22MBABA403

VTU 4th Semester MBA Degree Examination June/July2024

Machine Learning

Solution

Г

Т

Q1.a.	 What is Machine learning? Explain with examples Machine Learning (ML) is a branch of artificial intelligence (AI) that enables computers to learn and make decisions or predictions based on data, without being explicitly programmed. Ex:1 Spam Detection: Email providers use ML models to classify emails as "spam" or "not spam" based on features like email content, sender address, and more. Ex2: Predicting House Prices: Models are trained on historical data (e.g., square footage, location) to predict property prices. Discuss Computer Hardware Architecture for ML Computer hardware architecture refers to the design and organization of a computer's physical components and their interconnections. It determines how a computer processes data, stores information, and interacts with other devices. The architecture is typically divided into the following key components: 		
		the following key components.	
С	Discuss Prog	ramming language for machine learning	
	The most po	pular programming languages for machi i	ne learning (ML) include:
	1. Pyth		
	C	• Why: Python is the dominant langua	,
		libraries, and active community supp	ort.
	C	Libraries/Frameworks:	
		TensorFlow	
		PyTorchScikit-learn	
		Scikit-learnKeras	
		 NumPy 	
		 Pandas 	
		 Matplotlib 	
		 Use Case: Prototyping models, produ 	uction-ready ML systems, and data
		analysis.	
2. a	Distinguish b	etween supervised and unsupervised lea	arning in Machine learning.
		nd unsupervised learning are two prima	ry types of machine learning
	techniques. I	Here's a breakdown of their differences:	
	Aspect	Supervised Learning	Unsupervised Learning
	Definition	Learning from labeled data where input-output pairs are provided.	Learning from unlabeled data to discover patterns or structure.
	Input Data	Requires labeled data (input features with corresponding labels).	Works with unlabeled data (no labels, only input features).
	Goal	Predict outcomes or classify data into predefined categories.	Explore data to find hidden patterns or groupings.
	Example Tasks	Classification, regression.	Clustering, dimensionality reduction.

	Output	Predicts labels for new data.	Groups data or identifies relationships			
		Linear regression, logistic regression,	without explicit labels. K-means, hierarchical clustering, PCA,			
	Algorithms	decision trees, etc.	DBSCAN, etc.			
	-		the model with correct answers. allowing the model to find patterns on			
b	-	wo regression models used in ML with a commonly used regression models in r				
	1. Linear Reg Description:	ression				
	Linear regress more indeper continuous va actual values.	ndent variables (features) using a linear alue by minimizing the sum of squared				
	Hous foota Stock indica	indicators.				
	2. Decision Tr	2. Decision Tree Regression				
	structure. Ead within each g	ch leaf node represents a predicted valu roup.	based on feature values, creating a tree ue, and the splits aim to minimize error			
	 Applications: Energy Consumption Prediction: Predicting energy usage based on time of day, weather, and occupancy. 					
	 Medi demo Agric 	cal Cost Estimation: Estimating healthor ographics and medical history. ulture Yield Prediction: Predicting crop				
	conditions, and farming techniques.					
	the data. Line	have their strengths and are chosen ba ear regression is ideal for simple relation for complex, non-linear patterns.	sed on the nature of the problem and nships, while decision tree regression is			
С	Here's a com	two classification models used in ML parison of two popular classification mo nd Random Forest .	odels used in machine learning: Logistic			
	Aspect	Logistic Regression	Random Forest			
	Definition	A linear model that uses a sigmoid function to predict probabilities for binary or multi-class classification	or combines multiple decision trees to			

	Type of Model	Simple, linear classification model.	Complex, non-linear ensemble model.
	Interpretability	Highly interpretable; coefficients indicate the impact of features.	Less interpretable due to multiple trees; feature importance scores provide some insight.
	Handling Non- linearity	Struggles with non-linear relationships unless features are transformed.	Handles non-linear relationships well.
	Overfitting	Less prone to overfitting if regularization is used.	Can overfit if the number of trees is small or trees are overly deep.
	Speed	Fast to train and evaluate, even with large datasets.	Slower to train due to multiple trees, but efficient for evaluation.
	Feature Importance	Does not provide feature importance directly.	Provides feature importance scores based on tree splits.
	Scalability	Scales well to large datasets.	Computationally intensive for very large datasets.
	Robustness to Noise	Sensitive to outliers and noise in data.	More robust to noise due to averaging across trees.
	Example Applications	Spam email detection, customer churn prediction.	Fraud detection, medical diagnosis, image classification.
3 a	What is a Decisio A Decision Tree is tasks. It models d Each inte Each bran Each leaf The tree splits da	s a supervised learning algorithm use	ision or test. n (class label or continuous value).
	Example: Problem: Classify whether a customer will buy a product based on their income and age. Dataset:		
	Age Income B	suy Product?	
	<30 High N	lo	
	31-40 Medium Y	es	
	>40 Low Y	es	
	>40 High N	lo	
	<30 Medium Y	es	
	Visualization:		

