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Microcontroller VTU solution
la
Figure shown below shows a typical embedded device based on ARM core. Each box represents a
feature or function.
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e ARM processor based embedded system hardware can be separated into the following four
main hardware components:

e The ARM processor: The ARM processor controls the embedded device. Different
versions of the ARM processor are available to suit the desired operating
characteristics.

e Controllers: Controllers coordinate important blocks of the system. Two commonly
found controllers are memory controller and interrupt controller.

e Peripherals: The peripherals provide all the input-output capability external to the chip
and responsible for the uniqueness of the embedded device.

e Bus: A bus is used to communicate between different parts of the device.

e ARM Bus Technology

e Embedded devices use an on-chip bus that is internal to the chip and that allows
different peripheral devices to be interconnected with an ARM core.

o There are two different classes of devices attached to the bus.

e The ARM processor core is a bus master—a logical device capable of
initiating a data transfer with another device across the same bus.
e Peripherals tend to be bus slaves—Ilogical devices capable only of responding
to a transfer request from a bus master device.
e AMBA Bus Protocol

e The Advanced Microcontroller Bus Architecture (AMBA) was introduced in 1996 and
has been widely adopted as the on-chip bus architecture used for ARM processors.

e The first AMBA buses introduced were the ARM System Bus (ASB) and the ARM
Peripheral Bus (APB).

e Later ARM introduced another bus design, called the ARM High Performance Bus
(AHB).

e AHB provides higher data throughput than ASB because it is based on a centralized
multiplexed bus scheme rather than the ASB bidirectional bus design.

¢ MEMORY

e Anembedded system has to have some form of memory to store and execute code.

e Figure below shows the memory trade-offs: the fastest memory cache is physically
located nearer the ARM processor core and the slowest secondary memory is set further
away.




e Generally the closer memory is to the processor core, the more it costs and the smaller
its capacity.
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PERIPHERALS
e Embedded systems that interact with the outside world need some form of peripheral
device.

e Controllers are specialized peripherals that implement higher levels of functionality
within the embedded system.

e Memory controller: Memory controllers connect different types of memory to the
processor bus.

o Interrupt controller: An interrupt controller provides a programmable governing
policy that allows software to determine which peripheral or device can interrupt the
processor at any specific time.
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Figurel: ARM core dataflow model

An ARM core as functional units connected by data buses, as shown in Figurel, where, the
arrows represent the flow of data, the lines represent the buses, and the boxes represent either
an operation unit or a storage area.

The instruction decoder translates instructions before they are executed.



2.

The ARM processor, like all RISC processors, uses a load - store architecture.

Load instructions copy data from memory to registers, and conversely the store instructions
copy data from registers to memory.

There are no data processing instructions that directly manipulate data in memory.

ARM instructions typically have two source registers, Rn and Rm, and a single destination
register, Rd. Source operands are read from the register file using the internal buses A and B,
respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values
Rn and Rm from the A and B buses and computes a result.

Data processing instructions write the result in Rd directly to the register file.

Load and store instructions use the ALU to generate an address to be held in the address register
and broadcast on the Address bus.

One important feature of the ARM is that register Rm alternatively can be preprocessed in the
barrel shifter before it enters the ALU.

After passing through the functional units, the result in Rd is written back to the register file
using the Result bus.

For load and store instructions the incrementer updates the address register before the core reads
or writes the next register value from or to the next sequential memory location.

Memory management:

Embedded systems often use multiple memory devices. It is usually necessary to have a method
to help organize these devices and protect the system from applications trying to make
appropriate accesses to hardware.

This is achieved with the assistance of memory management hardware.

ARM cores have three different types of memory management hardware- no extensions provide
no protection, a memory protection unit (MPU) providing limited protection and a memory
management unit (MMU) providing full protection.

o Nonprotected memory is fixed and provides very little flexibility. It normally used
for small, simple embedded systems that require no protection from rogue applications.

e Memory protection unit (MPU) employs a simple system that uses a limited number
of memory regions. These regions are controlled with a set of special coprocessor
registers, and each region is defined with specific access permission but don’t have a
complex memory map.

e Memory management unit (MMU)are the most comprehensive memory
management hardware available on the ARM. The MMU uses a set of translation tables
to provide fine-grained control over memory.

e These tables are stored in main memory and provide virtual to physical address
map as well as access permission. MMU designed for more sophisticated
system that supports multitasking.



