Model Question Paper-I with effect from 2022 (CBCS Scheme)
USN

Fourth Semester B.E Degree Examination

OPTIMIZATION TECHNIQUES (BCS405C)
TIME:03Hours Max.Marks:100
Note:

1. Answer any FIVE full questions, choosing at least ONE question from each
MODULE

2. VTU Formula Hand Book is Permitted

3. M: Marks, L: RBT levels, C: Course outcomes.

Module - 1 M| L C
Q.1 | a|Letf(xy,x,) = e*1*3 where x, = t cost and x, = tsin ¢ find %. 7 L2 | COl1
b | Obtain the gradient of scalar ¢ = 4x, + 2x; — 3x, + x, with respectto | 6 | L2 | CO1
th trix % = [xo x1]
ematrix X =[= , |
¢ | Obtain the power series expansion of f(x,y) =x?y+3y—2interms | 7 | L3 | COl1
of (x — 1) and (y + 2) up to second degree.
OR
(0.2 | a | Discuss the gradient of vectors with respect to matrices. 7 | L2 | CO1
b|If ¥,y€R? and y; = —2x; +x, , ¥, = x; +x,. Show that the | 6 | L3 | COl
Jacobian determinant |detJ| = 3.
¢ | Find the second order Taylor’s series approximation of the function | 7 | L3 | COIl
f(xy,%,) = x?x, + 5x;€*2 about the pointa =1, b = 0.
Module — 2
0.3 |a Draw a computation graph of the ﬁ;nctlon: o 8 |13 | coz
f(x) =vVx2+e** + cos(x? +e*"). Also find 5, Using automatic
differentiation.
b | Obtain the gradient of quadratic cost. 6 |[L3 | CO2
Find the output at neuron 35, if input vector [0.7, 0.3] using the activation
€| function ReLU. 6 |L3 | CO2

w3l = 0.6
w3l =01 w50 = 0.9
1 3 w53 = 0.3
w4l =10.5 W32 = 0.5
5
2 4 w54 = 0.7
wd2 = 0.4

wal = 0.8

OR

Q.4 |al| Letf(xy,x) =log(x;) + x1x, — sin(xy). 8 |L3 | CO2
(i) Draw a computational graph of f (x; , x).
(i) Evaluate f at (x; ,x,) = (2,5) by forward trace.
Assume that the neuron have a sigmoid activation function, perform a
bl forward pass and a backward pass on the network. Assume that the actual 121 L3 | CO2
output of y is 0.5 and learning rate is 1. Perform another forward pass.
wlz =0.1 ¥3
1=10.35
. w14 = 0.4 i w35=0.6
¥3
05
w23 =0.8
¥»2 =009
H4 wd5 = 0.9 output y
¥
w24 = 0.6
Module — 3
Q.5 | a | Describe Local and Global optima. S |L2 | CO3
List out the differences between Local and Global optima.
b Define Hessian matrix. Using the Hessian matrix, classify the relative | 7 | L3 | CO3
extreme for the function f(x,y) = %x3 +xy> —8xy+3
Explain the algorithm of sequential search. Using the sequential search, for | 8§ | L3 | CO3
C | an array of size 7 with elements 13, 9, 21, 15, 39, 19, and 27 that starts
with 0 and ends with size minus one, 6 locate the position of number 39.
OR
Q.6 |a Minimize f(x,,x,)=x —x, +2x +2xx, +x,° starting from 7 113 | co3
' 0
X, =
b | Write the algorithm for Fibonacci search method. 6 L2 |CO3
¢ | Using 3-point interval search method, find Max f(x) = x(57 — x) on [0,20] 7 |[L3 | CO3
with £ =0.1
Module — 4
Use steepest Descent method for f(x, y) = x;—x, + 2 x,2 + 2x,x, + x,2
Q7 |a starting from the point x; = (0,0) 7 | L3 | CO4
b | Explain how the Gradient Descent Algorithm works? 6 |L2 | CO4
Find the Linear Regression Coefficients using Gradient Descent
¢ 7 |L2 | CO4
Method.
OR
Use the NR method to find the smallest and the second smallest positive
Q.8 | a| roots of the equation tan x = 4x correct to 4 decimal places. 7 |L3 | CO4
b | Write the differences between Stochastic Gradient Descent and Mini | 6 | .2 CO4
Batch Gradient Descent methods.
¢ | Write the Stochastic Gradient Descent Algorithm. 7 |L2 | CO4

Module - 5

Q.9 Explain in brief 10| L2 | COS
1. Adagrad optimization strategy
2. RMSprop
What is the difference between convex optimization and
non-convex optimization 5 |L2 | CO5
Describe the saddle point problem in machine learning L2 | COS
OR
Q.10 Write a short notes on 10| L2 | CO5
1.Stochastic gradient descent with momentum
2.ADAM
What is the best optimization algorithm for machine learning S |[L2 | COS
Briefly explain the advantages of RMSprop over Adagrad S |[L2 | COS

Model Question Paper-II with effect from 2022(CBCS Scheme)

USN

TIME:03Hours

Note:

Fourth Semester B.E Degree Examination
OPTIMIZATION TECHNIQUES (BCS405C)

Max.Marks:100

1. Answer any FIVE full questions, choosing at least ONE question from each
MODULE

2. VTU Formula Hand Book is Permitted

3. M: Marks, L: RBT levels, C: Course outcomes.

Module - 1 M| L C
Q.1 | a|Let f(x;,x,) = x2 + 2x, where x; = sint and x, = cost find %. 7 L2 | COl1
b . . .2 [sin(xo + 2x,) 2x1 + x5 7 |L3 | CO1
h f =
Obtain the gradient of matrix f 2x, + 1, cos(2x, + 13)
ith t to the matri *—[xo xl]
with respect to the matrix x =], =, |.
¢ | Obtain the partial derivatives for 6 (L3 |CO1
() f(x,y) = (x + 2y3)? (i) f(x,y) = x*y + xy°
OR
Q.2 | a| Discuss (i) Gradient of a matrix with respect to a vector. 10| L2 | CO1
(i1) Gradient of a matrix with respect to a matrix.
b | Find the Taylor’s series expansion of the function f(x,y) = x? + 2xy + | 10 | L3 | COl1
y3 at (x9,v0) = (1,2) up to third degree.
Module — 2
0.3 |a Draw a computation graph of the ﬁ;nctlon: o 8 |13 | coz
f(x) =vVx2+e** + cos(x? +e*"). Also find 5, Using automatic
differentiation.
b | Obtain the gradient of quadratic cost. 6 |[L3 | CO2
Find the output at neuron 35, if input vector [0.7, 0.3] using the activation }
€| function ReLU. 6 |L3 |CO2
w30 = 0.6
w3l =0.1 W50 = 0.9
1 3 w53 = 0.3
w4l =10.5 W32 = 0.5
5
2 4 w34 = 0.7
w2 = 0.4