	Age
	<30 >30
	Income No Yes High
	Medium Low \
	Yes No
b	Examine Entropy with an Example We have a dataset with 14 samples, where the target variable is whether a person buys a product (Yes or No) based on the Weather feature.
	Dataset:
	Weather Buys Product
	Sunny No
	Sunny No
	Overcast Yes
	Rain Yes
	Rain Yes
	Rain No
	Overcast Yes Sunny No
	Sunny Yes
	Rain Yes
	Sunny Yes
	Overcast Yes
	Overcast Yes
	Rain N.V
	Step 1: Calculate Entropy for the Root Node Counts: • Yes: 9 • No: 5 Total Samples: 14
	Entropy Formula: $E(S) = -\sum p_i \log_2(p_i)$
	$p_{ m Yes} = rac{9}{14}, p_{ m No} = rac{5}{14}$
	Substitute values:
	$E(S) = -\left(rac{9}{14} \log_2 rac{9}{14} + rac{5}{14} \log_2 rac{5}{14} ight)$
	Compute logarithms:
	$\log_2 rac{9}{14} pprox -0.485 \hspace{0.3cm} ext{and} \hspace{0.3cm} \log_2 rac{5}{14} pprox -0.678$
	$E(S) = -\left(rac{9}{14} \cdot -0.485 + rac{5}{14} \cdot -0.678 ight)$
	Simplify:
	$E(S) = - \left(-0.311 + -0.242 ight) = 0.553 + 0.242 = 0.94$
	The root node entropy is 0.94.

Step 2: Split the Data by the Feature Weather

Weather Categories:

- Sunny: 5 samples (2 No, 3 Yes)
- Overcast: 4 samples (4 Yes)
- Rain: 5 samples (3 Yes, 2 No)

Entropy for Each Subset:

1. Sunny:

$$E(Sunny) = -\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{3}{5}\log_2\frac{3}{5}\right)$$
$$= -\left(0.4 \cdot -1.322 + 0.6 \cdot -0.737\right) = 0.971$$

2. Overcast:

$$E(Overcast) = -\left(rac{4}{4}\log_2rac{4}{4}
ight) = 0$$

3. Rain:

$$E(Rain) = -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right)$$
$$= -\left(0.6 \cdot -0.727 + 0.4 \cdot -1.322\right) = 0.971$$

Step 3: Calculate Weighted Average Entropy for the Split

$$E(ext{Weather}) = rac{5}{14} \cdot E(ext{Sunny}) + rac{4}{14} \cdot E(ext{Overcast}) + rac{5}{14} \cdot E(ext{Rain})$$

Substitute values:

$$E(ext{Weather}) = rac{5}{14} \cdot 0.971 + rac{4}{14} \cdot 0 + rac{5}{14} \cdot 0.971$$

Simplify:

$$E(\text{Weather}) = 0.3475 + 0 + 0.3475 = 0.695$$

Step 4: Calculate Information Gain

Information Gain = E(S) - E(Weather)

Substitute values:

Information Gain = 0.94 - 0.695 = 0.245

Conclusion:

The feature **Weather** splits the data with an information gain of **0.245**. Similar calculations can be repeated for other features to find the one that maximizes information gain, which will then be used for the next split.