A. Cache and Tightly Coupled Memory

The cache is a block of fast memory placed between main memory and the core. It allows for
more efficient fetches from some memory types. With a cache the processor core can run for
the majority of the time without having to wait for data from slow external memory.

ARM has two forms of cache. The first is found attached to the Von Neumann-style cores.
It combines both data and instruction into a single unified cache, as shown in Figure. For

simplicity, we have called the glue logic that connects the memory system to the AMBA bus
logic and conirol.
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A simplified Harvard architecture with TCMs.

By contrast, the second form, attached to the Harvard-style cores, has separate caches for
data and instruction.



A cache provides an overall increase in performance but at the expense of predictable
execution. But for real-time systems it is paramount that code execution is deterministic—
the time taken for loading and storing instructions or data must be predictable. This is
achieved using a form of memory called tightly coupled memory (TCM). TCM is fast SRAM
located close to the core and guarantees the clock cycles required to fetch instructions or
data—critical for real-time algorithms requiring deterministic behavior. TCMs appear as
memory in the address map and can be accessed as fast memory. An example of a processor
with TCMs is shown in Figure.

By combining both technologies, ARM processors can have both improved performance and
predictable real-time response. Figure shows an example core with a combination of caches
and TCMs.
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A simplified Harvard architecture with caches and TCMs.
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When an exception or interrupt occurs, the processor sets the pc to a specific memory
address. The address is within a special address range called the vector table. The entries in
the vector table are instructions that branch to specific routines designed to handle a
particular exception or interrupt.

The memory map address 0x00000000 1s reserved for the vector table, a set of 32-bit words.
On some processors the vector table can be optionally located at a higher address in memory
(starting at the offset Ox{Tff0000).

When an exception or interrupt occurs, the processor suspends normal execution and starts
loading instructions from the exception vector table (see Table 2.6). Each vector table entry
contains a form of branch instruction pointing to the start of a specific routine:

m Reset vector is the location of the first instruction executed by the processor when power is
applied. This instruction branches to the initialization code. i)

m Undefined instruction vector is used when the processor cannot decode an instruction. i)

m Software interrupt vector is called when you execute a SWI instruction. The SWI
ipinstruction is frequently used as the mechanism to invoke an operating system routine. g/

m Prefetch abort vector occurs when the processor attempts to fetch an instruction from an
address without the correct access permissions. The actual abort occurs in the decode stage.

Lo
SEP}

m Data abort vector is similar to a prefetch abort but is raised when an instruction attempts to
access data memory without the correct access permissions. sk,

m Interrupt request vector is used by external hardware to interrupt the normal execution
flow of the processor. It can only be raised if IRQs are not masked in the ¢psr.

W Fast interrupt request vector is similar to the interrupt request but is reserved for hardware
requiring faster response times. It can only be raised if FIQs are not masked in the ¢psr.

The vector table.

Exception/interrupt Shorthand Address High address
Reset RESET 0x00000000 0xffff0000
Undefined instruction UNDEF 0x00000004 Oxffff0004
Software interrupt SWI 0x00000008 Oxffff0008 !
Prefetch abort PABT 0x0000000c Oxffff000c
Data abort DABT 0x00000010 Oxffff0010
Reserved — 0x00000014 Oxffff0014
Interrupt request IRQ 0x00000018 Oxffff0018
Fast interrupt request FIQ 0x0000001c Oxffffo0lc

3.a
Data Processing Instructions
e The data processing instructions manipulate data within registers. They are move
instructions, arithmetic instructions, logical instructions, compare instructions and
multiply instructions.




o Most data processing instructions can process one of their operands using the barrel
shifter.
o If Sissuffixed on a data processing instruction, then it updates the flags in the cpsr.
MOVE INSTRUCTIONS:
o It copies N into a destination register Rd, where N is a register or immediate value.
This instruction is useful for setting initial values and transferring data between

registers.
Syntax: <instruction> {<cond>}{S} Rd, N
MoV Move a 32-bit value into a register Rd=N
MVN move the NOT of the 32-bit value into a register Rd =~N

e In the example shown below, the MOV instruction takes the contents of register r5
and copies them into register r7.