wal = 0.8

OR

Q.4 |al| Letf(xy,x) =log(x;) + x1x, — sin(xy). 8 |L3 |CO2
(i) Draw a computational graph of f (x; , x).
(i) Evaluate f at (x; ,x,) = (2,5) by forward trace.
Assume that the neuron have a sigmoid activation function, perform a
bl forward pass and a backward pass on the network. Assume that the actual 121 L3 | CO2
output of y is 0.5 and learning rate is 1. Perform another forward pass.
wlz =0.1 ¥3
1=10.35
. w14 = 0.4 i w35=0.6
¥3
05
w23 =0.8
¥»2 =009
H4 wd5 = 0.9 output y
¥
w24 = 0.6
Module — 3
Q.5 | a | Describe Local and Global optima. S |L2 | CO3
List out the differences between Local and Global optima.
b Define Hessian matrix. Using the Hessian matrix, classify the relative | 7 | L3 | CO3
extreme for the function f(x,y) = %x3 +xy> —8xy+3
Explain the algorithm of sequential search. Using the sequential search, for | 8§ | L2 | CO3
€| an array of size 7 with elements 13, 9, 21, 15, 39, 19, and 27 that starts
with 0 and ends with size minus one, 6 locate the position of number 39.
OR
Q.6 |a Minimize f(x,,x,)=x —x, +2x +2xx, +x,° starting from 8 |13 |Co3
' 0
X, =
b | Write the algorithm for Fibonacci search method. 6 L3 |CO3
¢ | Using 3-point interval search method, find Max f(x) = x(57 —x) on [0,20] 6 | L2 Co3
with £ =0.1
Module — 4
Use steepest Descent method for f(x, y) = x;—x, + 2 x,2 + 2x,x, + x,2
Q7 |a starting from the point x; = (0,0) 7 |12 | CO4
b | Explain how the Gradient Descent Algorithm works? 6 |L2 | CO4
Find the Linear Regression Coefficients using Gradient Descent
¢ 7 |L2 | CO4
Method.
OR
Use the NR method to find the smallest and the second smallest positive
Q.8 | a| roots of the equation tan x = 4x correct to 4 decimal places. L2 | CO4
b | Write the differences between Stochastic Gradient Descent and Mini | 7 | L2 CO4
Batch Gradient Descent methods.
¢ | Write the Stochastic Gradient Descent Algorithm. 6 (L2 | CO4

Module - 5

Q.9 Explain in brief 10| L2 | COS
1. Adagrad optimization strategy
2. RMSprop
What is the difference between convex optimization and
non-convex optimization 5 |L2 | CO5
Describe the saddle point problem in machine learning L2 | COS
OR
Q.10 Write a short notes on 10| L2 | CO5
1.Stochastic gradient descent with momentum
2.ADAM
What is the best optimization algorithm for machine learning S |[L2 | COS
Briefly explain the advantages of RMSprop over Adagrad S |[L2 | COS

~> © 55
= 2% 2% ¥ ZF S©

o5ty DY
= (:'/j:‘x} \.3%?’ 'Chc,os\" ‘\'\7(’—%%}79
>) éu\/\f v C'GOS,V%
& (el

> 1=
o %o £0E
Y 2 2
P coSY RS Tl T
E\;&@%f cos¥” ol
hr—]
3 vy 2V s

g\ %Cab,j):acﬂ%—a‘j_a_
Co_'b> C’C"'o;

£Com,y) = Flore2> 7 B e
\
‘ == J’:j(wr‘% (ﬂ”g
2 D—x,;c@r@ (o oS e DN Gt
3__\
' ¥ e =
{336 (s ~J
o — \ \9;— —_ 2=
(= 9> = {,(r,«% ¥, Qc,,pﬁa(‘, 2,
Tl S
Y/ yegrOTyC >
2 E@*‘vﬁti@ salyen o =D (> {—ij('r'a
L C:j"""b ‘Fj:j((—>/B
7‘1 Ci‘rﬂv: i & j —B3Y. - , —%;c, Lormm ani M -S:-jzbi’ﬁ'b
P = >3 Fuyy~ e D:CC%:;): ,%:C,Ci +2)
— = =
LR, =20 o ¥R T
= \>Q—f>——\ = " L ‘y-:;‘C\c—f>j: N =T S,s
— C—azr_>3:—0

2
i G . i

\chitﬁvz =16 -—\——‘\—\— E@’_D (v\rv +CS+>> (_er

S D _
>\ E"%C:C_—D ya (- S YESy
5 (y+>3C) o

= —)o -!——’5‘— [~A~C:&—-D +w(y -3-;,8
+§\f\ 3:“3»(&-—\39’4— b [oe— D C3+>~>j \

B,,:x\ b g S

= L) ;?[;e RN o pae e
\ 2\5\ 9 \
Clie ilies ?ifbu =7 >
23"{25_ }zscy
}3‘\ = \ — ‘z_——\\._':—‘ NG

-~ -~

2

-z;:c ._)_‘b__>¢,€,ij'a)r\’ \7‘\:‘?—0
Q':_ &) _%C;Q‘:Q)_\:: o e Loin¥ a=", &

o> (o, b +C3~‘°7J8[0“'@
-3?—(@(33: —F»(Ot—r\b—\— —Y—\rfe” 2 e L &

o1
+—\—T [%—@ 7C;c_:c,(&r \D> J”Z_Ci >>j:j-+ 5 B iﬂ
e +'F_ C(L,\:D Cj'-bv %
33 D ﬁ_(ﬁ,a%cnﬂ
(:L d\ = ‘?’C\ to’}+—?—\: [@C_ ——D%:(,C‘(C\ O)
e s (3% 7% ‘;7* &

2 | D Fee) L R (97 =
(Vo) (e
\ [G‘—"’ VD =, y,;c}(\,i%j

‘f‘(i(3“—}\: ‘S"C‘(Oj'}_—?’\j ‘ >
(vi2) +>(:=<L‘-DC’Q>"O> —Y_f—(if |
>— \ : o = o
“%'\- E@ EAENS £ (o> (822] T

5C o
2 e/i;_
\-F’CDC_ .)= s DC”’_\”— e o
: B
—]‘D’(D) + B_(‘ 3%——
‘.SLC)(OV)'—’ L?—+g)g(&
'?}c = > Xy TP - _ B5=c
Y - pr I N ;5%’>: \
S s > (DC_':_ST_ g';c_re
= - (
%,>C(=i e R °©O _ &
Sheg T
= =2\
§ Qe o _
DC‘ \V%S—(\je/

‘E'Ci\i»v:—_ =3 +_T\- '
3 -\——\ E Sy a(5) C';CT_DC;;L}’CD
3 & G’%’O)j

-\

——— .