	Explain ID3 Algorithm with an example ID3 Algorithm in Decision Trees The ID3 (Iterative Dichotomiser 3) algorithm is a popular method for building decision trees. It uses information gain as the splitting criterion, choosing the feature that maximizes the reduction in entropy at each step.					
	Steps in the ID3 Algorithm					
	1. Calculate the Entropy of the dataset.					
	2. For each feature, calculate the Information Gain after splitting on that feature.					
	3. Select the f	3. Select the feature with the highest Information Gain for the split.				
	4. Repeat the	process for each subset until:				
	All san	nples in a subset belong to the same class.				
	• There	are no remaining features to split on.				
	5. Return the	final decision tree.				
	Example same	e as 3b				
ļ	 to improve overall performance, accuracy, and robustness. The goal of ensemble methods is to reduce errors caused by bias, variance, or noise in individual models. Ex: Random Forest: Random Forest is an ensemble learning method that combines the predictions of multiple decision trees to improve accuracy and reduce overfitting. It uses bagging (Bootstrap Aggregating) to train each decision tree on a random subset of the dataset and aggregates their predictions (e.g., majority vote for classification or averaging for regression). Distinguish Bagging and Boosting with an example 					
b	to improve ov to reduce erro Ex: Random Fore Random Fore decision tree Aggregating) their predictio	verall performance, accuracy, and roors caused by bias, variance, or nois orest: st is an ensemble learning methoors s to improve accuracy and redu to train each decision tree on a ra ons (e.g., majority vote for classifica	e in individual models. d that combines the predictions of multiple ce overfitting. It uses bagging (Bootstrap ndom subset of the dataset and aggregates tion or averaging for regression).			
b	to improve ov to reduce erro Ex: Random Fore Random Fore decision tree Aggregating) their predictio	verall performance, accuracy, and roors caused by bias, variance, or nois orest: st is an ensemble learning methoors s to improve accuracy and redu to train each decision tree on a ra ons (e.g., majority vote for classifica	obustness. The goal of ensemble methods is e in individual models. d that combines the predictions of multiple ice overfitting. It uses bagging (Bootstrap ndom subset of the dataset and aggregates tion or averaging for regression).			
b	to improve ov to reduce erro Ex: Random Fore decision tree Aggregating) their prediction Distinguish Ba	verall performance, accuracy, and re- ors caused by bias, variance, or nois orest: st is an ensemble learning method s to improve accuracy and redu- to train each decision tree on a ra ons (e.g., majority vote for classifica agging and Boosting with an example	obustness. The goal of ensemble methods is e in individual models. d that combines the predictions of multiple ice overfitting. It uses bagging (Bootstrap ndom subset of the dataset and aggregates tion or averaging for regression). e			
b	to improve ov to reduce erro Ex: Random Fore decision tree Aggregating) their prediction Distinguish Ba	verall performance, accuracy, and re- ors caused by bias, variance, or nois orest: st is an ensemble learning method s to improve accuracy and redu- to train each decision tree on a ra ons (e.g., majority vote for classifica- agging and Boosting with an example Bagging Reduces variance by training models in	bustness. The goal of ensemble methods is e in individual models. d that combines the predictions of multiple ice overfitting. It uses bagging (Bootstrap ndom subset of the dataset and aggregates tion or averaging for regression). e Boosting Reduces bias by training models sequentially, where each model corrects errors of the			
b	to improve ov to reduce error Ex: Random Fore decision tree Aggregating) their prediction Distinguish Bat Feature Objective Model	verall performance, accuracy, and re- ors caused by bias, variance, or nois orest: st is an ensemble learning method s to improve accuracy and redu- to train each decision tree on a ra ons (e.g., majority vote for classifica- agging and Boosting with an example Bagging Reduces variance by training models in parallel on different subsets of data.	bustness. The goal of ensemble methods is e in individual models. d that combines the predictions of multiple ice overfitting. It uses bagging (Bootstrap indom subset of the dataset and aggregates tion or averaging for regression). e Boosting Reduces bias by training models sequentially, where each model corrects errors of the previous one. Sequential training, with each model focusing			
b	to improve ov to reduce error Ex: Random Fore decision tree Aggregating) their prediction Distinguish Bat Feature Objective Model Training Data	verall performance, accuracy, and reprint of caused by bias, variance, or noise orest: st is an ensemble learning method is to improve accuracy and reduct to train each decision tree on a rations (e.g., majority vote for classification of the classification of	bustness. The goal of ensemble methods is e in individual models. d that combines the predictions of multiple ice overfitting. It uses bagging (Bootstrap indom subset of the dataset and aggregates tion or averaging for regression). e Boosting Reduces bias by training models sequentially, where each model corrects errors of the previous one. Sequential training, with each model focusing more on misclassified instances. Each model is trained on the full dataset, but			
b	to improve ov to reduce error Ex: Random Fore decision tree Aggregating) their prediction Distinguish Ban Feature Objective Model Training Data Sampling	verall performance, accuracy, and reprint of caused by bias, variance, or nois orest: st is an ensemble learning method is to improve accuracy and reduct to train each decision tree on a rations (e.g., majority vote for classification of the data. Bagging Reduces variance by training models in parallel on different subsets of data. Independent training of models. Each model is trained on a random bootstrap (subset with replacement) of the data. Combines outputs using voting	 bustness. The goal of ensemble methods is e in individual models. d that combines the predictions of multiple ce overfitting. It uses bagging (Bootstrap ndom subset of the dataset and aggregates tion or averaging for regression). e Boosting Reduces bias by training models sequentially, where each model corrects errors of the previous one. Sequential training, with each model focusing more on misclassified instances. Each model is trained on the full dataset, but data points are reweighted based on errors. Combines outputs using weighted voting or 			

Illustrate Stacking with an example
Stacking (also known as Stacked Generalization) is an ensemble learning technique where
multiple models (called base learners) are trained and then combined using a meta-model
(or stacking model) to make the final prediction. Unlike methods like bagging or boosting,
which combine predictions of individual models in a specific way (e.g., voting or averaging),
stacking trains a meta-model to learn how to best combine the base models' predictions.
Example of Stacking: Predicting House Prices
Let's say we want to predict house prices based on features like square footage, number of
bedrooms, neighborhood, etc. We use stacking to combine the predictions of three different
models (base learners) and a meta-model.
Step 1: Train Base Models
We train three different base models:
Base Model 1: Decision Tree
 Base Model 2: Support Vector Machine (SVM)
 Base Model 3: Linear Regression
Each model makes its predictions on the house price based on the input features.
Step 2: Create Meta-Model
We use the predictions from the three base models as input features for the meta-model.
For example:
The meta-model might be a logistic regression model that takes the predicted house
prices from each base model and combines them into a final prediction.
Step 3: Make Predictions
During testing, the base models first make their individual predictions on the test data:
 Decision Tree predicts a house price of \$350,000
 SVM predicts a house price of \$340,000
 Linear Regression predicts a house price of \$355,000
These predictions are then fed into the meta-model , which may output a final prediction of
\$348,000 after learning how to combine these base model predictions in the best possible
way.
++
Base Model 1 (e.g., Decision Tree)
++
++
Base Model 2 (e.g., SVM)
Base Model 2 (e.g., SVM)
Base Model 2 (e.g., SVM)
Base Model 2 (e.g., SVM)
Base Model 2 (e.g., SVM) +
Base Model 2 (e.g., SVM) +
<pre> Base Model 2 (e.g., SVM) ++ ++ Base Model 3 (e.g., Linear Regression)</pre>
<pre> Base Model 2 (e.g., SVM) ++ ++ Base Model 3 (e.g., Linear Regression)</pre>
<pre> Base Model 2 (e.g., SVM) ++ ++ Base Model 3 (e.g., Linear Regression)</pre>
<pre> Base Model 2 (e.g., SVM) ++ ++ Base Model 3 (e.g., Linear Regression) ++ ++ ++ </pre>
<pre> Base Model 2 (e.g., SVM) ++ Base Model 3 (e.g., Linear Regression) ++ Meta-Model (e.g., Logistic Regression)</pre>
<pre> Base Model 2 (e.g., SVM) ++ ++ Base Model 3 (e.g., Linear Regression) ++ ++ ++ </pre>
<pre> Base Model 2 (e.g., SVM) ++ Base Model 3 (e.g., Linear Regression) ++ Meta-Model (e.g., Logistic Regression)</pre>

5 a	 Explain Reinforcement learning and give an example Reinforcement Learning (RL) is a type of machine learning where an agent learns to make decisions by interacting with an environment to maximize cumulative rewards. The agent takes actions in an environment, and in return, it receives feedback in the form of rewards or penalties. The goal is to learn a policy—a mapping from states of the environment to the best possible actions—so that the agent maximizes its long-term cumulative reward. Examples: Robotics: Robots learning how to navigate an environment, manipulate objects, or perform tasks like assembly or cleaning. Game AI: Training agents to play video games (e.g., AlphaGo, OpenAI Five) by learning optimal strategies. Autonomous Vehicles: Self-driving cars learning to navigate complex road systems while avoiding obstacles and following traffic laws.
b	Illustrate Q learning with an example Q-Learning is a model-free reinforcement learning algorithm used to learn the value of action-state pairs. The goal of Q-learning is to find the optimal action selection policy that will yield the highest possible cumulative reward over time.
	 Key Concepts of Q-Learning: State (S): The agent's current situation or position in the environment. Action (A): The choices the agent can make. Q-Value (Q(s, a)): The expected reward for taking action a in state s and then following the optimal policy. Reward (R): The immediate feedback from the environment after an action is taken. Learning Rate (α): How quickly the agent updates its knowledge (Q-value). Discount Factor (γ): How much future rewards are considered in the current decision. Q-Learning Example: Gridworld Problem Let's illustrate Q-learning with a simple Gridworld environment. The agent needs to navigate from the Start (S) to the Goal (G), avoiding obstacles, and maximizing its rewards.
	css Copy code S - Start G G - Goal # # - Obstacle . Empty space [S . .] G] [. # .] .] [. .] .] • Start (S): Agent begins at position (0,0).
	 Goal (G): Agent's goal is to reach (0,3) with a reward of +10. Obstacle (#): The agent cannot move through these cells. Empty space (.): The agent can move here, but it will receive a penalty of -1 for each move it makes (to encourage faster learning). The agent will learn the best path to the goal, considering future rewards, by adjusting its Q-values.

C	Compare and contrast reinforcement learning relation to dynamic programming and active reinforcement learning. Reinforcement Learning (RL), Dynamic Programming (DP), and Active Reinforcement Learning (ARL) are all methods in the field of decision-making and sequential learning. They share common principles, such as seeking to maximize a long-term reward, but differ in how they approach problem-solving, especially in terms of learning mechanisms, computational requirements, and data availability.				
	Aspect	Reinforcement Learning (RL)	Dynamic Programming (DP)	Active Reinforcement Learning (ARL)	
	Learning Type	Model-free, learns from interaction with the environment	Model-based, requires full knowledge of the environment	Model-free, focuses on efficient exploration and learning	
	Environment Knowledge	No model of environment needed, learns from experience	Requires complete knowledge of the environment	Can work without full model knowledge but focuses on learning efficiency	
	Exploration vs Exploitation	Balances exploration and exploitation	No exploration, uses full model to find the optimal policy	Emphasizes active exploration to enhance learning efficiency	
	Computation	Can be computationally expensive in large state spaces	Computationally expensive, especially for large state spaces	Aims to optimize computation by selectively exploring states	
	Applications	Games, robotics, self- driving cars, personalized recommendations	Policy optimization in fully known environments, e.g., inventory management	Robotics, personalized learning systems, optimization problems requiring fast learning	
	Model Requirement	No model needed (model- free)	Full model required (transition and reward functions)	Typically no full model, focuses on learning by exploration	
	Real-time Learning	Yes, learns from interaction with the environment	Typically batch process, needs full information \checkmark ont	Yes, but with a focus on optimizing exploration for faster learning	
6 a	Virtual Reality (can be similar to special devices s experience the v to make them fe One popular exa Quest) is a VR he	o or completely different f such as headsets, gloves, o virtual world. VR aims to s eel as if they are physically ample of VR is the use of V eadset that immerses use degree view of the game of	from the real world. It typ or controllers to enable u simulate the user's senses y present in a different en VR headsets for gaming. T ers in a 3D world. When a	sers to interact with and s (mainly sight and sound) wironment. The Oculus Rift (now Meta player wears the headset,	
b	Compare the im methods. Where Flight simulation experience with	portance of flight simulat e else does the flight simu n and traditional flight tra an instructor) both serve	llator play an important r aining methods (which in as vital components in th	ole. volve actual flight	

	Applications of Flight Simulation Beyond Traditional Training
	Flight simulators have widespread applications beyond just pilot training:
	1. Military and Defense: Flight simulators are extensively used in military settings to
	train fighter pilots, bomber pilots, and other aviation personnel. They can simulate
	high-speed combat situations, evasive maneuvers, and complex mission scenarios in
	a safe environment.
	2. Air Traffic Control (ATC) Training: Flight simulators are also used for training air
	traffic controllers. They allow controllers to practice managing traffic, handling
	emergency situations, and ensuring safe distances between aircraft in various
	scenarios without actual flights taking place.
	3. Aircraft Design and Testing: Flight simulators allow engineers to test the
	performance of new aircraft designs. This is useful before building prototypes and
	performing costly real-world tests. Simulators provide an early-stage platform for
	assessing new technologies and systems.
	 Flight Crew Coordination: Simulators are used to train entire flight crews, including
	pilots and cabin crew, on how to respond to emergencies, coordinate actions, and
	handle unusual situations during flight.
	5. Research and Development : Flight simulators are used by research institutions and
	universities to explore new aviation technologies and train students. They are also
	employed to study human factors, such as pilot behavior and decision-making in
	high-stress environments.
	6. Public Safety : Flight simulators are sometimes used in public safety applications to
	train personnel for rescue operations, such as those using helicopters or other aerial
	vehicles. This is especially useful for training in high-risk operations without
	endangering lives.
	Below is a comparison of their respective importance:
	Flight simulation offers significant advantages over traditional flight training in terms of asst officiency, safety, availability of diverse segmetics, and the ability to practice specific.
	cost-efficiency, safety, availability of diverse scenarios, and the ability to practice specific
	skills repetitively.
	Traditional flight training provides essential hands-on experience, muscle memory, and
	the real-world sensation of flying, which is crucial for developing a deep understanding of
	aircraft dynamics.
	Beyond training pilots, flight simulators play important roles in military training, air traffic
	control training, aircraft design testing, crew coordination, public safety, and research,
	making them a versatile and indispensable tool in aviation and beyond.
С	Examine Virtual environment requirements.
	Creating and running a virtual environment (VE), particularly for applications like Virtual
	Reality (VR), Augmented Reality (AR), or simulations, involves several technical
	requirements in terms of hardware, software, and network capabilities. Below is a
	comprehensive overview of these technical requirements:
	1. Hardware Requirements
	A. Processing Power (CPU and GPU):
	• Central Processing Unit (CPU): A fast and multi-core processor is essential to handle
	the computational demands of rendering, physics simulation, and AI computations in
	virtual environments.
	• Recommended : Intel Core i5/i7 or AMD Ryzen 5/7 or higher.
	• Minimum : Intel Core i3 or AMD Ryzen 3 for basic VR experiences.
	Graphics Processing Unit (GPU): VR and other immersive environments demand
	high-performance GPUs to render complex, high-resolution 3D scenes smoothly.

	 Recommended: NVIDIA RTX 30 series, AMD Radeon RX 6000 series, or
	 equivalent. Minimum: NVIDIA GTX 1060 or AMD equivalent for entry-level VR
	experiences.
B. Me	mory (RAM):
•	Recommended: 16 GB or more to ensure smooth operation of both the environme
	and any background applications (e.g., software tools, databases).
•	Minimum: 8 GB for entry-level VR or simpler virtual environments.
C. Sto	rage:
•	Solid-State Drive (SSD): For faster data read/write speeds, particularly when loading
	large files or real-time content in VR environments.
	• Recommended : At least 500 GB of SSD space (or more depending on the
	complexity of the VR content).
	 Minimum: 256 GB SSD or 1 TB HDD (though SSDs provide better
	performance).
. неа 	adsets and Controllers (For VR): VR Headset: Essential for full immersion in VR. These headsets typically include bu
•	in motion tracking and may require specific hardware for connectivity.
	 Popular Models: Oculus Rift, HTC Vive, Meta Quest, PlayStation VR.
•	Motion Controllers: Used to track the user's hand movements and enable
	interaction with the virtual environment.
	• Recommended : VR controllers compatible with the chosen VR system (e.g
	Oculus Touch controllers, HTC Vive controllers).
E. Inpi	ut Devices:
•	For applications beyond VR, a combination of input devices such as keyboards, mi
	trackpads, joysticks, or motion capture systems may be required for interacting w
	virtual environments.
F. Sen	virtual environments. sors:
F. Sen: •	virtual environments. sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, o
	virtual environments. sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, o motion capture systems are used to track user movement and map it into the virtu
	virtual environments. sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, motion capture systems are used to track user movement and map it into the virt world.
	virtual environments. sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtur world. • Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track
	virtual environments. sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, of motion capture systems are used to track user movement and map it into the virtu world.
• 2. Soft	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtuworld. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements.
• 2. Soft	 virtual environments. sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtuworld. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements.
• 2. Soft	 virtual environments. sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtur world. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements.
• 2. Soft	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtur world. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements.
• 2. Soft	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, motion capture systems are used to track user movement and map it into the virt world. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Evare Requirements Evare Requirements A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for App
• 2. Soft	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtuworld. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Evare Requirements Erating System (OS): A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for App specific applications.
• 2. Soft A. Ope •	 virtual environments. sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtuworld. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Everating System (OS): A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for App specific applications. Minimum: Windows 7 (for basic applications or simulations).
• 2. Soft A. Ope •	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtuworld. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Evare Requirements erating System (OS): A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for App specific applications. Minimum: Windows 7 (for basic applications or simulations). Eval Reality Software Development Kit (SDK):
• 2. Soft A. Ope •	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtuworld. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Evare Requirements erating System (OS): A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for Approx specific applications. Minimum: Windows 7 (for basic applications or simulations). Evaluation Reality Software Development Kit (SDK): SDKs are essential for building and managing VR or AR environments, as they
• 2. Soft A. Ope •	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtur world. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Evare Requirements erating System (OS): A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for Approxpecific applications. Minimum: Windows 7 (for basic applications or simulations). BDKs are essential for building and managing VR or AR environments, as they provide the necessary libraries, tools, and APIs.
• 2. Soft A. Ope •	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, motion capture systems are used to track user movement and map it into the virt world. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to trace head and hand movements. Evame Requirements Erating System (OS): A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for Approxpecific applications. Minimum: Windows 7 (for basic applications or simulations). Eval Reality Software Development Kit (SDK): SDKs are essential for building and managing VR or AR environments, as they provide the necessary libraries, tools, and APIs. Examples:
• 2. Soft A. Ope •	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtuworld. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Evample: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Evare Requirements erating System (OS): A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for Approximations. Minimum: Windows 7 (for basic applications or simulations). tual Reality Software Development Kit (SDK): SDKs are essential for building and managing VR or AR environments, as they provide the necessary libraries, tools, and APIs. Examples: Unity3D or Unreal Engine: These are the most common game
• 2. Soft A. Ope •	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, a motion capture systems are used to track user movement and map it into the virtuworld. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Eware Requirements Erating System (OS): A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for App specific applications. Minimum: Windows 7 (for basic applications or simulations). SDKs are essential for building and managing VR or AR environments, as they provide the necessary libraries, tools, and APIs. Examples: Unity3D or Unreal Engine: These are the most common game engines used to create virtual environments.
• 2. Soft A. Ope •	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtuworld. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Evant Requirements erating System (OS): A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for Approx specific applications. Minimum: Windows 7 (for basic applications or simulations). SDKs are essential for building and managing VR or AR environments, as they provide the necessary libraries, tools, and APIs. Examples: Unity3D or Unreal Engine: These are the most common game engines used to create virtual environments. Oculus SDK, HTC Vive SDK, or OpenVR for device-specific
• 2. Soft A. Ope •	 virtual environments. Sors: Motion Tracking: Sensors such as infrared cameras, accelerometers, gyroscopes, or motion capture systems are used to track user movement and map it into the virtuworld. Example: Cameras and sensors used in the Oculus Rift or HTC Vive to track head and hand movements. Eware Requirements Erating System (OS): A stable and modern operating system capable of handling high-performance applications. Recommended: Windows 10/11 or Linux for development, macOS for App specific applications. Minimum: Windows 7 (for basic applications or simulations). SDKs are essential for building and managing VR or AR environments, as they provide the necessary libraries, tools, and APIs. Examples: Unity3D or Unreal Engine: These are the most common game engines used to create virtual environments.

C. 3D	Modeling and Animation Software:
•	To create content such as characters, environments, and objects within virtual
	environments.
	 Examples: Blender, Autodesk Maya, 3ds Max, Cinema 4D.
D. Sim	ulation Software:
٠	For specialized virtual environments like flight simulators , driving simulators , or
	medical training.
	• Examples : X-Plane, Microsoft Flight Simulator, Simulink for engineering
	simulations.
E. IVIIO	dleware (Optional): Middleware for managing multiple users or multi-user environments, as well as
•	integrating with external systems.
	• Examples : Unity's Photon, Unreal's Multiplayer Networking, or other server
	solutions.
3. Net	work Requirements
A. Bar	ndwidth and Latency:
•	High-speed, low-latency internet is essential for streaming data (especially in
	multiplayer or online VR environments).
	• Recommended : 25 Mbps or higher for smooth data transmission in
	multiplayer environments.
	 Minimum: 10 Mbps, but latency should be kept under 50 ms for a good experience.
B Loc	al Network:
•	If running on a local network (e.g., in a corporate setting or a VR gaming center),
	ensuring a fast and stable Wi-Fi or Ethernet connection is important for reducing lag
	or disconnections.
	• Recommended : Gigabit Ethernet or Wi-Fi 5/6 (802.11ac or 802.11ax).
	• Minimum : 100 Mbps Ethernet or 802.11n (Wi-Fi 4) for small applications.
	ironmental Requirements
A. Spa	ce for Physical Movement (For VR):
٠	In some VR applications, the user needs sufficient physical space to move around.
	For room-scale VR (e.g., HTC Vive, Oculus Rift S), an area of at least 6.5 x 5 feet (2 x
	1.5 meters) is recommended for safe movement.
•	Clearance : Ensuring there are no obstacles or hazards (e.g., furniture, cords) is essential for safety.
B. Ligł	nting:
•	The lighting conditions in the physical environment should be well-lit but not too
	bright or reflective, as this can interfere with the tracking systems of the VR
	headsets.
•	Optimal Lighting : Even lighting, avoiding direct sunlight or excessive shadows, helps in motion and position tracking.
5. Use	r Experience Considerations
	nfort and Accessibility:
•	VR headsets and immersive systems should be adjustable and comfortable to wear
	for extended periods, with proper ergonomic design to prevent discomfort or
	fatigue.

• Adjustable Headsets: Should accommodate users with different head sizes and provide proper support for long sessions.

	B. Audio:
	 High-quality spatial or 3D audio is often a critical aspect of a fully immersive virtual environment. This requires either integrated speakers in the headset or external headphones to simulate sounds coming from specific directions within the virtual space
	space.
	 6. Performance Optimization Frame Rate: VR environments typically require a frame rate of at least 90 frames per
	 Frame Kate: VK environments typically require a mane rate of at least 50 manes per second (FPS) to avoid motion sickness and ensure a smooth experience. High-end systems might push beyond 120 FPS, depending on the complexity of the environment.
	• Resolution : High resolution (typically 1080p per eye or higher) is essential to prevent
	pixelation and enhance immersion.
	• Rendering Optimization : Techniques like foveated rendering , where the focus area
	is rendered in higher detail than the peripheral areas, can help improve performance
	and reduce load on the GPU.
7 a	What is Augmented Reality? Give an example.
	Augmented Reality (AR) is a technology that overlays digital content—such as images,
	sounds, or other sensory enhancements—onto the physical world in real-time. Unlike Virtual
	Reality (VR), which creates a completely immersive virtual environment, AR enhances the
	user's perception of the real world by adding interactive digital elements on top of it.
	AR typically requires a device such as a smartphone, tablet, or AR glasses to enable the
	overlay of virtual objects onto the physical world.
	Ex: Surgeons can use AR to overlay important information, such as 3D models of organs,
	during surgeries. Apps like Microsoft HoloLens can project visual guides onto the patient,
-	assisting with precise operations and improving outcomes.
b	Elaborate on motivation and sampling theory in reinforcement learning
С	List and elaborate the various visualization techniques used in augmented reality
8	Case Study
	A local supermarket chain, "Fresh mart" is facing declining sales in the past three quarters.
	Fresh Mart focuses on produce (fresh fruits and vegetables), dairy products and bakery. Their high margin section is bakery as they bake bread, cakes and pastries in house. However, with
	the mushrooming of individual bakers, who operate from home, the sales of bakery goods
	have been declining. The management of Fresh Mart has hired you to help them resolve
	their challenges. The management has set the following objectives: -
	i) Predict whether a customer is likely to purchase a baked product
	(bread, cake, pastry)
	ii) Increase the customer purchases by interactions with the
	products
	iii) Use advanced technology to enhance customer experience of
	shopping at Fresh Mart
	Present the concept and application of the following algorithm to the management of Fresh
	Mart.
	a. Decision Tree Algorithm
	b. Reinforcement Learning
	c. Augmented Reality
	Provide adequate justifications to defend your presentation.
	a. Decision Tree Algorithm:
	Predict whether a customer is likely to purchase a baked product (such as bread,
	cake, or pastry) using a decision tree algorithm, you can follow these steps:
	1. Collect Data

•	Gather historical data on customer behavior, such as:
	 Customer demographics (age, gender, location, etc.)
	 Shopping habits (frequency of visits, spending patterns)
	 Previous purchase history (purchased items, frequency of purchase, etc.)
	 External factors (seasonality, holidays, promotions)
	 Customer preferences (preferences for specific baked goods)
	2. Prepare the Data
•	Clean the data by handling missing values, outliers, and duplicates.
•	Convert categorical data (like product type, season, etc.) into numerical values using
	techniques like one-hot encoding or label encoding.
•	Normalize numerical data (if necessary) to ensure consistency.
b.	Reinforcement Learning
	This can be done by giving different promotional offers & checking whether sales are
	happening or not. Depending on the positive sales, those promotions to be retained.
c.	Augmented Reality
	Whenever customers browse for products on the company app, enabling the AR
	tools so as to see the images of the store items on a dining table or serving area
	improves customer experience.