PRE rb =95
r7 =8
MOV r7, r5 : let r7 = rb
POST r5 =5
vl =3
3.b
i) _
J CMIN - Compare with Negated Value
CMVMIN RO, R1 ; RO+ R1

It performs RO + R1, but does not stores result of it
J It is just affecting flag for comparison, here ‘S’ is not required
to change the status.

i) ) o
— MLA{<cond>}{S} Rd,Rm,Rs,Rn
MLA r4,r3,r2,r1; rd:=((r3*r2)+rl);z,.q
i)

Syntax: MRS{<cond>} Rd,<cpsr|spsr>

MRS I copy program status register to a general-purpose register I Rd = psr
iv)
Syntax: <instruction>{<cond>}{S} Rd, Rn, N

BIC logical bit clear (AND NOT) Rd = Rn& ~N

- BIC — AND with Compliment
BIC RO, Ra, R2 ;RO «— R1 AND R2Z
- It will load RO with logical AND operation of R1 and R2.
- It will not update flag, to get result with updated flag use BICS.

v)



- For word and unsigned byte accesses, offset can be:

— An unsigned 12-bit immediate value (i.e. 0 - 4095 bytes)
ILDR 0, [rl, #8]

— A register, optionally shifted by an immediate value
ILDR 0, [rl, r2]
IDR r0, [rl, r2, LSL#2]

=  This can be either added or subtracted from the base register:
LDR r0, [rl, #-81
ILDR r0O, [rl, -r2, LSL#2]
. For halfword and signed halfword / byte, offset can be:
— An unsigned 8 bit immediate value (i.e. O - 255 bytes)
— A register (unshifted)
- Choice of pre-indexed or post-indexed addressing

- Choice of whether to update the base pointer (pre-indexed only)
ILDR r0, [rl, #-8]1!

4.a
i)
Stack Operation

* A stack is an example of a data structure, Stacks typically used for temporary

storage of data.
¢ Operations on Stack :
Push: Place cards on the top of the stack

Pop: Remove cards from the top of the stack

Stack Operation

* To implement a stack data structure we need
* An area of memory to store the data items
» A Stack Pointer (SP) register to point to the top of the stack
* stack growth convention

* Some well defined operations: initialize, push, pop



Stack Operation

An Ascending stack grows upwards. It starts from a low memory address and, as

items are pushed onto it, progresses to higher memory addresses.

A Descending stack grows downwards. It starts from a high memory address, and

as items are pushed onto it, progresses to lower memory addresses.

In an Empty stack, the stack pointers points to the next free (empty) location on
the stack, i.e. the place where the next item to be pushed onto the stack will be

stored.

In a Full stack, the stack pointer points to the topmost item in the stack, i.e. the

location of the last item to be pushed onto the stack.

Stack in ARM

ARM does not support any hardware stack.

Software stack can be implemented using the LDM and STM family of

instructions.
The load and store multiple instructions can update the base register.
For stack operations, the base register is usually the stack pointer, sp.

This means that we can use these instructions to implement push and pop

operations for any number of registers in a single instruction.



SWAP INSTRUCTION ...

* Syntax:
SWP{B}{<cond>} Rd,Rm,[Rn]
L
SWP | swap a word betweoen memory and a register | trp < mem32/Rn)
mem32/Rn) « Rm
Rd = tmp
SWPB | swap a byte betwoen memory and a register tp ~ memS/Rn)
memS/Rn/ ~ Rm
Rd » tep
SWAP INSTRUCTION .....

* Examplel: Load a word from memory into register RO and
overwrite the memory with register R1.

PRE
mem32[0x9000] = 0x12345678
r0 = 0x00000000
rl1=0x11112222
r2 = 0x00009000
SWPr0, rl, [r2] &

POST
mem32[0x9000)] = 0x11112222
r0 = O0x12345678
rl =0x11112222
r2 = 0x00009000

4.b



Control Flow Instructions

* These instructions change the order of instruction execution or to jump from one
memory location to other,

* Types of conditional flow instructions:
« Unconditional branch
+ (Conditional branch

* Branch and Link

Branching Instructions

* In ARM there are four important branch instructions available,

e B Branch

* BL Branch with link

* BX Branch Exchange

* BLX Branch Exchange with link

Branching Instructions - B and BL

Instruction Format:

* Branch: B{<cond>} Label
* Branch with Link: BL{<cond>} subroutine_label
B - Branch

PC = <address> or <label>
BL - Branch with Link
R 14 = address of next instruction, PC = <address>
Thus to return from a linked branch
MOV ri5r14 or
MOV pe,ir



* B Instruction :
Back : MOV ro,rl
ADD ro,rl1,r2
SUB r3,ro,r1
B Back
* BL Instruction
CMP r2,#10
BL Next
ADDEQ r2,r3,r4
Next: AND r4,r5,r6

MOV PC,1r
- \
Branch Examples
* Unconditional jump * (Call a subroutine
B LABEL BL SUB
LABEL .. SuUB
* Conditional jump ° MOV PC,r14
MOV r0,#10 Call a Conditional subroutine
Loop CMP rO,#5
SUBS r0,#1 BLLT SUB1 ;if r0<s,
BNE Loop ;call subl

BLGE SUB2 ;else call sub2 Y




The compiler attempts to allocate a processor
register to each local variable you use in a C function.
It will try to use the same register for different local
variables if the use of the variables do not overlap.
When there are more local variables than available
registers, the compiler stores the excess variables on
the processor stack. These variables are called spilled
or swapped out variables since they are written out
to memory (in a similar way virtual memory is
swapped out to disk).

Spilled variables are slow to access compared to
variables allocated to registers.

To implement a function efficiently, you
need to

= minimize the number of spilled variables

= ensure that the most importantand
frequently accessed variables are stored in
registers

Alternate

Register  register
number  names ATPCS register usage

r0 al Argument registers. These hold the first four function
rl a2 arguments on a function call and the return value on a
r2 a3 function return. A function may corrupt these registers and
r3 ad use them as general scratch registers within the function.
rd vl General variable registers. The function must preserve the callee
r5 v2 values of these registers.
ré v3
r7 vd
r8 v5
r9 v6 sb General variable register. The function must preserve the callee

value of this register except when compiling for read-write
position independence (RWPI). Then r9 holds the static base
address. This is the address of the read-write data.

rio v7 sl General variable register. The function must preserve the callee
value of this register except when compiling with stack limit
checking. Then r10holds the stack limit address.

rll v8 fp General variable register. The function must preserve the callee
value of this register except when compiling using a frame
pointer. Only old versions of armcc use a frame pointer.

ri2 ip A general scratch register that the function can corrupt. It is
useful as a scratch register for function veneers or other
intraprocedure call requirements.

rl3 sp The stack pointer, pointing to the full descending stack.
ri4 Ir The link register. On a function call this holds the return
address.

rls pc The program counter.



AREA SUM10, CODE, READONLY
EXPORT __main

__main

ENTRY

MOV R1, #0X01

MOV R2, #0

LOOP ADD R2, R2,R1

ADD R1, R1, #1

CMP R1, #0X0B

BNE LOOP

LDR RO, = Result

STRB R2, [RO]

STOP B STOP

AREA data2, DATA, READWRITE
Result DCB 0x0

END

Output:

R1=01

R2=00

R2=37

Result is 55 but in the hexadecimal it is 37 so it will gives output as 37

5.b
Loop unrolling

only unroll loops that are important for the overall
performance of the application. Otherwise unrolling
will increase the code size with little performance

benefit. Unrolling may even reduce performance by
evicting more important code from the cache.

= What if the number of loop iterations is not a
multiple of the unroll amount? For

example,
what if N is not a multiple of four in checksum_v9?

try to arrange it so that array sizes are multiples of your
unroll amount. If this isn’t possible, then you must add
extra code to take care of the leftover cases.

This increases the code size a little but keeps the
performance high.



6.a

for (i=N&3; i!=0; i--)
{

sum += *(data++);

}

return sum;

}

The second for loop handles the remaining cases when
N is not a multiple of four. Note

that both N/4 and N&3 can be zero, so we can’t use
do-while loops.

mUse Ioo‘Bs that count down to_'zero. Then the compiler
does not need to allocate a register to hold the

1f:erm|nat|0n value, and the comparison with zero is
ree.

= Use unsigned loop counters by default and the
continuation condition i!=0 rather than i>0. This will
ensure that the loop overhead is only two instructions.

i) Pointer Aliasing



% Two pointers are said to alias when they point to the same
address.

¢ If you write to one pointer, it will affect the value you read
from the other pointer.

< In a function, the compiler often doesn’t know which pointers
can alias and which pointers can’t. The compiler must be very
pessimistic and assume that any write to a pointer may affect
the value read from any other pointer, which can significantly
reduce code efficiency.

Note that the compiler loads from step twice.

Usually a compiler optimization called common subexpression
elimination would kick in so that *step was only evaluated once,
and the value reused for the second occurrence.

However, the compiler can’t use this optimization here. The
pointers timerl and step might alias one another.

In other words, the compiler cannot be sure that the write to
timerl doesn’t affect the read from step.

In this case the second value of *step is different from the first and
has the value *timerl.

This forces the compiler to insert an extra load instruction.

Structure

typedef struct {int step;} State;

typedef struct {int timer1, timer2;} Timers;
void timers_v2(State *state, Timers *timers)
{

timers->timerl += state->step;

timers->timer2 += state->step;

}



Portabil Ity |Ssues-char type

On the ARM, char is unsigned rather than signed as for many other
processors.

A common problem concerns loops that use a char loop counter i and

the continuation condition i = 0, they become infinite loops. In this
situation, armcc produces a warning of unsigned comparison with zero.

You should either use a compiler option to make char signed or change
loop counters to type int.

Portability Issues-int type

Some older architectures use a 16-bit int.

May cause problems when moving to ARM’s 32-bit int type although
this is rare nowadays.

Expressions are promoted to an int type before evaluation.
Therefore if i = -0x1000,

the expression i == OxF00O is true on a 16-bit machine

but false on a 32- bit machine.

Portabil |ty |SSU@S-unaligned data pointers

Some processors support the loading of short and int typed values
from unaligned addresses.

A C program may manipulate pointers directly so that they become
unaligned.

for example, by casting a char * to an int *.
ARM architectures up to ARMVS5TE do not support unaligned pointers.

To detect them, run the program on an ARM with an alignment
checking trap.

For example, you can configure the ARM720T to data abort on an
unaligned access.



Portabil ity ISsues-endian assumptions

C code may make assumptions about the endianness of a memory
system, for example, by casting a char * to an int *.

If you configure the ARM for the same endianness the code is
expecting, then there is no issue.

Otherwise, you must remove endian-dependent code sequences and
replace them by endian-independent ones.

Porta blllty |SSUeS-Function prototyping

The armcc compiler passes arguments narrow, that is, reduced
to the range of the argument type.

If functions are not prototyped correctly, then the function may return
the wrong answer.

Other compilers that pass arguments wide may give the correct answer
even if the function prototype is incorrect.

Always use ANSI prototypes.
Portability Issues-use of bit-fields

The layout of bits within a bit-field is implementation and endian

dependent. If C code assumes that bits are laid out in a certain order,
then the code is not portable.

Portabil |ty |SSUES-Use of enumerations

Although enum is portable, different compilers allocate different
numbers of bytes to an enum.
The gcc compiler will always allocate four bytes to an enum

type. The armcc compiler will only allocate one byte if the enum takes
only eight-bit values.

Therefore you can’t cross-link code and libraries between different
compilers if you use enums in an API structure.



6.b

Portabi |Ity |SSUES-Inline assembly

Using inline assembly in C code reduces portability between
architectures.

You should separate any inline assembly into small inlined functions
that can easily be replaced.

It is also useful to supply reference, plain C implementations

of these functions that can be used on other architectures, where this
is possible.

Porta blllt\/ |SSUES-The volatile keyword

Use the volatile keyword on the type definitions of ARM
memory-mapped peripheral locations.

This keyword prevents the compiler from optimizing away the memory
access.

It also ensures that the compiler generates a data access of the correct
type.

For example, if you define a memory location as a volatile short

type, then the compiler will access it using 16-bit load and store
instructions LDRSH and STRH.



Function Calls

ARM Procedure Call Standard (APCS): how to pass function arguments
and return values in ARM registers.

ARM-Thumb Procedure Call Standard (ATPCS):covers ARM and Thumb
interworking as well.

Calling Functions Efficiently

= Try to restrict functions to four arguments. This will make them more
efficient to call. Use structures to group related arguments and pass
structure pointers instead of multiple arguments.

= Define small functions in the same source file and before the
functions that call them.

The compiler can then optimize the function call or inline the small
function.

= Critical functions can be inlined using the __inline keyword.

typedef struct {

char *Q start; /* Queue buffer start address */

char *Q_end; /* Queue buffer end address */

char *Q ptr; /* Current queue pointer position */
| Queue;

void queue bytes v2(Queue *queue, char *data, unsigned int N)
[

char *Q ptr = queue->{ ptr;

char *Q_end = queue->( end,

do
[

*(0_ptr++) = *(data++);

if (Q ptr == Q_end)
{
Q_ptr = gueue->{ start;
}
} while (--N);
queue->( ptr = { ptr;



7.2

« Modes of operation

*ARM processor has 7 modes of operation.

*Switching between modes can be done manually
through modifying the mode bits in the CPSR register.

*Most application programs execute in user mode

*Non user modes (called privileged modes) are entered
to serve interrupts or exceptions

*The system mode is special mode for accessing protected
resources. It don't use registers used by exception hanlders, so
it can‘t be corrupted by any exception handler error!!!

« What is an exception?

An exception is any condition that needs to halt
normal execution of the instructions

« Examples
*Resetting ARM core
Failure of fetching instructions
*HWI
SWI



Idr pc, [pc, #_IRQ_handler_offset]

7.b

« Exceptions and modes

Each exception causes the ARM core to enter a specific

mode.

Exception Mode

Purpose

Fast Interrupt Request F1Q

Fast interrupt handling

Interrupt Request IRQ

Normal interrupt handling

SWI and RESET SVC

Protected mode for OS

Pre-fetch or data abort ABT

Memory protection handling

Undefined Instruction UND

SW emulation of HW coprocessors

= Vector table

It is a table of addresses that the ARM core branches to
when an exception is raised and there is always branching
instructions that direct the core to the ISR.

/)

At this place in memory, we
find a branching instruction

Address Exception Mode on entry
0x00000000 | Reset Supervisor
0x00000004 | Undefined instruction | Undefined
0x00000008 | Software interrupt Supervisor
0x0000000C | Abort (prefetch) Abort
0x00000010 | Abort (data) Abort
0x00000014 | Reserved Reserved
0x00000018 | IRQ IRQ
0x0000001C | FIQ FiQ

in
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« EXxception priorities

Reset 1 1 1

Data Abort 2 1

FIQ 3 1 1

IRQ 4 1

Prefetch abort 5 1

SWi 6 1 -
{ Undefined instruction | 6 1

1

=
= Link Register Offset
This register is used to return the PC to the appropriate place in

the interrupted task since this is not always the old PC value.lt
is modified depending on the type of exception.

Exception Returning
Address

Reset None

Data Abort LR-8

>| FIQ, IRQ, prefetch Abort LR-4
SWI, Undefined Instruction LR

18
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« Entering exception handler

M

2.
3.
4

Save the address of the next instruction in
the appropriate Link Register LR.

Copy CPSR to the SPSR of new mode.
Change the mode by modifying bits in CPSR.
Fetch next instruction from the vector table.

« Leaving exception handler

il
2,

3.

8.a

Move the Link Register LR (minus an offset) to the PC.

Copy SPSR back to CPSR, this will automatically

changes the mode back to the previous one.

Clear the interrupt disable flags (if they were set).

19
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The firmware is the deeply embedded, low-level
software that provides an interface between the
hardware and the application/operating system level
software.

It resides in the ROM and executes when power is
applied to the embedded hardware system.

Firmware can remain active after system initialization
and supports basic system operations.

The choice of which firmware to use for a particular
ARM-based system depends upon the specific
application, which can range from loading and executing
a sophisticated operating system to simply relinquishing
control to a small microkernel.

Stage Features

Set up target platform  Program the hardware system registers
Platform identification
Diagnostics
Debug interface
Command line interpreter

Abstract the hardware = Hardware Abstraction Layer
Device driver

Load a bootable image  Basic filing system

Relinquish control Alter the pcto point into the new image

» 'RedBoot is a firmware tool developed by Red

-

Hat. It is provided under an open source
license with no royalties or up front fees.
RedBoot is designed to execute on different
CPUs (for instance, ARM, MIPS, SH, and so
on).

It provides both debug capability through
GNU Debugger (GDB), as well as a
bootloader.

I_he RedBoot software core is based on a HAL.
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9.a

» Communication—configuration is over serial or Ethernet.
= RedBoot supports a range of network standards, such as
bootp, telnet, and tftp.

= Flash ROM memory management—provides a set of filing
system routines that can

download, update, and erase images in flash ROM.

= In addition, the images can either be compressed or
uncompressed.

= Full operating system support—supports the loading and
booting of Embedded Linux,

Red Hat eCos, and many other popular operating systems. For
Embedded Linux,

RedBoot supports the ability to define parameters that are
passed directly to the kernel upon booting.

Enabling an IRQ/FIQ Disabling an IRQ/FIQ
Interrupt: Interrupt:
MRS r1, cpsr MRS 1, cpsr
BICr1, r1, #0x80/0x40 ORR  r1, r1, #0x80/0x40
MSR cpsr_c, r1 MSR cpsr_c, r1
cpsrvalue  1RQ FIQ
Pre nzevqIFt_SVC nzevgjlFt_SVC
Code enable_irg enable_fig
MRS rl, cpsr MRS rl, cpsr
BIC rl, rl, #0x80 BIC rl, rl, #0x40
MSR cpsr ¢, rl MSR cpsr ¢, rl
Post nzevqjiFt_SVC nzevqjlft_SVC
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Cache Architecture
ARM uses two bus architectures in its cached cores, the Von Neumann and the
Harvard.

The Von Neumann and Harvard bus architectures differ in the separation of the
instruction and data paths between the core and memory.

A different cache design is used to support the two architectures.

Von Neumann architecture

In processor cores using the Von Neumann architecture, there is a single cache
used for instruction and data.

This type of cache is known as a unified cache.

A unified cache memory contains both instruction and data values.

Harvard architecture

The Harvard architecture has separate instruction and data buses to improve
overall system performance, but supporting the two buses requires two caches.

In processor cores using the Harvard architecture, there are two caches: an
instruction cache (l-cache) and a data cache (D-cache).

This type of cache is known as a split cache.

In a split cache, instructions are stored in the instruction cache and data values
are stored in the data cache.



Cache Architecture

The two main elements of a cache are the cache controller and the cache
memory.

The cache memory is a dedicated memory array accessed in units called cache
lines.

The cache controller uses different portions of the address issued by the
processor during a memory request to select parts of cache memory.

i d

vl

Cache Architecture

It has three main parts:a directory store, a data section, and statu information.

All three parts of the cache memory are present for each cache line.

The cache must know where the information stored in a cache line originates from in main
memory. It uses a directory store to hold the address identifying where the cache line was
copied from main memory. The directory entry is known as a cache-tag.

A cache memory must also store the data read from main memory. This information is held
in the data section.

The size of a cache is defined as the actual code or data the cache can store from main
memory. Not included in the cache size is the cache memory required to support
cache-tags or status bits.

Status bit

Status bits

Two common status bits are the valid bit and dirty bit.

A valid bit marks a cache line as active, meaning it contains live data
originally taken from main memory and is currently available to the processor
core on demand.

A dirty bit defines whether or not a cache line contains data that is different
from the value it represents in main memory.
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Cache Controller

The cache controller is hardware that copies code or data from main memory to cache
memory automatically.

It performs this task automatically to conceal cache operation from the software it supports.
The same application software can run unaltered on systems with and without a cache.
The cache controller intercepts read and write memory requests before passing them on to
the memory controller. It processes a request by dividing the address of the request into
three fields, the tag field, the set index field, and the data index field.

The controller uses the set index portion of the address to locate the cache line within the
cache memory that might hold the requested code or data. This cache line contains the
cache-tag and status bits, which the controller uses to determine the actual data stored
there.

The controller then checks the valid bit to determine if the cache line is active, and
compares the cache-tag to the tag field of the requested address.

If both the status check and comparison succeed, it is a cache hit.

If either the status check or comparison fails, it is a cache miss.

On a cache miss, the controller copies an entire cache line from main memory to cache
memory and provides the requested code or data to the processor.

The copying of a cache line from main memory to cache memory is known as a cache line
fill.

On a cache hit, the controller supplies the code or data directly from cache memory to the
processor.

To do this it moves to the next step, which is to use the data index field of the address
request to select the actual code or data in the cache line and provide it to the processor.
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The Relationship between Cache and Main Memory

Main memaory

OxFFFFFFFF
OxFFFFF824
OxFFFFFO00
OxXFFFFE824 4 KB cache memory
OxFFFFEDODO {direct mapped)
OxFFF

\ﬁ - Cache-tag Iv Id | word3] word?2 |wnrr_ll | wiord() ox220

0x00003000
0x00002824
0x00002000
O=x00001824 s
0x00001000
4 KB O0x00000824 r_.--._}
X | 8. .2
set index
4

0x00000000
T I XX XX 4
tag
31 12 11 3 L]

data index
Address issued by processor core

4 -

Portions of main memory are temporarily stored in cache memory.

The simplest form of cache, known as a direct-mapped cache.

In a direct-mapped cache each addressed location in main memory maps to a single location in
cache memory. Since main memory is much larger than cache memory, there are many addresses
in main memory that map to the same single location in cache memory.

A direct-mapped cache is a simple solution, but there is a design cost inherent in having a single
location available to store a value from main memory.

Direct-mapped caches are subject to high levels of thrashing—a software battle for the same
location in cache memaory.

The result of thrashing is the repeated loading and eviction of a cache line.
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10.b

Set Associativity

Some caches include an additional design feature to reduce the frequency ol
thrashing.

This structural design feature is a change that divides the cache memory intc
smaller equal units, called ways.

The set index now addresses more than one cache line—it points to one
cache line in each way.

Instead of one way of 256 lines, the cache has four ways of 64 lines.

The four cache lines with the same set index are said to be in the same set,
which is the origin of the name “set index.”

The set of cache lines pointed to by the set index are set associative.

A data or code block from main memory can be allocated to any of the four
ways in a set without affecting program behavior; in other words the storing of
data in cache lines within a set does not affect program execution.

Two sequential blocks from main memory can be stored as cache lines in the
same way or two different ways.

The important thing to note is that the data or code blocks from a specific
location in main memory can be stored in any cache line that is a member of
a set.

The placement of values within a set is exclusive to prevent the same code or
data block from simultaneously occupying two cache lines in a set.

The bit field for the tag is now two bits larger, and the set index bit field is two bits
smaller.

This means four million main memory addresses now map to one set of four cache
lines, instead of one million addresses mapping to one location.

The size of the area of main memory that maps te cache is now 1 KB instead of 4 KB.
This means that the likelihood of mapping cache line data blocks to the same set is
now four times higher. This is offset by the fact that a cache line is one fourth less
likely to be evicted.

The incidence of thrashing would quickly settle down as routine A, routine B, and the
data array would establish unique places in the four available locations in a set.
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Cache Line Replacement Policies

On a cache miss, the cache controller must select a cache line from the
available set in cache memory to store the new information from main
memory.

The cache line selected for replacement is known as a victim.

If the victim contains valid, dirty data, the controller must write the dirty data
from the cache memory to main memory before it copies new data into the
victim cache line.

The process of selecting and replacing a victim cache line is known a
eviction.

The strategy implemented in a cache controller to select the next victim is
called its replacement policy.

The replacement policy selects a cache line from the available associative
member set; that is, it selects the way to use in the next cache line
replacement.

To summarize the overall process, the set index selects the set of cache lines
available in the ways, and the replacement policy selects the specific cache
line from the set to replace.



