

Microcontroller VTU solution

1.a
Figure shown below shows a typical embedded device based on ARM core. Each box represents a

feature or function.

• ARM processor based embedded system hardware can be separated into the following four

main hardware components:

• The ARM processor: The ARM processor controls the embedded device. Different

versions of the ARM processor are available to suit the desired operating

characteristics.

• Controllers: Controllers coordinate important blocks of the system. Two commonly

found controllers are memory controller and interrupt controller.

• Peripherals: The peripherals provide all the input-output capability external to the chip

and responsible for the uniqueness of the embedded device.

• Bus: A bus is used to communicate between different parts of the device.

• ARM Bus Technology

• Embedded devices use an on-chip bus that is internal to the chip and that allows

different peripheral devices to be interconnected with an ARM core.

• There are two different classes of devices attached to the bus.

• The ARM processor core is a bus master—a logical device capable of

initiating a data transfer with another device across the same bus.

• Peripherals tend to be bus slaves—logical devices capable only of responding

to a transfer request from a bus master device.

• AMBA Bus Protocol

• The Advanced Microcontroller Bus Architecture (AMBA) was introduced in 1996 and

has been widely adopted as the on-chip bus architecture used for ARM processors.

• The first AMBA buses introduced were the ARM System Bus (ASB) and the ARM

Peripheral Bus (APB).

• Later ARM introduced another bus design, called the ARM High Performance Bus

(AHB).

• AHB provides higher data throughput than ASB because it is based on a centralized

multiplexed bus scheme rather than the ASB bidirectional bus design.

• MEMORY

• An embedded system has to have some form of memory to store and execute code.

• Figure below shows the memory trade-offs: the fastest memory cache is physically

located nearer the ARM processor core and the slowest secondary memory is set further

away.

• Generally the closer memory is to the processor core, the more it costs and the smaller

its capacity.

• PERIPHERALS

• Embedded systems that interact with the outside world need some form of peripheral

device.

• Controllers are specialized peripherals that implement higher levels of functionality

within the embedded system.

• Memory controller: Memory controllers connect different types of memory to the

processor bus.

• Interrupt controller: An interrupt controller provides a programmable governing

policy that allows software to determine which peripheral or device can interrupt the

processor at any specific time.

1.b

Figure1: ARM core dataflow model

• An ARM core as functional units connected by data buses, as shown in Figure1, where, the

arrows represent the flow of data, the lines represent the buses, and the boxes represent either

an operation unit or a storage area.

• The instruction decoder translates instructions before they are executed.

• The ARM processor, like all RISC processors, uses a load - store architecture.

• Load instructions copy data from memory to registers, and conversely the store instructions

copy data from registers to memory.

• There are no data processing instructions that directly manipulate data in memory.

• ARM instructions typically have two source registers, Rn and Rm, and a single destination

register, Rd. Source operands are read from the register file using the internal buses A and B,

respectively.

• The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values

Rn and Rm from the A and B buses and computes a result.

• Data processing instructions write the result in Rd directly to the register file.

• Load and store instructions use the ALU to generate an address to be held in the address register

and broadcast on the Address bus.

• One important feature of the ARM is that register Rm alternatively can be preprocessed in the

barrel shifter before it enters the ALU.

• After passing through the functional units, the result in Rd is written back to the register file

using the Result bus.

• For load and store instructions the incrementer updates the address register before the core reads

or writes the next register value from or to the next sequential memory location.

2.a
Memory management:

• Embedded systems often use multiple memory devices. It is usually necessary to have a method

to help organize these devices and protect the system from applications trying to make

appropriate accesses to hardware.

• This is achieved with the assistance of memory management hardware.

• ARM cores have three different types of memory management hardware- no extensions provide

no protection, a memory protection unit (MPU) providing limited protection and a memory

management unit (MMU) providing full protection.

• Nonprotected memory is fixed and provides very little flexibility. It normally used

for small, simple embedded systems that require no protection from rogue applications.

• Memory protection unit (MPU) employs a simple system that uses a limited number

of memory regions. These regions are controlled with a set of special coprocessor

registers, and each region is defined with specific access permission but don’t have a

complex memory map.

• Memory management unit (MMU)are the most comprehensive memory

management hardware available on the ARM. The MMU uses a set of translation tables

to provide fine-grained control over memory.

• These tables are stored in main memory and provide virtual to physical address

map as well as access permission. MMU designed for more sophisticated

system that supports multitasking.

2.b

3.a

Data Processing Instructions

• The data processing instructions manipulate data within registers. They are move

instructions, arithmetic instructions, logical instructions, compare instructions and

multiply instructions.

• Most data processing instructions can process one of their operands using the barrel

shifter.

• If S is suffixed on a data processing instruction, then it updates the flags in the cpsr.

MOVE INSTRUCTIONS:

• It copies N into a destination register Rd, where N is a register or immediate value.

This instruction is useful for setting initial values and transferring data between

registers.

Syntax: <instruction> {<cond>} {S} Rd, N

• In the example shown below, the MOV instruction takes the contents of register r5

and copies them into register r7.

3.b

i)

ii)

iii)

iv)

v)

4.a

i)

ii)

4.b

5.a

AREA SUM10, CODE, READONLY
EXPORT __main
__main
ENTRY
MOV R1, #0X01
MOV R2, #0

LOOP ADD R2, R2, R1
ADD R1, R1, #1
CMP R1, #0X0B
BNE LOOP
LDR R0, = Result
STRB R2, [R0]
STOP B STOP
AREA data2, DATA, READWRITE
Result DCB 0x0
END
Output:
R1=01
R2=00
R2=37
Result is 55 but in the hexadecimal it is 37 so it will gives output as 37

5.b
Loop unrolling

6.a
i) Pointer Aliasing

ii)

6.b

7.a

7.b

8.a

8.b

9.a

9.b

10.a

10.b