P

<N

YRS DL
| FC)T\'\' E@C’DC*‘#L\;-@
>D°'

\.)C:S"}j 3 \?,-(N -

\ -
- 2 ECDC—‘32-+ 5 o= (&7
S (y-> 7 > 0-(:L—D(:5 -

: %CDC._\SB’ D © =
v ij—->3ﬂ 2 o |

>
“l:_(\ ;2) = \%—),(\'7(7\-)—2—— = V=

Ry = 12 i oo c,cx,,D*r‘\tL‘is—-é—S
> A) e >

"\’-\;i E>(i«\3%’\r(i'{>(3 2 (3

>
Q\’-\S‘“ S\/C;CZ,:/;&-\»
= »_\,;,(,L,\)B,Q
NN é(t-D—‘r\\v(:s—>W:’ s .
> L (g (3=

Zor = © D ¥ (03X 0 BAY>D 4~ Lot 0D
—ry \'57"8)"
\
O\S,::&n c,(z,b—\:: e = 0.835_3
st \-‘re,’\'l’}g}

Zb_’:@/.oxﬁ (VDO Qo.b>L0f8>/> "t’("'a_’ -y
= °2 |
Yeckyes ﬁc/\f\/a)wwv A ot (T

2

: o =Jeg (3
2
CowdpuXt e T
v Ny = Yo
3 C’@V“\)Pv—\fe P c&ﬂ’CSW?
&m_o 4539
) Cow® Yhe re B Lo j}’)ﬁ ERLY
_f/(p,rgﬁ — © Q,C\-b\-’r\o/C’o.“\Squ i oupanitle
_-)-"O.o\ %0\ "Q \\‘QS_D——O
| Ve (o Sreey (2 525) @
Gloe %) | (oo F ON s>

w3 (¥ _e>—2
N y &3 65'2,9
3 —(% —/ﬂ}j JC\O:*‘D’%\O\;—/
k. ﬂ«%«n] — CC/ = *5«»(3)3 C«oxq 58D

—

E

:L\)C-;,U——D :/\,0(3 ~—3 <o_= &og(:t))—;(o,go,?,lz_g
2 [5]—>(o¥b— -\ b5>)

!
7

\ (52 E*] =5 é:ij) D ,

\\’E&‘B *‘f)(c:-ém(:;)) -—9('0"’35’&°3> 4 |
Thae dregrorn Lot Ko ek Yorr °) Vi Junod- e
c,c»m)?u_»b:}\' ond S T TR W, I _SLp_,y,

—
’

-
O
.oo)—kg-

I\

i
£
!

Y\ev
9,'597‘:‘:‘\";— Phe seladooe e rdgema 0«}) | L %&m:!.
(=<) = Ly ey Ry FO

& 8=
= 2= —
N R - I C
=0
Se¥ '%ﬁ == ‘Fﬂv © 250y —-S:r.-:o.-@
Syy -89 =°- P
=) =1, ¥
‘ \ >x=9 \’:0393-.-0,3
o= >_gyzoDY (y-9
el j U (e,°) (0,20
He ‘%\N‘t e s o =2 < =X¥

- M=F A0\ W st O 7 S)
%Nj @ oL C»’-i“.-\’{m-\’ M\Jﬁ C e 5 @
2 2= ™ L 24T .
Nc/ ‘ % L ‘;‘“‘:‘j _ Qﬁ _4 5 C
5}% = (e e
Euolmate H ke g r =il g A

_g © et = G} ‘?5»: A;
penny = (0D o e o

Jes (o,0) wedde pet
(o g sodle Joso (-4) Qe
(-,

N5 a) A Noca ﬁ\ﬂ#)mﬁ"’ S \
N mec uwhen fCOZFEO T Ve

/1 j' loye) N\}—‘#)WW" OCCIASA o x’:cl’n"f'
iy %CC) "~ o O%M j{,o/bevl/
% 3 }W Yo “Q\WW S

VA
.); &Oo&.\;'? Lthe)ﬂoﬁzv\«w \,—k& ruarabes,
39 <o Yo Q}'\)'\g-’j/ Z\B/q':}—\'}'b‘lao\’,q’.)’j

Lk 2 element Lo Yhe

2 Check u&'/

Wg,,€+ & W Yo .:56‘].‘
B‘If,i¥€zwm W\,Mgﬁa’&
>l“~ I.”_ e & (‘w\r' LoV e- \70 \—}»& n&ﬁ\; \r_é),ex.
e Pejeal BEFEIZT o Mo elemenk

<& Ww'%@r; Q/; Yoo 'wsezclel

) g 0)0)" Pt o CLES
;&*éc‘/:o/c)f"wé/ewn o Wt 1> BB S
) | L Ahe Volue e 9 ele) o 39
pithan ¥ 10 sdew
Yo olue &2 B

5_57\" -)
%(PC Y\’%.*’\E'—(o‘}g it 5 BaeD
= 5" 27
I
e;/.-%zé
- w9 V)
>Cg” : =t Lo V2
HetR=F
DL/\ 6 6\'5_[’
& 2 S £ L
> LB
BlelEbl e 2
% 5 == bo g-\SJ
o 7 oa
= Lo X g
Csc’3>\§ e = s 2 G
\%(&e’jﬂ%/ s _o-°%
ks 1 b gﬁ:\—’ =L
A i
) ¢ L oonbt o e
SO INY-
coof Y

AL .
\\Q\ i °:) v Y‘\e\'\'wﬁ\v %D“;_ -
Dize Stesjasy D007, ey Y
3 _ DC\ - i>_ p 1
LY,(:C_‘ e
o BB . (e '03 \‘\'\:"*}i’

‘ e D"f’[-a"-'c" >: (-—\ NI e

uw ‘)L . -)'*).bi):b):?’ ybi‘,_ Dy—f;?‘{ ‘j::c-..> = (= >>
~ — o =
N eV e W= ('D?L,hp%—\
PR e) S\fi')' _ (D, D>

re ¥ \f\y \ — e
Loy T2 % g
& 2~ _ 5: S = \v Q;';“/ﬁ (\
S Q

Ve new Pond o sr Ay S,
_o.ab
>3 (o =)= (,(‘)\rq\r)
RN SR s VWD) s <<Z>

9";‘)-/3 q-f-(*;ﬁ:: e (fo‘quvq’)’m.“b

hg B

Mo &D«Q\’ Yok Yoo s
‘%(izv—:\rw\,i-‘)T‘j’ {’:Ciﬁ-’: Q/C?’:CF\T
R B s S Bl
N ° ‘
_3,(5%\)
\V'Qm/j"ﬁ — \Ti(v w,inc —‘\Yin/
V\Cﬂ-\"\ = Fa N -]
v&chgcﬂ"\f —’
;E—fa\//%s)r - = h
o= Sn— Pancts TR g e T Ve e
Vo o —2

.-
Loy = E e x‘ﬁ\vbosb‘a‘ Sl N

\&:i\/’\V% &) ><‘—>,—:\‘2F*5>’ g Y

i
Moy Bl 7

——

Matrices can be
transformed into
vectors by stacking
the columns of the
matrix
(“flattening”).

156 Vector Calculus

collects partial derivatives. For example, if we compute the gradient of an
m X n matrix A with respect to a p X ¢ matrix B, the resulting Jacobian
would be (mxn)x(pxq), i.e., a four-dimensional tensor JJ, whose entries
are given as J;;i; = 0A;;/0By.

Since matrices represent linear mappings, we can exploit the fact that
there is a vector-space isomorphism (linear, invertible mapping) between
the space R™*"™ of m x n matrices and the space R™" of mn vectors.
Therefore, we can re-shape our matrices into vectors of lengths mn and
pq, respectively. The gradient using these mn vectors results in a Jacobian
of size mn x pq. Figure 5.7 visualizes both approaches. In practical ap-
plications, it is often desirable to re-shape the matrix into a vector and
continue working with this Jacobian matrix: The chain rule (5.48) boils
down to simple matrix multiplication, whereas in the case of a Jacobian
tensor, we will need to pay more attention to what dimensions we need
to sum out.

Example 5.12 (Gradient of Vectors with Respect to Matrices)
Let us consider the following example, where

f=Ax, fecRM, AcR™VN zxecRV (5.85)

and where we seek the gradient d f /d A. Let us start again by determining
the dimension of the gradient as

df
— € RMx(MxN) 5.86
IA (5.86)
By definition, the gradient is the collection of the partial derivatives:
of1
df ol Ofi _ i
— = : —= € RIXMXN) 5.87
dA far T 0A ()
5A

To compute the partial derivatives, it will be helpful to explicitly write out
the matrix vector multiplication:

N
fi:ZAijxjv izl,...,M, (588)
j=1
and the partial derivatives are then given as
ofi
=2x,. 5.8
9, (5.89)

This allows us to compute the partial derivatives of f; with respect to a
row of A, which is given as

8f1 _ m'I' c R1><1><N

DA,) (5.90)

Draft (2024-01-15) of “Mathematics for Machine Learning”. Feedback: https://mml-book. com.

5.4 Gradients of Matrices 157

ofi
aAk;éi,:

where we have to pay attention to the correct dimensionality. Since f;
maps onto R and each row of A is of size 1 x N, we obtaina 1 x 1 x N-
sized tensor as the partial derivative of f; with respect to a row of A.

We stack the partial derivatives (5.91) and get the desired gradient
in (5.87) via

=0 e RN (5.91)

OT

OT
afz _ wT c Rlx(MxN). (5.92)
0A 0T

o7

Example 5.13 (Gradient of Matrices with Respect to Matrices)
Consider a matrix R € R®*Y and f : RM*N — R¥*N with

f(R)=R'R=: K ¢ RNV, (5.93)

where we seek the gradient dK /dR.
To solve this hard problem, let us first write down what we already
know: The gradient has the dimensions

dK
ﬁ ER(NXN)X(MXN), (594)

which is a tensor. Moreover,

pq IXMXxN
2 R RAUX 5.95

for p,g = 1,..., N, where K, is the (p, ¢)th entry of K = f(R). De-
noting the ith column of R by r;, every entry of K is given by the dot
product of two columns of R, i.e.,

M
Kpy=7,73=> RypRuy. (5.96)
m=1
When we now compute the partial derivative ?;;’f? we obtain
0K,, <~ 0
- — R Rong = Opaii s 5.97
8R” 7; 8R” p q YL ()

©2024 M. P. Deisenroth, A. A. Faisal, C. S. Ong. Published by Cambridge University Press (2020).

158 Vector Calculus

R, ifj=p p#q

) Ry, ifj=q p#q
Dais =\ 2R, ifj=p p=q s
0 otherwise

From (5.94), we know that the desired gradient has the dimension (N x
N) x (M x N), and every single entry of this tensor is given by 0,
in (5.98), where p,q,j=1,...,Nandi=1,..., M.

5.5 Useful Identities for Computing Gradients

In the following, we list some useful gradients that are frequently required
in a machine learning context (Petersen and Pedersen, 2012). Here, we
use tr(-) as the trace (see Definition 4.4), det(-) as the determinant (see
Section 4.1) and f(X)~! as the inverse of f(X), assuming it exists.

EfX (X)T = <a];()‘?)>T (5.99)
aiXtr(f(X)) =tr (8];(;()) (5.100)
8; det(f (X)) = det(f(X))tr <f(X)1aJ;g)) (5.101)
2 r 07 =50 I) (5102
&i})){(‘lb = (X HTab" (X HT (5.103)
83;” —a’ (5.104)
8;:” —a’ (5.105)
a‘z;fb = ab’ (5.106)
6mTf$ —2'(B+B") (5.107)
%(m — As)"W(x — As) = —2(x — As)' WA for symmetric W
(5.108)

Remark. In this book, we only cover traces and transposes of matrices.
However, we have seen that derivatives can be higher-dimensional ten-
sors, in which case the usual trace and transpose are not defined. In these
cases, the trace of a D x D x E x F' tensor would be an E x F'-dimensional
matrix. This is a special case of a tensor contraction. Similarly, when we

Draft (2024-01-15) of “Mathematics for Machine Learning”. Feedback: https://mml-book. com.

[sum]

|

v
Output

To draw the computational graph for the function f(x,y)=log(x)+xy—sin(y), we need to break
down the function into its individual operations and represent them as nodes in the graph. Here's
how you can structure it:

1. Input Nodes:
o X
oy
2. Intermediate Computations:
o log(x) (logarithm node)
o Xy (multiplication node)
o sin(y) (sine node)
3. Output Computation:
o Sum the results of the nodes from the intermediate computations:

log(x)+xy—sin(y)
In this graph:

x and y are input variables.

The node [log] takes x as input and computes log(x).

The node [xy] computes the product of x and y.

The node [sin] computes sin(y), and the [-sin] node negates it.

The [sum] node adds the results of log],[xy], and [—sin] to produce the final output.

«Q5a) Difference between local optima and global optima
« Definition:

o Local Optima: A point where a function's value is better (higher for
maxima, lower for minima) than the values of all nearby points, but not
necessarily the best overall.

o Global Optima: A point where a function's value is the best overall
across the entire domain of the function.

e Scope:
o Local Optima: Limited to a neighborhood or small region of the
function.
o Global Optima: Considers the entire range or domain of the function.
«Objective:

o Local Optima: Indicates a solution that is optimal within a limited
scope, but there may be better solutions elsewhere in the domain.

o Global Optima: Represents the best possible solution across the
entire domain, with no better solutions available.

« Complexity in Finding:

o Local Optima: Easier to find, as optimization algorithms often
converge to local optima based on the starting point and the algorithm
used.

o Global Optima: Harder to find, especially in complex or non-convex
functions, as it requires exploring the entire domain to ensure no
better solutions exist.

e Significance in Optimization:

o Local Optima: May be satisfactory for certain applications, especially
if global optimization is computationally expensive or unnecessary.

o Global Optima: Ideal for applications where the best possible solution
is required, and no compromises can be made.

« Examples:

o In alandscape with multiple hills and valleys, the tops of individual

hills are local maxima, while the highest hilltop is the global maximum.

O5c Explain the algorithm of sequential search

What is Linear Search Algorithm?

Linear search is a method for searching for an element in a collection of
elements. In linear search, each element of the collection is visited one by
one in a sequential fashion to find the desired element. Linear search is also
known as sequential search.

Algorithm for Linear Search Algorithm:

The algorithm for linear search can be broken down into the following steps:

« Start: Begin at the first element of the collection of elements.

« Compare: Compare the current element with the desired element.

« Found: If the current element is equal to the desired element, return true
or index to the current element.

« Move: Otherwise, move to the next element in the collection.

« Repeat: Repeat steps 2-4 until we have reached the end of collection.

« Not found: If the end of the collection is reached without finding the
desired element, return that the desired element is not in the array.

How Does Linear Search Algorithm Work?

In Linear Search Algorithm,

« Every element is considered as a potential match for the key and checked
for the same.

« If any element is found equal to the key, the search is successful and the
index of that element is returned.

« If no element is found equal to the key, the search yields “No match found

Q6b) Write the algorithm of Fibonacci Search Algorithm

The Fibonacci Search Algorithm makes use of the Fibonacci Series to diminish
the range of an array on which the searching is set to be performed. With every
iteration, the search range decreases making it easier to locate the element in
the array. The detailed procedure of the searching is seen below —

Step 1 — As the first step, find the immediate Fibonacci number that is greater
than or equal to the size of the input array. Then, also hold the two preceding
numbers of the selected Fibonacci number, that is, we hold Fm, Fm-1, Fm-2
numbers from the Fibonacci Series.

Step 2 — Initialize the offset value as -1, as we are considering the entire array
as the searching range in the beginning.

Step 3 — Until Fm-2 is greater than 0, we perform the following steps —

e Compare the key element to be found with the element at
index [min(offset+Fm.2,n-1)]. If @ match is found, return the index.

o If the key element is found to be lesser value than this element, we reduce
the range of the input from 0 to the index of this element. The Fibonacci
numbers are also updated with Fn = Fm-2.

o Butif the key element is greater than the element at this index, we remove
the elements before this element from the search range. The Fibonacci
numbers are updated as Fm = Fm-1. The offset value is set to the index of
this element.

Step 4 — As there are two 1s in the Fibonacci series, there arises a case where
your two preceding numbers will become 1. So if Fm-1 becomes 1, there is only

one element left in the array to be searched. We compare the key element with
that element and return the 1st index. Otherwise, the algorithm returns an
unsuccessful search.

i

egin Fibonacci Search
n <- size of the input array

O
h
h
0
)
ot
Il
|
'_\

Fm?2
Fm := Fm2 + Fml
while Fm < n do:
Fm2 = Fm
Fml = F
Fm = Fm2 + Fm
done
while fm > 1 do:
i := minimum of (offset + fm2, n - 1)
if (A[1] < x) then:

5
=
et
|
'_\

=

Fml :=
Fm2 := Fm - Fml
offset = 1

i

3
||||‘\

=
=2 =]
S|
)

O

=)

@)
e
[

else 1if (i] > x) then:
Fm = Fm2
Fml = Fml - Fm

Fm2 = Fm - Fm

return 1i;

@
3

| return i
| end

if (Fml and Array[offset + 1]

return offset + 1

end
return invalid location;

Analysis

The Fibonacci Search algorithm takes logarithmic time complexity to search for
an element. Since it is based on a divide on a conquer approach and is similar
to idea of binary search, the time taken by this algorithm to be executed under
the worst case consequences is O(log n).

7.1 Optimization Using Gradient Descent 227

601

401 at 4+ 7o 4+ 522 — 170+ 3

201

Objective

—201

—40

6 -5 -4 -3 -2 -1 0 1 2
Value of parameter

right, but not how far (this is called the step-size). Furthermore, if we
had started at the right side (e.g., xg = 0) the negative gradient would
have led us to the wrong minimum. Figure 7.2 illustrates the fact that for
x > —1, the negative gradient points toward the minimum on the right of
the figure, which has a larger objective value.

In Section 7.3, we will learn about a class of functions, called convex
functions, that do not exhibit this tricky dependency on the starting point
of the optimization algorithm. For convex functions, all local minimums
are global minimum. It turns out that many machine learning objective
functions are designed such that they are convex, and we will see an ex-
ample in Chapter 12.

The discussion in this chapter so far was about a one-dimensional func-
tion, where we are able to visualize the ideas of gradients, descent direc-
tions, and optimal values. In the rest of this chapter we develop the same
ideas in high dimensions. Unfortunately, we can only visualize the con-
cepts in one dimension, but some concepts do not generalize directly to
higher dimensions, therefore some care needs to be taken when reading.

7.1 Optimization Using Gradient Descent

We now consider the problem of solving for the minimum of a real-valued
function
min f(x), 7.4

©2024 M. P. Deisenroth, A. A. Faisal, C. S. Ong. Published by Cambridge University Press (2020).

Figure 7.2 Example
objective function.
Negative gradients
are indicated by
arrows, and the
global minimum is
indicated by the
dashed blue line.

According to the
Abel-Ruffini
theorem, there is in
general no algebraic
solution for
polynomials of
degree 5 or more
(Abel, 1826).

For convex functions
all local minima are
global minimum.

We use the
convention of row
vectors for
gradients.

228 Continuous Optimization

where f : R? — R is an objective function that captures the machine
learning problem at hand. We assume that our function f is differentiable,
and we are unable to analytically find a solution in closed form.

Gradient descent is a first-order optimization algorithm. To find a local
minimum of a function using gradient descent, one takes steps propor-
tional to the negative of the gradient of the function at the current point.
Recall from Section 5.1 that the gradient points in the direction of the
steepest ascent. Another useful intuition is to consider the set of lines
where the function is at a certain value (f(x) = c for some value ¢ € R),
which are known as the contour lines. The gradient points in a direction
that is orthogonal to the contour lines of the function we wish to optimize.

Let us consider multivariate functions. Imagine a surface (described by
the function f(x)) with a ball starting at a particular location x,. When
the ball is released, it will move downhill in the direction of steepest de-
scent. Gradient descent exploits the fact that f(x,) decreases fastest if one
moves from x in the direction of the negative gradient —((V f)(z))" of
f at xy. We assume in this book that the functions are differentiable, and
refer the reader to more general settings in Section 7.4. Then, if

z =z — (V) (@) (7.5)

for a small step-size v > 0, then f(x;) < f(xo). Note that we use the
transpose for the gradient since otherwise the dimensions will not work
out.

This observation allows us to define a simple gradient descent algo-
rithm: If we want to find a local optimum f(«.) of a function f : R" —
R, x — f(x), we start with an initial guess x, of the parameters we wish
to optimize and then iterate according to

@i =x; — (V) ()" (7.6)
For suitable step-size ~;, the sequence f(xy) > f(x1) > ... converges to

a local minimum.

Example 7.1
Consider a quadratic function in two dimensions

rED-2ETE SE-EE oo

with gradient
T T
Ty . X 2 1 5
i (Lzb B |:332:| [1 20} - [3} ' (7.8)

Starting at the initial location &, = [—3, —1]", we iteratively apply (7.6)
to obtain a sequence of estimates that converge to the minimum value

Draft (2024-01-15) of “Mathematics for Machine Learning”. Feedback: https://mml-book. com.

https://mml-book.com

MODULE Il
BCS405C — OPTIMIZATION TECHNIQUE

Working Procedure to Fit a Linear Regression Line to Data
Using the Gradient Descent Method

(1) The following steps are used to fit a linear regression line§y = a + bx
for the given data:
Step 1: Define the Model and Cost Function
The linear regression model you want to fit is given by:
¥y =a+ bx

where J is the predicted value, a and b are the parameters (weights) of the

model and x is the input feature.

The cost function (error function) for linear regression is the Mean Squared

Error (MSE):
n
1
MSE = = x) (0 =9
=
1 n
MSE = E X z(yl —(a + bx,-))2
i=1

Where n is the number of data points.

Step 2: Initialize Weights and Hyperparameters

Initialize the weights a and b to some arbitrary values. Start with a = 0 and

b = 0. Also need to set hyperparameters:

« Learning rate (a): A small positive value that controls the step size in
each iteration.

o Number of iterations: The number of times we update the weights.

Professor, Department of Artificial Intelligence & Data Science,
Don Bosco Institute of Technology, Bangalore.

28

MODULE Il
BCS405C — OPTIMIZATION TECHNIQUE

Step 3: Gradient Descent
For each iteration, calculate the gradients of the cost function with respect

to the weights (a and b) and update the weights accordingly.

The gradients are given by:

2 n
Aa = - ;(yi — (a+bx;))

n

2
Ab = —— in X (yl_ (a+bx1))
=
Update the weights using the gradients:
Apew = a — a X Aa
bpew = b — a X Ab
Repeat this process for the specified number of iterations.

Step 4: Predict

After training, use the final values of a and b to make predictions:
¥y =a+ bx
Step 5: Evaluate and visualize

Evaluate the quality of the linear regression model by calculating the final

MSE on your training data:

n
MSE =~ x) (o = 9)?

i=1

S|

Also, visualize the linear regression line by plotting it alongside the data

points.

Professor, Department of Artificial Intelligence & Data Science,
Don Bosco Institute of Technology, Bangalore.

29

MODULE II
BCS405C — OPTIMIZATION TECHNIQUE

Step 6: Iterate as Needed

We need to adjust the learning rate and the number of iterations to find
the best-fitting line. If the cost is not converging or fluctuating, you may

need to modify the hyperparameters.

This process allows you to iteratively update the weights to minimize the
cost function, resulting in a linear regression line that best fits the given

data.

Examples

1. We have recorded the weekly average price of a stock over 6 consecutive days. Y
shows the weekly average price of the stock and x shows the number of the days. Try
to fit the best possible function ' f ' to establish the relationship between the number
of the day and conversion rate. (Applying Gradient descent) where f(x) =y=a+b *

X.

X 1 2 3 4 5 6

Y 10 14 18 22 25 33

The initial values of a & b are a = 4.9 & b = 4.401. The learning rate is mentioned as
.05. The error rate of a & b should be less than .01. Plot the predicted and actual data
in a graph.

Solution:

Given data:

X=x;=1,2,3,4,5,6

Y=1y; =10, 14, 18, 22, 25, 33

n==6

Initialization: a = 4.9 and b = 4.401

Learning rate o = 0.05

Maximum allowable error fora and b =0.01

The goal is to minimize the MSE (mean squared error) defined as

Professor, Department of Artificial Intelligence & Data Science,
Don Bosco Institute of Technology, Bangalore.

30

Q8b)Write the differences between SGD and mini batch gradient descent
methods.

Stochastic gradient descent (SGD) and mini-batch gradient descent are both
variants of the gradient descent algorithm, which is an optimization algorithm
used in machine learning. The main difference between them is the amount of
training data used in each iteration:

e Stochastic gradient descent (SGD

Uses a single example or a small subset of examples in each iteration. SGD is faster

than mini-batch gradient descent (MGD) and batch gradient descent (BGD) because it
doesn't need to wait for the entire dataset to calculate itself. SGD can be used for
larger datasets and is useful in machine learning, geophysics, and least mean squares
(LMS). However, due to its random nature, SGD may not provide the exact solution,
but rather the best approximate solution.

Mini-batch gradient descent (MGD)
Uses a fixed number of training examples, called a mini-batch, that is less than the
entire dataset. MGD helps to combine the advantages of both SGD and batch gradient
descent.

Batch Gradient Descent Stochastic Gradient Descent
Computes gradient using the Computes gradient using a single Training
whole Training sample sample
Slow and computationally Faster and less computationally expensive
expensive algorithm than Batch GD

Not suggested for huge training

Can be used for large training samples.
samples.

Deterministic in nature. Stochastic in nature.

Gives optimal solution given

. : Gives good solution but not optimal.
sufficient time to converge.

Batch Gradient Descent

No random shuffling of points are
required.

Can’t escape shallow local
minima easily.

Convergence is slow.

It updates the model parameters
only after processing the entire
training set.

The learning rate is fixed and
cannot be changed during
training.

It typically converges to the
global minimum for convex loss
functions.

It may suffer from overfitting if
the model is too complex for the
dataset.

Stochastic Gradient Descent

The data sample should be in a random
order, and this is why we want to shuffle the
training set for every epoch.

SGD can escape shallow local minima more
easily.

Reaches the convergence much faster.

It updates the parameters after each
individual data point.

The learning rate can be adjusted
dynamically.

It may converge to a local minimum or
saddle point.

It can help reduce overfitting by updating
the model parameters more frequently.

Q9b What is the difference between convex optimization and non convex optimization?

Convex optimization and non-convex optimization are both optimization
problems, but they differ in the number of optimal solutions they can have:

¢ Convex optimization

In convex optimization, there can only be one globally optimal solution, or it may be

possible to prove that there is no feasible solution. Convex optimization is easier and
more reliable because convex functions have a unique global minimum. Convex
problems can also be solved efficiently, even when they are very large. Examples of
convex optimization problems include multi-period processor speed scheduling,

minimum time optimal control, and grasp force optimization.

o Non-convex optimization
In non-convex optimization, the objective or some of the constraints are non-convex,
which can lead to multiple feasible regions and multiple locally optimal points within
each region. This can make optimization more challenging. Non-convex optimization

can still be a good choice if the optimization scheme doesn't get stuck in a local
minimum. It can also be used to implement more accurate state dynamics. However,
even simple-looking non-convex optimization problems with only ten variables can be
very challenging, and problems with hundreds of variables can be intractable.

S5

Page No.: TR

o Stechantic Goradlont Tes corft (SQQ

Al

—

%C“@O\cﬁlGﬂ_ {/3 UZX?—@\ Xy (Gmﬁ ey

JP\CQMG 7 SR |
...... g rCl\mQ*“) o

i

GH;JCY) nw=V\%, -~

Coms:

— — -

pel

N Qate \oom\ﬁ) Lo

deys Hnd ™M O¥3’Q@ tovses LY)

\e
' c1em
i'ﬂwc.u\“f@:\) kD QQC\H \>

T\(‘\\Ag we o

N
L@y LL.® e

-\ _
© b HRe wedct o pavorTraten

(;? “\'YY\‘SQD*

F\\m v Yo Q\“ﬂc& © T@C\’T OV

|-

Vc\(Cap 4 a«ﬂ\e\i

L_(@) 7’\03 P(B H/@)

K,\)\\G‘Q IﬂCQ axae ’\\SC\\VW\’YW?
Lap Uty M Oxe No\m\j %«3&5

\OV) (;U\V\C\\CV\ ch/ .
C)QBC‘S \re% Stocheahc ﬂTC\c\\@V\F l

a\eBCC? ~X |

TR

X

Page No.: CTMR

o C\\)Y\W%C\V\\C"ﬁ WG*‘@Q}‘))'\“Q\MC \r)/Obf‘\’*‘ﬁ&*

R R L P e

_é.@,m@)(........... CAD \mﬁ i-% guu Tocumn

)

10a)Stochastic Gradient Descent with Momentum

The first of the four algorithms | would like to introduce is called “Stochastic
Gradient Descent with Momentum”:

SGD SGD mit Impuls
Qj — 9_}' — EV;;J.ﬁ(Q) Vir1 € PUt + Vgﬁ(g)

93' «— 93‘ — €Vt
GL. 2 Stochastic GD (left), SGD with momentum (right).

On the left side in GL. 2 is the formula for the weight updates according to the
regular stochastic gradient descent (SGD for short). The equation on the right
represents the rule for the updates of the weights according to the SGD with
momentum. Momentum appears here as an additional term , which is
added to the regular update rule.

Intuitively speaking, by adding this impulse term, we let our gradient build
up some sort of velocity V during training. The velocity is the running sum of
the gradients weighted by p.

The parameter p can be thought of as friction that “slows” the velocity down a
bit. In general, velocity can be seen to increase with time. By using the
momentum term, saddle points and local minima become less

dangerous for the gradient. This is because the step size toward the global
minimum now depends not only on the slope of the loss function at the
current point, but also on the velocity that has built up over time.

For a physical representation of stochastic gradient descent with momentum,
imagine a ball rolling down a hill, increasing in velocity with time. If this ball
encounters an obstacle along the way, such as a hole or flat ground with no
slope, its built-up velocity v would give the ball enough force to roll over this

obstacle. In this case, the flat ground represents a saddle point and the hole
represents a local minima of a loss function.

Both algorithms try to reach the global minimum of the loss function, which is
in a 3D space. Momentum term results in the individual gradients having less
variance and thus less zig-zagging.

10a)i)ADAM

We take the best of Adagrad and RMS prop and combine these ideas into a
single algorithm called as ADAM.

The main part of this optimization algorithm consists of the following three
equations. These equations may seem complicated at first glance, but if you
look closely, you will see some similarities with the last three optimization
algorithms.

mo = 0,19 = 0

My < ,z/)’ym,t + (1 — ;ﬂ?l)v,gﬁ(g) Impuls

Vi1 < Bavy + (1 — B2)VeL(0)* | RMS Prop

Qj‘(—gj

3
- M¢+1, RMS Prop + Impuls
vV Vi1 + le™®

The first expression looks a bit like SGD with momentum. In this case, the
term m¢ would be the velocity and the term B1 would be the friction term. In
the case of ADAM, we refer to m:as the “first momentum.” On the other
hand, B1is just a hyperparameter. However, the difference with SGD with
momentum is the factor 1- B, multiplied by the current gradient.

The second expression can be considered as RMSProp, where we keep the
running sum of squared gradients. Also in this case, there is the factor 1- 3, ,
which is multiplied by the squared gradient.

The term vt in the equation is called the “second momentum” and is also just a
hyperparameter. The final update equation can be viewed as a combination
of RMSProp and SGD with momentum.

Disadvantages

At the very first time step t=0, the first and second pulse terms m0 and v0 are
set to zero. After the first update of the second momentum v, this term is still
very close to zero. When we update the weight parameters in the last
expression in GL. 5, we divide by a very small second momentum term v1. This
leads to a very large first update step.

To address the problem of large update steps happening at the beginning of
training, ADAM includes a correction clause:

M1 < Bimy + (1 — 1)V L(0) Impuls

Ves1 < Pove + (1 — B2)VoL(0)? | RMSProp

L .. 3
t+1 ot
1@ '31 Bias Korrektur
) t+1
T)i’,-}-l «— —
T
0.« 0 ‘
: B — T
J J t+1 RMS Prop + Impuls
vV Vi1 + le—> P P

After the initial update of the first and second pulses, we make an unbiased
estimate of these pulses by considering the current time step. With the so-

called bias correction, we obtain the corrected first and second impulses
respectively.

These correction cause the values of the first and second impulse to be higher
at the beginning of the training than without this correction. As a result, the
first update step of the neural network weight parameters does not become
too large. Thus, the training is not already messed up at the very beginning.

With the additional bias corrections, we obtain the complete form of the
ADAM optimizer.

9a)AdaGrad optimization strategy

Another optimization strategy | would like to introduce is called AdaGrad. The
idea behind AdaGrad is that you keep a running sum of squared gradients
during optimization. In this case, we don't have a momentum term, but an

expression , which is the sum of squared gradients up to the
time
SGD mit Impuls AdaGrad
Vpr1 ¢ pup + Vo L(0) go =0
0; < 0; — eviy Gri1 < Gt + Vo L(6)?
0; 0, —¢ VoL

VI +1le

When we optimize a weights ¢ , we divide the current gradient v,L by the

root of the term g +1. To understand the intuition behind AdaGrad, please
imagine a loss function in a two-dimensional space. In this space, the gradient
of the loss function increases very weakly in one direction and very
strongly in the other direction. If we now sum up the gradients along the
axis in which the gradients increase weakly, the squared sum of these
gradients becomes even smaller.

If during the update step we divide the current gradient v,L by a very small

sum of the squared gradients gt+1, the quotient becomes very high. For the
other axis, along which the gradients increase sharply, exactly the opposite is
true. This means that we speed up the updating process along the axis with
weak gradients by increasing these gradients along this axis. On the other
hand, we slow down the updates of the weights along the axis with large
gradients.

Disadvantages: there is a problem with this optimization algorithm.

If the training takes too long. Over time, this term the sum of squared
gradients would grow larger. When the current gradient is divided by this
large number, the update step for the weights becomes very small. It is as if
we were using a very low learning rate, which becomes even lower the
longer the training takes. In the worst case, we would get stuck at AdaGrad
and the training would go on forever.

9a) &10c)RMSProp

There is a slight modification of AdaGrad called “RMSProp”. This modification
is intended to solve the previously described problem that can occur with
AdaGrad. In RMSProp, the running sum of squared gradients g+1 is
maintained. However, instead of allowing this sum to increase continuously
over the training period, we allow the sum to decrease.

AdaGrad RMS Prop
g0 =10 go=0,a0~09
Giy1 — Gi + Ve L(0)? Gro1 - g+ (1 — a)VoL()?
0 6, — VoL VoL

€ —5 O, — 0. —¢
VOt+1 + le J J m+16—5

For RMSProp, the sum of squared gradients is multiplied by a decay rate a
and the current gradient — weighted by (1- a) — is added. The update step in
the case of RMSProp looks the same as in AdaGrad. Here we divide the
current gradient by the sum of the squared gradients to get the nice property

of speeding up the updating of the weights along one dimension and slowing
down the motion along the other.

Although SGD with momentum is able to find the global minimum faster, this
algorithm takes a much longer path that could be dangerous. This is because

a longer path means more potential saddle points and local minima of the
loss function that could lie along that path. RMSProp, on the other hand, goes
straight to the global minimum of the loss function without taking a detour.

1. Handling Non-stationary Objectives:

o RMSProp is particularly well-suited for non-stationary objectives (where the data
distribution changes over time), as it can adjust more dynamically to the changes
compared to Adagrad.

2. Empirical Performance:

o In practice, RMSProp often performs better than Adagrad on a variety of machine
learning tasks. It tends to converge faster and reach better solutions, especially
when dealing with deep learning models.

Overall, RMSProp is generally preferred for its ability to maintain a more stable and effective
learning rate throughout training, leading to better performance on many complex tasks.

oc) Describle the saddle point problem in machine learning.

Key Characteristics of a Saddle Point:

1. Zero Gradient:

. At asaddle point, the gradient of the cost function is zero. This
means that the partial derivatives with respect to each parameter

are all equal to zero.

2 Neither Minimum nor Maximum:

« Unlike a local minimum or maximum, a saddle point is a point
where the cost function neither reaches a minimum nor a

maximum value.

3. Flat in Some Dimensions, Steep in Others:

. The surface of the cost function is flat in certain dimensions (where
the partial derivatives are zero) and steep in others. It creates a
saddle-like shape.

4. Challenge for Optimization Algorithms:

. Optimization algorithms, such as gradient descent, can get stuck or
converge very slowly near saddle points because the gradient is
zero, and the algorithm may struggle to determine the right

direction to move.
10b) What is the best optimization algorithm in machine learning?

Stochastic Gradient Descent algorithm

	Q5c Explain the algorithm of sequential search
	What is Linear Search Algorithm?
	Algorithm for Linear Search Algorithm:
	How Does Linear Search Algorithm Work?
	Q6b) Write the algorithm of Fibonacci Search Algorithm
	Analysis

	Part I Mathematical Foundations
	7 Continuous Optimization
	7.1 Optimization Using Gradient Descent

	10a)Stochastic Gradient Descent with Momentum
	9a)AdaGrad optimization strategy
	9a) &10c)RMSProp

	pbs@ARFix@233:
	pbs@ARFix@234:

