensor J , whose entries
are given as Jijkl = ∂Aij/∂Bkl.

Since matrices represent linear mappings, we can exploit the fact that
there is a vector-space isomorphism (linear, invertible mapping) between
the space Rm×n of m × n matrices and the space Rmn of mn vectors.
Therefore, we can re-shape our matrices into vectors of lengths mn and
pq, respectively. The gradient using these mn vectors results in a Jacobian
of size mn × pq. Figure 5.7 visualizes both approaches. In practical ap-Matrices can be

transformed into
vectors by stacking
the columns of the
matrix
(“flattening”).

plications, it is often desirable to re-shape the matrix into a vector and
continue working with this Jacobian matrix: The chain rule (5.48) boils
down to simple matrix multiplication, whereas in the case of a Jacobian
tensor, we will need to pay more attention to what dimensions we need
to sum out.

Example 5.12 (Gradient of Vectors with Respect to Matrices)
Let us consider the following example, where

f = Ax , f ∈ RM , A ∈ RM×N , x ∈ RN (5.85)

and where we seek the gradient df/dA. Let us start again by determining
the dimension of the gradient as

df

dA
∈ RM×(M×N) . (5.86)

By definition, the gradient is the collection of the partial derivatives:

df

dA
=

∂f1
∂A
...

∂fM
∂A

 , ∂fi
∂A
∈ R1×(M×N) . (5.87)

To compute the partial derivatives, it will be helpful to explicitly write out
the matrix vector multiplication:

fi =
N∑
j=1

Aijxj, i = 1, . . . ,M , (5.88)

and the partial derivatives are then given as

∂fi
∂Aiq

= xq . (5.89)

This allows us to compute the partial derivatives of fi with respect to a
row of A, which is given as

∂fi
∂Ai,:

= x⊤ ∈ R1×1×N , (5.90)

Draft (2024-01-15) of “Mathematics for Machine Learning”. Feedback: https://mml-book.com.

5.4 Gradients of Matrices 157

∂fi
∂Ak ̸=i,:

= 0⊤ ∈ R1×1×N (5.91)

where we have to pay attention to the correct dimensionality. Since fi
maps onto R and each row of A is of size 1×N , we obtain a 1× 1×N -
sized tensor as the partial derivative of fi with respect to a row of A.

We stack the partial derivatives (5.91) and get the desired gradient
in (5.87) via

∂fi
∂A

=

0⊤

...
0⊤

x⊤

0⊤

...
0⊤

∈ R1×(M×N) . (5.92)

Example 5.13 (Gradient of Matrices with Respect to Matrices)
Consider a matrix R ∈ RM×N and f : RM×N → RN×N with

f(R) = R⊤R =: K ∈ RN×N , (5.93)

where we seek the gradient dK/dR.
To solve this hard problem, let us first write down what we already

know: The gradient has the dimensions

dK

dR
∈ R(N×N)×(M×N) , (5.94)

which is a tensor. Moreover,

dKpq

dR
∈ R1×M×N (5.95)

for p, q = 1, . . . , N , where Kpq is the (p, q)th entry of K = f(R). De-
noting the ith column of R by ri, every entry of K is given by the dot
product of two columns of R, i.e.,

Kpq = r⊤
p rq =

M∑
m=1

RmpRmq . (5.96)

When we now compute the partial derivative ∂Kpq

∂Rij
we obtain

∂Kpq

∂Rij

=
M∑

m=1

∂

∂Rij

RmpRmq = ∂pqij , (5.97)

©2024 M. P. Deisenroth, A. A. Faisal, C. S. Ong. Published by Cambridge University Press (2020).

158 Vector Calculus

∂pqij =

Riq if j = p, p ̸= q
Rip if j = q, p ̸= q
2Riq if j = p, p = q
0 otherwise

. (5.98)

From (5.94), we know that the desired gradient has the dimension (N ×
N) × (M × N), and every single entry of this tensor is given by ∂pqij
in (5.98), where p, q, j = 1, . . . , N and i = 1, . . . ,M .

5.5 Useful Identities for Computing Gradients

In the following, we list some useful gradients that are frequently required
in a machine learning context (Petersen and Pedersen, 2012). Here, we
use tr(·) as the trace (see Definition 4.4), det(·) as the determinant (see
Section 4.1) and f(X)−1 as the inverse of f(X), assuming it exists.

∂

∂X
f(X)⊤ =

(
∂f(X)

∂X

)⊤

(5.99)

∂

∂X
tr(f(X)) = tr

(
∂f(X)

∂X

)
(5.100)

∂

∂X
det(f(X)) = det(f(X))tr

(
f(X)−1∂f(X)

∂X

)
(5.101)

∂

∂X
f(X)−1 = −f(X)−1∂f(X)

∂X
f(X)−1 (5.102)

∂a⊤X−1b

∂X
= −(X−1)⊤ab⊤(X−1)⊤ (5.103)

∂x⊤a

∂x
= a⊤ (5.104)

∂a⊤x

∂x
= a⊤ (5.105)

∂a⊤Xb

∂X
= ab⊤ (5.106)

∂x⊤Bx

∂x
= x⊤(B +B⊤) (5.107)

∂

∂s
(x−As)⊤W (x−As) = −2(x−As)⊤WA for symmetric W

(5.108)

Remark. In this book, we only cover traces and transposes of matrices.
However, we have seen that derivatives can be higher-dimensional ten-
sors, in which case the usual trace and transpose are not defined. In these
cases, the trace of aD×D×E×F tensor would be an E×F -dimensional
matrix. This is a special case of a tensor contraction. Similarly, when we

Draft (2024-01-15) of “Mathematics for Machine Learning”. Feedback: https://mml-book.com.

 x y

 | |

 | +------+

 | |

 | v

 | [sin]

 | |

 | v

 [log] [-sin]

 | |

 | v

 +----> [xy]

 | |

 v v

 [sum]

 |

 v

 Output

To draw the computational graph for the function f(x,y)=log(x)+xy−sin(y), we need to break

down the function into its individual operations and represent them as nodes in the graph. Here's

how you can structure it:

1. Input Nodes:

o x

o y

2. Intermediate Computations:

o log(x) (logarithm node)

o xy (multiplication node)

o sin(y) (sine node)

3. Output Computation:

o Sum the results of the nodes from the intermediate computations:

log(x)+xy−sin(y)

In this graph:

 x and y are input variables.

 The node [log] takes x as input and computes log(x).

 The node [xy] computes the product of x and y.

 The node [sin] computes sin(y), and the [-sin] node negates it.

 The [sum] node adds the results of log],[xy], and [−sin] to produce the final output.

 Q5a) Difference between local optima and global optima
 Definition:

o Local Optima: A point where a function's value is better (higher for
maxima, lower for minima) than the values of all nearby points, but not
necessarily the best overall.

o Global Optima: A point where a function's value is the best overall

across the entire domain of the function.
 Scope:

o Local Optima: Limited to a neighborhood or small region of the
function.

o Global Optima: Considers the entire range or domain of the function.
 Objective:

o Local Optima: Indicates a solution that is optimal within a limited
scope, but there may be better solutions elsewhere in the domain.

o Global Optima: Represents the best possible solution across the
entire domain, with no better solutions available.

 Complexity in Finding:
o Local Optima: Easier to find, as optimization algorithms often

converge to local optima based on the starting point and the algorithm
used.

o Global Optima: Harder to find, especially in complex or non-convex
functions, as it requires exploring the entire domain to ensure no
better solutions exist.

 Significance in Optimization:
o Local Optima: May be satisfactory for certain applications, especially

if global optimization is computationally expensive or unnecessary.
o Global Optima: Ideal for applications where the best possible solution

is required, and no compromises can be made.
 Examples:

o In a landscape with multiple hills and valleys, the tops of individual

hills are local maxima, while the highest hilltop is the global maximum.

Q5c Explain the algorithm of sequential search
What is Linear Search Algorithm?
Linear search is a method for searching for an element in a collection of
elements. In linear search, each element of the collection is visited one by
one in a sequential fashion to find the desired element. Linear search is also
known as sequential search.

Algorithm for Linear Search Algorithm:
The algorithm for linear search can be broken down into the following steps:
 Start: Begin at the first element of the collection of elements.
 Compare: Compare the current element with the desired element.
 Found: If the current element is equal to the desired element, return true

or index to the current element.

 Move: Otherwise, move to the next element in the collection.
 Repeat: Repeat steps 2-4 until we have reached the end of collection.
 Not found: If the end of the collection is reached without finding the

desired element, return that the desired element is not in the array.

How Does Linear Search Algorithm Work?
In Linear Search Algorithm,
 Every element is considered as a potential match for the key and checked

for the same.
 If any element is found equal to the key, the search is successful and the

index of that element is returned.
 If no element is found equal to the key, the search yields “No match found

Q6b) Write the algorithm of Fibonacci Search Algorithm

The Fibonacci Search Algorithm makes use of the Fibonacci Series to diminish
the range of an array on which the searching is set to be performed. With every

iteration, the search range decreases making it easier to locate the element in

the array. The detailed procedure of the searching is seen below −

Step 1 − As the first step, find the immediate Fibonacci number that is greater

than or equal to the size of the input array. Then, also hold the two preceding
numbers of the selected Fibonacci number, that is, we hold Fm, Fm-1, Fm-2

numbers from the Fibonacci Series.

Step 2 − Initialize the offset value as -1, as we are considering the entire array

as the searching range in the beginning.

Step 3 − Until Fm-2 is greater than 0, we perform the following steps −

 Compare the key element to be found with the element at
index [min(offset+Fm-2,n-1)]. If a match is found, return the index.

 If the key element is found to be lesser value than this element, we reduce
the range of the input from 0 to the index of this element. The Fibonacci
numbers are also updated with Fm = Fm-2.

 But if the key element is greater than the element at this index, we remove

the elements before this element from the search range. The Fibonacci
numbers are updated as Fm = Fm-1. The offset value is set to the index of
this element.

Step 4 − As there are two 1s in the Fibonacci series, there arises a case where

your two preceding numbers will become 1. So if Fm-1 becomes 1, there is only

one element left in the array to be searched. We compare the key element with
that element and return the 1st index. Otherwise, the algorithm returns an

unsuccessful search.

Begin Fibonacci Search

 n <- size of the input array

 offset = -1

 Fm2 := 0

 Fm1 := 1

 Fm := Fm2 + Fm1

 while Fm < n do:

 Fm2 = Fm1

 Fm1 = Fm

 Fm = Fm2 + Fm1

 done

 while fm > 1 do:

 i := minimum of (offset + fm2, n – 1)

 if (A[i] < x) then:

 Fm := Fm1

 Fm1 := Fm2

 Fm2 := Fm - Fm1

 offset = i

 end

 else if (A[i] > x) then:

 Fm = Fm2

 Fm1 = Fm1 - Fm2

 Fm2 = Fm - Fm1

 end

 else

 return i;

 end

 done

 if (Fm1 and Array[offset + 1] == x) then:

 return offset + 1

 end

 return invalid location;

end

Analysis

The Fibonacci Search algorithm takes logarithmic time complexity to search for
an element. Since it is based on a divide on a conquer approach and is similar

to idea of binary search, the time taken by this algorithm to be executed under
the worst case consequences is O(log n).

7.1 Optimization Using Gradient Descent 227

Figure 7.2 Example
objective function.
Negative gradients
are indicated by
arrows, and the
global minimum is
indicated by the
dashed blue line.

−6 −5 −4 −3 −2 −1 0 1 2
Value of parameter

−60

−40

−20

0

20

40

60

O
b

je
ct

iv
e

x4 + 7x3 + 5x2 − 17x+ 3

right, but not how far (this is called the step-size). Furthermore, if we According to the
Abel–Ruffini
theorem, there is in
general no algebraic
solution for
polynomials of
degree 5 or more
(Abel, 1826).

had started at the right side (e.g., x0 = 0) the negative gradient would
have led us to the wrong minimum. Figure 7.2 illustrates the fact that for
x > −1, the negative gradient points toward the minimum on the right of
the figure, which has a larger objective value.

In Section 7.3, we will learn about a class of functions, called convex
functions, that do not exhibit this tricky dependency on the starting point
of the optimization algorithm. For convex functions, all local minimums
are global minimum. It turns out that many machine learning objective For convex functions

all local minima are
global minimum.

functions are designed such that they are convex, and we will see an ex-
ample in Chapter 12.

The discussion in this chapter so far was about a one-dimensional func-
tion, where we are able to visualize the ideas of gradients, descent direc-
tions, and optimal values. In the rest of this chapter we develop the same
ideas in high dimensions. Unfortunately, we can only visualize the con-
cepts in one dimension, but some concepts do not generalize directly to
higher dimensions, therefore some care needs to be taken when reading.

7.1 Optimization Using Gradient Descent

We now consider the problem of solving for the minimum of a real-valued
function

min
x
f(x) , (7.4)

©2024 M. P. Deisenroth, A. A. Faisal, C. S. Ong. Published by Cambridge University Press (2020).

228 Continuous Optimization

where f : Rd → R is an objective function that captures the machine
learning problem at hand. We assume that our function f is differentiable,
and we are unable to analytically find a solution in closed form.

Gradient descent is a first-order optimization algorithm. To find a local
minimum of a function using gradient descent, one takes steps propor-
tional to the negative of the gradient of the function at the current point.
Recall from Section 5.1 that the gradient points in the direction of theWe use the

convention of row
vectors for
gradients.

steepest ascent. Another useful intuition is to consider the set of lines
where the function is at a certain value (f(x) = c for some value c ∈ R),
which are known as the contour lines. The gradient points in a direction
that is orthogonal to the contour lines of the function we wish to optimize.

Let us consider multivariate functions. Imagine a surface (described by
the function f(x)) with a ball starting at a particular location x0. When
the ball is released, it will move downhill in the direction of steepest de-
scent. Gradient descent exploits the fact that f(x0) decreases fastest if one
moves from x0 in the direction of the negative gradient −((∇f)(x0))

⊤ of
f at x0. We assume in this book that the functions are differentiable, and
refer the reader to more general settings in Section 7.4. Then, if

x1 = x0 − γ((∇f)(x0))
⊤ (7.5)

for a small step-size γ ⩾ 0, then f(x1) ⩽ f(x0). Note that we use the
transpose for the gradient since otherwise the dimensions will not work
out.

This observation allows us to define a simple gradient descent algo-
rithm: If we want to find a local optimum f(x∗) of a function f : Rn →
R, x 7→ f(x), we start with an initial guess x0 of the parameters we wish
to optimize and then iterate according to

xi+1 = xi − γi((∇f)(xi))
⊤ . (7.6)

For suitable step-size γi, the sequence f(x0) ⩾ f(x1) ⩾ . . . converges to
a local minimum.

Example 7.1
Consider a quadratic function in two dimensions

f

([
x1

x2

])
=

1

2

[
x1

x2

]⊤ [
2 1
1 20

] [
x1

x2

]
−
[
5
3

]⊤ [
x1

x2

]
(7.7)

with gradient

∇f
([
x1

x2

])
=

[
x1

x2

]⊤ [
2 1
1 20

]
−
[
5
3

]⊤
. (7.8)

Starting at the initial location x0 = [−3,−1]⊤, we iteratively apply (7.6)
to obtain a sequence of estimates that converge to the minimum value

Draft (2024-01-15) of “Mathematics for Machine Learning”. Feedback: https://mml-book.com.

https://mml-book.com

MODULE II
BCS405C – OPTIMIZATION TECHNIQUE

Dr. Ranjini. P. S, M.Sc., M. Phil, Ph. D, M. Tech in Data Science & Machine Learning,
Professor, Department of Artificial Intelligence & Data Science,
Don Bosco Institute of Technology, Bangalore.

28

MODULE II
BCS405C – OPTIMIZATION TECHNIQUE

Dr. Ranjini. P. S, M.Sc., M. Phil, Ph. D, M. Tech in Data Science & Machine Learning,
Professor, Department of Artificial Intelligence & Data Science,
Don Bosco Institute of Technology, Bangalore.

29

MODULE II
BCS405C – OPTIMIZATION TECHNIQUE

Dr. Ranjini. P. S, M.Sc., M. Phil, Ph. D, M. Tech in Data Science & Machine Learning,
Professor, Department of Artificial Intelligence & Data Science,
Don Bosco Institute of Technology, Bangalore.

30

Q8b)Write the differences between SGD and mini batch gradient descent

methods.

Stochastic gradient descent (SGD) and mini-batch gradient descent are both

variants of the gradient descent algorithm, which is an optimization algorithm

used in machine learning. The main difference between them is the amount of

training data used in each iteration:

 Stochastic gradient descent (SGD)

Uses a single example or a small subset of examples in each iteration. SGD is faster

than mini-batch gradient descent (MGD) and batch gradient descent (BGD) because it

doesn't need to wait for the entire dataset to calculate itself. SGD can be used for

larger datasets and is useful in machine learning, geophysics, and least mean squares

(LMS). However, due to its random nature, SGD may not provide the exact solution,

but rather the best approximate solution.

 Mini-batch gradient descent (MGD)

Uses a fixed number of training examples, called a mini-batch, that is less than the

entire dataset. MGD helps to combine the advantages of both SGD and batch gradient

descent.

Batch Gradient Descent Stochastic Gradient Descent

Computes gradient using the
whole Training sample

Computes gradient using a single Training
sample

Slow and computationally
expensive algorithm

Faster and less computationally expensive
than Batch GD

Not suggested for huge training
samples.

Can be used for large training samples.

Deterministic in nature. Stochastic in nature.

Gives optimal solution given
sufficient time to converge.

Gives good solution but not optimal.

Batch Gradient Descent Stochastic Gradient Descent

No random shuffling of points are
required.

The data sample should be in a random
order, and this is why we want to shuffle the

training set for every epoch.

Can’t escape shallow local
minima easily.

SGD can escape shallow local minima more
easily.

Convergence is slow. Reaches the convergence much faster.

It updates the model parameters
only after processing the entire

training set.

It updates the parameters after each
individual data point.

The learning rate is fixed and
cannot be changed during

training.

The learning rate can be adjusted
dynamically.

It typically converges to the
global minimum for convex loss

functions.

It may converge to a local minimum or
saddle point.

It may suffer from overfitting if
the model is too complex for the

dataset.

It can help reduce overfitting by updating
the model parameters more frequently.

Q9b What is the difference between convex optimization and non convex optimization?

Convex optimization and non-convex optimization are both optimization

problems, but they differ in the number of optimal solutions they can have:

 Convex optimization

In convex optimization, there can only be one globally optimal solution, or it may be

possible to prove that there is no feasible solution. Convex optimization is easier and

more reliable because convex functions have a unique global minimum. Convex

problems can also be solved efficiently, even when they are very large. Examples of

convex optimization problems include multi-period processor speed scheduling,

minimum time optimal control, and grasp force optimization.

 Non-convex optimization

In non-convex optimization, the objective or some of the constraints are non-convex,

which can lead to multiple feasible regions and multiple locally optimal points within

each region. This can make optimization more challenging. Non-convex optimization

can still be a good choice if the optimization scheme doesn't get stuck in a local

minimum. It can also be used to implement more accurate state dynamics. However,

even simple-looking non-convex optimization problems with only ten variables can be

very challenging, and problems with hundreds of variables can be intractable.

periment No.

stechahic Gracient Decent(SG)
Compuing tthe qradient Com be

droectcycoe.oUe.sccient

Poge No.:

SD..cchs2c...apDKmeon

fesminímgng
of tRe Gradienr cecent mett

functin tect
................

..........

CMR

cectve

Sum c aferetial? functicns
s.etthed.. ae3it..cac.a

niy apþrcimeticn teuh

dstsuton R oimato

grediont
Can Cucnctee thct

Congi d es

Am

Thus

to

he um the tose L

-yCach eramble n

fer exconle

e hao

descent

)L,)ohere

Vedor ct

Lle) log

fnd tar mmmg

where LneR

parancte

are tsainm

descseg, Stochoste qadent

De

Experiment No.

Stondad

Page No.:

Gradient..descent s a Gatch
cbrmchen notted im cohich chtimgeho

ry udehm caccading tc

Lhe

N

ha.netod. a..neu

CMR

mini retch radie descent

10a)Stochastic Gradient Descent with Momentum

The first of the four algorithms I would like to introduce is called “Stochastic

Gradient Descent with Momentum”:

GL. 2 Stochastic GD (left), SGD with momentum (right).

On the left side in GL. 2 is the formula for the weight updates according to the

regular stochastic gradient descent (SGD for short). The equation on the right

represents the rule for the updates of the weights according to the SGD with

momentum. Momentum appears here as an additional term , which is

added to the regular update rule.

Intuitively speaking, by adding this impulse term, we let our gradient build

up some sort of velocity V during training. The velocity is the running sum of

the gradients weighted by ρ.

The parameter ρ can be thought of as friction that “slows” the velocity down a

bit. In general, velocity can be seen to increase with time. By using the

momentum term, saddle points and local minima become less

dangerous for the gradient. This is because the step size toward the global

minimum now depends not only on the slope of the loss function at the

current point, but also on the velocity that has built up over time.

For a physical representation of stochastic gradient descent with momentum,

imagine a ball rolling down a hill, increasing in velocity with time. If this ball

encounters an obstacle along the way, such as a hole or flat ground with no

slope, its built-up velocity v would give the ball enough force to roll over this

obstacle. In this case, the flat ground represents a saddle point and the hole

represents a local minima of a loss function.

 Both algorithms try to reach the global minimum of the loss function, which is

in a 3D space. Momentum term results in the individual gradients having less

variance and thus less zig-zagging.

10a)ii)ADAM

We take the best of Adagrad and RMS prop and combine these ideas into a

single algorithm called as ADAM.

The main part of this optimization algorithm consists of the following three

equations. These equations may seem complicated at first glance, but if you

look closely, you will see some similarities with the last three optimization

algorithms.

The first expression looks a bit like SGD with momentum. In this case, the

term mt would be the velocity and the term β1 would be the friction term. In

the case of ADAM, we refer to mt as the “first momentum.” On the other

hand, β1 is just a hyperparameter. However, the difference with SGD with

momentum is the factor 11 multiplied by the current gradient.

The second expression can be considered as RMSProp, where we keep the

running sum of squared gradients. Also in this case, there is the factor 21 ,

which is multiplied by the squared gradient.

The term vt in the equation is called the “second momentum” and is also just a

hyperparameter. The final update equation can be viewed as a combination

of RMSProp and SGD with momentum.

Disadvantages

At the very first time step t=0, the first and second pulse terms m0 and v0 are

set to zero. After the first update of the second momentum v1, this term is still

very close to zero. When we update the weight parameters in the last

expression in GL. 5, we divide by a very small second momentum term v1. This

leads to a very large first update step.

 To address the problem of large update steps happening at the beginning of

training, ADAM includes a correction clause:

After the initial update of the first and second pulses, we make an unbiased

estimate of these pulses by considering the current time step. With the so-

called bias correction, we obtain the corrected first and second impulses

respectively.

These correction cause the values of the first and second impulse to be higher

at the beginning of the training than without this correction. As a result, the

first update step of the neural network weight parameters does not become

too large. Thus, the training is not already messed up at the very beginning.

With the additional bias corrections, we obtain the complete form of the

ADAM optimizer.

9a)AdaGrad optimization strategy

Another optimization strategy I would like to introduce is called AdaGrad. The

idea behind AdaGrad is that you keep a running sum of squared gradients

during optimization. In this case, we don’t have a momentum term, but an

expression , which is the sum of squared gradients up to the

time .

When we optimize a weights j , we divide the current gradient Lj by the

root of the term g t+1. To understand the intuition behind AdaGrad, please

imagine a loss function in a two-dimensional space. In this space, the gradient

of the loss function increases very weakly in one direction and very

strongly in the other direction. If we now sum up the gradients along the

axis in which the gradients increase weakly, the squared sum of these

gradients becomes even smaller.

If during the update step we divide the current gradient Lj by a very small

sum of the squared gradients gt+1 , the quotient becomes very high. For the

other axis, along which the gradients increase sharply, exactly the opposite is

true. This means that we speed up the updating process along the axis with

weak gradients by increasing these gradients along this axis. On the other

hand, we slow down the updates of the weights along the axis with large

gradients.

Disadvantages: there is a problem with this optimization algorithm.

If the training takes too long. Over time, this term the sum of squared

gradients would grow larger. When the current gradient is divided by this

large number, the update step for the weights becomes very small. It is as if

we were using a very low learning rate, which becomes even lower the

longer the training takes. In the worst case, we would get stuck at AdaGrad

and the training would go on forever.

9a) &10c)RMSProp

There is a slight modification of AdaGrad called “RMSProp”. This modification

is intended to solve the previously described problem that can occur with

AdaGrad. In RMSProp, the running sum of squared gradients gt+1 is

maintained. However, instead of allowing this sum to increase continuously

over the training period, we allow the sum to decrease.

For RMSProp, the sum of squared gradients is multiplied by a decay rate α

and the current gradient – weighted by (1- α) – is added. The update step in

the case of RMSProp looks the same as in AdaGrad. Here we divide the

current gradient by the sum of the squared gradients to get the nice property

of speeding up the updating of the weights along one dimension and slowing

down the motion along the other.

Although SGD with momentum is able to find the global minimum faster, this

algorithm takes a much longer path that could be dangerous. This is because

a longer path means more potential saddle points and local minima of the

loss function that could lie along that path. RMSProp, on the other hand, goes

straight to the global minimum of the loss function without taking a detour.

1. Handling Non-stationary Objectives:

o RMSProp is particularly well-suited for non-stationary objectives (where the data

distribution changes over time), as it can adjust more dynamically to the changes

compared to Adagrad.

2. Empirical Performance:

o In practice, RMSProp often performs better than Adagrad on a variety of machine

learning tasks. It tends to converge faster and reach better solutions, especially

when dealing with deep learning models.

Overall, RMSProp is generally preferred for its ability to maintain a more stable and effective

learning rate throughout training, leading to better performance on many complex tasks.

9c) Describle the saddle point problem in machine learning.

Key Characteristics of a Saddle Point:

1. Zero Gradient:

 At a saddle point, the gradient of the cost function is zero. This

means that the partial derivatives with respect to each parameter

are all equal to zero.

2.Neither Minimum nor Maximum:

 Unlike a local minimum or maximum, a saddle point is a point

where the cost function neither reaches a minimum nor a

maximum value.

3. Flat in Some Dimensions, Steep in Others:

 The surface of the cost function is flat in certain dimensions (where

the partial derivatives are zero) and steep in others. It creates a

saddle-like shape.

4. Challenge for Optimization Algorithms:

 Optimization algorithms, such as gradient descent, can get stuck or

converge very slowly near saddle points because the gradient is

zero, and the algorithm may struggle to determine the right

direction to move.
10b) What is the best optimization algorithm in machine learning?

Stochastic Gradient Descent algorithm

	Q5c Explain the algorithm of sequential search
	What is Linear Search Algorithm?
	Algorithm for Linear Search Algorithm:
	How Does Linear Search Algorithm Work?
	Q6b) Write the algorithm of Fibonacci Search Algorithm
	Analysis

	Part I Mathematical Foundations
	7 Continuous Optimization
	7.1 Optimization Using Gradient Descent

	10a)Stochastic Gradient Descent with Momentum
	9a)AdaGrad optimization strategy
	9a) &10c)RMSProp

	pbs@ARFix@233:
	pbs@ARFix@234:

