
 Solution For Introduction to Programming in C

 VTU QP_BESCK204E_JUNE/JULY(2023-2024)

 MODULE 1
 1.a.
 b.

 Define Computer. With a neat block diagram, explain different components of a computer.
 Explain input and output devices.

 [10]
 [10]

 OR
 2. a.

 b.
 c.

 Explain the following with neat syntax printf() and scanf() functions.
 Define variables. Explain the rules for declaring the variables.
 Explain the structure of ‘C’ Program.

 [8]
 [6]
 [6]

 MODULE 2
 3.a.

 b.
 c.

 What are iterative statements? Explain them with neat syntax.
 Write a C Program to find Mechanical Energy of a particle using E = mgh+1/2 mv2
 Explain the uses of goto statement with examples.

 [10]
 [6]
 [4]

 OR

 4. a.
 b.

 c.

 Explain Relational operators in C language with examples.
 With proper syntax, explain different conditional branching statements. Give suitable examples for
 each.
 Explain Type Conversion and Type Casting.

 [6]
 [8]

 [6]

 MODULE 3
 5.a.

 b.
 c.

 With neat syntax, explain function declaration and Function definition.
 Explain the different types of storage classes.
 What is recursion? Write a C program to find the factorial of a number using a recursion function.

 [6]
 [8]
 [6]

 OR
 6. a.

 b.

 What is an array? Explain how one dimensional arrays are declared and initialized. Write a C program
 to find the largest of ‘N’ elements.
 Write a C program to sort the given set of N numbers using Bubble Sort technique.

 [12]

 [8]

 MODULE 4
 7. a.
 b.

 c.

 List the applications of arrays.
 Write a C program to implement Matrix multiplication and validate the rules of multiplication.

 With syntax and examples, explain the scan set function.

 [4]
 [10]

 [6]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 OR

 8. a.

 b.

 Explain the different methods of reading and writing strings using formatted and unformatted functions.
 Write an example for each.
 Write a C program to pass a two dimensional array to the function and display in matrix format.

 [12]
 [8]

 MODULE 5
 9. a.

 b.
 c.

 Explain the following string manipulation functions:
 (i) strlen() (ii) strcpy() (iii) strcmp() (iv) strcat()
 Define pointer. Explain the declaration and initialization of a pointer variable with an example.
 Write a C program to compute the sum mean and standard deviation of all elements stored in an array of
 N real numbers using pointers.

 [8]

 [4]

 [8]

 OR

 10. a.
 b.

 Define structure. Explain the declaration of structure with an example.
 Write a C program to implement structure to read, write and compute average marks and the students
 scoring above and below the average marks for a class of N students.

 [8]
 [12]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 SOLUTION FOR VTU QP_BESCK204E_JUNE/JULY(2023-2024)

 MODULE 1
 1.a. Define Computer. With a neat block diagram, explain different components of a computer.

 A computer is an electronic device that can store, manipulate, and process data according to a set of
 instructions.

 Input unit: The input unit that links the external environment to input data & tasks with the computer
 system to execute. Data are entered in different forms through different input devices. Keyboard is used
 for characters input. Mouse is used in GUI (Graphic User Interface). Internally data is processed in
 machine readable form.

 Output Unit: Output/result is displayed, printed & transmitted to the outside world. There are many
 output devices: monitor, printer/plotters, display boards, speakers etc.

 Storage unit: The data and instructions that are entered into the computer system through input units
 have to be stored inside the computer before the actual processing starts. Similarly, the results produced
 by the computer after processing must also be kept somewhere inside the computer system before being
 passed on to the output units. The storage unit is Primary Memory (RAM) & Secondary (permanent
 storage devices: disks, tapes)

 CPU (Central processing Unit): It is the main unit which controls all events within the computer. The
 CPU has 3 internal units: CU, ALU & Registers:

 [10]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 b.

 CU(Control unit): By selecting, interpreting, and seeing to the execution of the program instructions, the
 control unit is able to maintain order and direct the operation of the entire system. The control unit acts
 as a central nervous system for the other components of the computer. It manages and coordinates the
 entire computer system. It obtains instructions from the program stored in main memory, interprets the
 instructions, and issues signals that cause other units of the system to execute them.

 ALU (Arithmetic & Logic Unit): The arithmetic and logic unit (ALU) is the part where actual
 computations take place. It consists of circuits that perform arithmetic operations (e.g. addition,
 subtraction, multiplication, division over data received from memory and are capable of comparing
 numbers (less than, equal to, or greater than).

 MU (Memory Unit/Registers): Registers are built-in memory with CPU having less storage space in bits.
 Registers are a group of cells used for memory addressing, data manipulation and processing. Instruction
 Registers, Address registers, Program Counters, Accumulators are examples of registers. ALU takes data
 from here inside the CPU.

 RAM(Random Access Memory): RAM is the memory - primary storage where our data & programs are
 stored temporarily. It is volatile in nature. After switching off the system everything will vanish from
 RAM.

 ROM(Read Only Memory): ROM is storage medium/”firmware” where some code of the manufacturer
 is permanently hardwired in the chip which always executes automatically when we start the system.
 The process is known as POST(Power on Self test). Booting precedes POST.

 Explain input and output devices.

 Input Device Definition: A piece of equipment/hardware which helps us enter data into a computer is

 called an input device. For example keyboard, mouse, etc.

 Output Device Definition: A piece of equipment/hardware which gives out the result of the entered

 input, once it is processed (i.e. converts data from machine language to a human-understandable

 language), is called an output device. For example printers, monitors, etc.

 List of Input Devices

 Given below is the list of the most common input devices along with brief information about each of

 them.

 [10]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 1. Keyboard
 ● A simple device comprising keys and each key denotes either an alphabet, number or number

 commands which can be given to a computer for various actions to be performed
 ● It has a modified version of typewriter keys
 ● The keyboard is an essential input device and computer and laptops both use keyboards to give

 commands to the computer
 2. Mouse
 ● It is also known as a pointing device
 ● Using mouse we can directly click on the various icons present on the system and open up various

 files and programs
 ● A mouse comprises 3 buttons on the top and one trackball at the bottom which helps in selecting

 and moving the mouse around, respectively
 ● In case of laptops, the touchpad is given as a replacement of the mouse which helps in the

 movement of the mouse pointer
 3. Joy Stick
 ● It is a device which comprises a stick which is attached at an angle to the base so that it can be

 moved and controlled
 ● Mostly used to control the movement in video games
 ● Apart from a computer system, a joystick is also used in the cockpit of an aeroplane, wheelchairs,

 cranes, trucks, etc. to operate them well
 4. Light Pen
 ● It is a wand-like looking device which can directly be moved over the device’s screen
 ● It is light-sensitive
 ● Used in conjunction with computer’s cathode ray tube
 5. Microphone
 ● Using a microphone, sound can be stored in a device in its digital form
 ● It converts sound into an electrical signal
 ● To record or reproduce a sound created using a microphone, it needs to be connected with an

 amplifier
 6. Scanner
 ● This device can scan images or text and convert it into a digital signal
 ● When we place any piece of a document on a scanner, it converts it into a digital signal and

 displays it on the computer screen
 7. Barcode Reader
 ● It is a kind of an optical scanner
 ● It can read bar codes
 ● A source of light is passed through a bar code, and its aspects and details are displayed on the

 screen

 List of Output Device

 The commonly used output devices have been listed below with a brief summary of what their function is

 and how they can be used.

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 1. Monitor
 ● The device which displays all the icons, text, images, etc. over a screen is called the Monitor
 ● When we ask the computer to perform an action, the result of that action is displayed on the

 monitor
 ● Various types of monitors have also been developed over the years
 2. Printer
 ● A device which makes a copy of the pictorial or textual content, usually over a paper is called a

 printer
 ● For example, an author types the entire book on his/her computer and later gets a print out of it,

 which is in the form of paper and is later published
 ● Multiple types of printers are also available in the market, which can serve different purposes
 3. Speakers
 ● A device through which we can listen to a sound as an outcome of what we command a computer

 to do is called a speaker
 ● Speakers are attached with a computer system and also are a hardware device which can be

 attached separately
 ● With the advancement in technology, speakers are now available which are wireless and can be

 connected using BlueTooth or other applications
 4. Projector
 ● An optical device which presents an image or moving images onto a projection screen is called a

 projector
 ● Most commonly these projectors are used in auditoriums and movie theaters for the display of the

 videos or lighting
 ● If a projector is connected to a computer, then the image/video displayed on the screen is the same

 as the one displayed on the computer screen
 5. Headphones
 ● They perform the same function as a speaker, the only difference is the frequency of sound
 ● Using speakers, the sound can be heard over a larger area and using headphones, the sound is only

 audible to the person using them
 ● Also known as earphones or headset

 OR

 2.a Explain the following with neat syntax printf() and scanf() functions.

 Formatted I/O functions are used to take various inputs from the user and display multiple
 outputs to the user.
 Formatted I/O functions
 1. printf()
 2. scanf()
 1. printf():
 printf() function is used in a C program to display any value like float, integer, character, string,
 etc on the console screen. It is a pre-defined function that is already declared in the
 stdio.h(header file).
 Syntax :

 [8]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 b.

 To display any variable value.
 printf(“Format Specifier”, var1, var2, …., varn);
 Example:
 printf(“Enter the text which you want to display”);
 Output:
 Enter the text which you want to display

 Or
 #include<stdio.h>
 void main()
 {
 int a;
 a = 20; // Assigning a value in a variable
 printf(“%d”, a); // Printing the value of a variable
 }
 Output:
 20

 2. scanf():
 scanf() function is used in the C program for reading or taking any value from the keyboard by
 the user, these values can be of any data type like integer, float, character, string, and many
 more. This function is declared in stdio.h(header file).

 Syntax:
 scanf(“Format Specifier”, &var1, &var2, …., &varn);

 Example:
 #include<stdio.h>
 int main()
 {
 int num1;
 printf(“Enter a integer number:”);
 scanf(“%d”, &num1);
 printf(“You have entered %d”, num1);
 return 0;
 }
 Output:
 Enter a integer number: 56
 You have entered 56

 Define variables. Explain the rules for declaring the variables.

 Definition:

 [6]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 c.

 Variables are containers for storing data values, like numbers and characters.

 Rules for Naming a Variable in C

 We give a variable a meaningful name when we create it. Here are the rules that we must follow when
 naming it:

 1. The name of the variable must not begin with a digit.

 2. A variable name can consist of digits, alphabets, and even special symbols such as an underscore(_).

 3. A variable name must not have any keywords, for instance, float, int, etc.

 4. There must be no spaces or blanks in the variable name.

 5. The C language treats lowercase and uppercase very differently, as it is case sensitive. Usually, we
 keep the name of the variable in the lower case.

 Explain the structure of ‘C’ Program.

 Documentation Section: This section is used to write Problem, file name, developer, date etc in
 comment lines within /*….*/ or separate line comments may start with // . Compiler ignores this
 section. Documentation enhances the readability of a program.

 [6]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 Link section : To include header and library files whose in-built functions are to be used. Linker also
 required these files to build a program executable. Files are included with directive #include
 Definition section: To define macros and symbolic constants by preprocessor directive #define
 Global section: to declare global variables – to be accessed by all functions
 main() i s the user defined function which is recognized by the compiler first. So, all C program must
 have user defined

 function main() { …………. }. It should have declaration part first then executable part.
 Sub program section: There may be other user defined functions to perform specific task when
 called.

 /* Example: a program to find area of a circle – area.c
 - Documentation Section */

 #include <stdio.h> /* - Link/Header Section */

 #define PI 3.14 /* definition/global section*/

 int main() /* main function section */
 {
 float r, area; /* declaration part */

 print (“Enter radius of the circle : “); /* Execution part*/
 scanf(“%f”, &r);
 area=PI*r*r; /* using symbolic constant PI */
 print(“Area of circle = %0.3f square unit\n”, area);
 return (0);

 }

 MODULE 2

 3.a. What are iterative statements? Explain them with neat syntax.

 Iteration is a fundamental concept in programming that involves repeating a specific set of instructions
 multiple times until a certain condition is met. In the C programming language, there are three types of
 iteration statements: for, while , and do-while .

 For Loop

 The for loop is used to execute a set of statements repeatedly for a fixed number of times. It consists of
 three parts: initialization, condition , and increment/decrement .

 Syntax:

 for (initialization; condition; increment/decrement) {

 [10]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 // code to be executed

 }

 The initialization statement is executed only once at the beginning of the loop, and it is used to
 initialize the loop variable. The condition statement is evaluated at the beginning of each iteration, and
 if it is true , the code inside the loop is executed. The increment/decrement statement is executed at the
 end of each iteration, and it is used to update the loop variable.

 Example of a for loop that prints the numbers from 1 to 5 :

 #include <stdio.h>
 int main() {

 int i;
 for (i = 1; i<= 5; i++) {

 printf("%d\n", i);
 }
 return 0;

 }

 Output:

 1
 2
 3
 4
 5

 While Loop

 The while loop is used to execute a set of statements repeatedly as long as a certain condition is true .

 Syntax:

 while (condition) {

 // code to be executed

 }

 The condition is evaluated at the beginning of each iteration, and if it is true , the code inside the loop is
 executed. The loop continues until the condition becomes false.

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 Example of a while loop that prints the numbers from 1 to 5 :

 #include <stdio.h>

 int main() {

 int i = 1;

 while (i<= 5) {

 printf("%d\n", i);

 i++;

 }

 return 0;

 }

 Output:

 1
 2
 3
 4
 5

 Do-While Loop

 The do-while loop is used to execute a set of statements repeatedly as long as a certain condition is true .
 The difference between the while loop and the do-while loop is that the do-while loop executes the code
 inside the loop at least once before checking the condition.

 Syntax:

 do {

 // code to be executed

 } while (condition);

 The code inside the loop is executed first , and then the condition is checked. If the condition is true , the
 loop continues , otherwise, it terminates .

 Example of a do-while loop that prints the numbers from 1 to 5:

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 b.

 #include <stdio.h>

 int main() {

 int i = 1;

 do {

 printf("%d\n", i);

 i++;

 } while (i<= 5);

 return 0;

 }

 Output:

 1
 2
 3
 4
 5

 Write a C Program to find Mechanical Energy of a particle using E = mgh+1/2 mv2

 #include <stdio.h>
 int main(void)
 {
 float m,h,v,p,k,e;
 printf("Enter Mass of the body\n");
 scanf("%f",&m);
 printf("Enter displacement of the body\n");
 scanf("%f",&h);
 printf("Enter velocity of the body\n");
 scanf("%f",&v);
 p=m*9.8*h; //To calculate Potential energy
 k=0.5*m*(v*v); //To calculate Kinetic energy
 e=p+k;
 printf("Potential energy of the body = %f\n",p);

 [6]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 c.

 printf("Kinetic energy of the body = %f\n",k);
 printf("Mechanical energy of a body = %f\n" , e);
 }

 Explain the uses of goto statement with examples.

 The C goto statement is a jump statement which is sometimes also referred to as an unconditional
 jump statement. The goto statement can be used to jump from anywhere to anywhere within a function.

 Syntax:
 Syntax1 | Syntax2

 goto label; | label:
 . | .
 . | .
 . | .
 label: | goto label;

 In the above syntax, the first line tells the compiler to go to or jump to the statement marked as a label.
 Here, the label is a user-defined identifier that indicates the target statement. The statement immediately
 followed after ‘label:’ is the destination statement. The ‘label:’ can also appear before the ‘goto label;’
 statement in the above syntax.

 [4]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 Flowchart of goto Statement in C

 Example:
 // C program to check if a number is
 // even or not using goto statement
 #include <stdio.h>

 // function to check even or not
 void checkEvenOrNot(int num)
 {

 if (num % 2 == 0)
 // jump to even
 goto even;

 else
 // jump to odd
 goto odd;

 even:
 printf("%d is even", num);
 // return if even
 return;

 odd:
 printf("%d is odd", num);

 }

 int main()

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 {
 int num = 26;
 checkEvenOrNot(num);
 return 0;

 }

 Output:
 26 is even

 OR

 4.a. Explain Relational operators in C language with examples.
 Relational operators are the symbols that are used for comparison between two values to understand
 the type of relationship a pair of numbers shares. The result that we get after the relational operation is a
 boolean value, that tells whether the comparison is true or false. Relational operators are mainly used in
 conditional statements and loops to check the conditions in C programming.

 Example:
 // C program to demonstrate working of relational operators
 #include <stdio.h>

 int main()
 {

 int a = 10, b = 4;

 // greater than example
 if (a > b)

 printf("a is greater than b\n");
 else

 printf("a is less than or equal to b\n");

 // greater than equal to
 if (a >= b)

 printf("a is greater than or equal to b\n");

 [6]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 b.

 else
 printf("a is lesser than b\n");

 // less than example
 if (a < b)

 printf("a is less than b\n");
 else

 printf("a is greater than or equal to b\n");

 // lesser than equal to
 if (a <= b)

 printf("a is lesser than or equal to b\n");
 else

 printf("a is greater than b\n");

 // equal to
 if (a == b)

 printf("a is equal to b\n");
 else

 printf("a and b are not equal\n");

 // not equal to
 if (a != b)

 printf("a is not equal to b\n");
 else

 printf("a is equal b\n");

 return 0;
 }

 Output:
 a is greater than b
 a is greater than or equal to b
 a is greater than or equal to b
 a is greater than b
 a and b are not equal
 a is not equal to b

 With proper syntax, explain different conditional branching statements. Give suitable examples for
 each.

 Conditional Branching Statements in C are used to execute the specific blocks of code on the basis of
 some condition (as per requirements). Conditional Branching Statements in C are:

 [8]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 ● if Statement
 ● if else Statement
 ● else-if Statement
 ● switch Statement

 if Statement

 This statement is used to execute the specific block of code if a certain condition is evaluated to be true.

 Syntax

 if (condition) {
 //code to be executed if condition specified evaluates is true

 }

 Example

 #include <stdio.h>
 int main() {

 int x = 10;
 if (x > 5) {

 printf("x is greater than 5");
 }
 return 0;

 }
 Output

 x is greater than 5

 if else Statement

 The if-else statement is a decision-making statement that is used to decide whether the part of the code
 will be executed or not based on the specified condition (test expression).

 Syntax

 if (condition) {

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 // statements
 } else{

 // code executed if condition is false
 }

 Example

 #include <stdio.h>
 int main() {
 int x = 10;
 if (x < 5) {

 printf("x is less than 5\n");
 } else {

 printf("x is greater than or equal to 5\n");
 }
 return 0;

 }
 Output
 x is greater than or equal to 5

 else if Statement

 The else if statement in Cis used when we want to check multiple conditions. It follows an "if"
 statement and is executed if the previous "if" statement’s condition is false.

 Syntax

 if (condition1) {
 // code to be executed if condition1 is true

 }
 else if (condition2) {

 // code to be executed if condition2 is true and condition1 is false
 }

 Example

 #include <stdio.h>
 int main() {

 int x = 10;
 if (x > 15) {

 printf("x is greater than 15");
 }
 else if (x > 5) {

 printf("x is greater than 5 but less than or equal to 15");

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 }
 else {

 printf("x is less than or equal to 5");
 }
 return 0;

 }
 Output
 x is greater than 5 but less than or equal to 15

 switch Statement

 The switch statement in C is used when we have multiple conditions to check. It is often used as an
 alternative to multiple "if" and "else if" statements.

 Syntax

 switch (expression) {
 case value1:

 // code to be executed if expression equals value1
 break;

 case value2:
 // code to be executed if expression equals value2
 break;

 ...
 default:

 // code to be executed if none of the cases match
 break;

 }

 Example

 #include <stdio.h>
 int main() {

 int x = 2;
 switch (x) {

 case 1:
 printf("x is 1");
 break ;

 case 2:
 printf("x is 2");
 break ;

 case 3:
 printf("x is 3");
 break ;

 default :

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 c.

 printf("x is not 1, 2, or 3");
 break ;

 }
 return 0;

 }
 Output
 x is 2

 Explain Type Conversion and Type Casting.

 Type Casting: In typing casting, a data type is converted into another data type by the programmer
 using the casting operator during the program design. In typing casting, the destination data type may be
 smaller than the source data type when converting the data type to another data type, that’s why it is
 also called narrowing conversion.

 Syntax/Declaration:-

 destination_datatype = (target_datatype)variable;
 (): is a casting operator.
 target_datatype: is a data type in which we want to convert the source data type.

 Type Casting example –

 float x;
 byte y;
 ...
 ...
 y=(byte)x; //Line 5
 In Line 5: you can see that, we are converting float(source) data type into byte(target) data type .

 2. Type conversion : In type conversion, a data type is automatically converted into another data type
 by a compiler at the compiler time. In type conversion, the destination data type cannot be smaller than
 the source data type, that’s why it is also called widening conversion. One more important thing is that
 it can only be applied to compatible data types.

 Type Conversion example –

 int x=30;
 float y;
 y=x; // y==30.000000.

 [6]

 MODULE 3

 5.a. With neat syntax, explain function declaration and Function definition. [6]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 Function Declarations
 In a function declaration, we must provide the function name, its return type, and the number and type
 of its parameters.

 Syntax

 return_type name_of_the_function (parameter_1, parameter_2);

 The parameter name is not mandatory while declaring functions. We can also declare the function
 without using the name of the data variables.

 Example

 int sum(int a, int b); // Function declaration with parameter names
 int sum(int , int); // Function declaration without parameter names

 Function Definition
 The function definition consists of actual statements which are executed when the function is called (i.e.
 when the program control comes to the function).

 A ‘C’ function is generally defined and declared in a single step because the function definition always
 starts with the function declaration so we do not need to declare it explicitly.

 SYNTAX:
 return_type function_name (para1_type para1_name, para2_type para2_name)
 {

 // body of the function
 }

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 b.

 EXAMPLE

 // C program to show function
 // call and definition
 #include <stdio.h>

 // Function that takes two parameters
 // a and b as inputs and returns
 // their sum
 #include <stdio.h>

 int sum(int a, int b)
 {
 return a + b;

 }

 int main()
 {
 // Calling sum function and
 // storing its value in add variable
 int add = sum(10, 30);

 printf("Sum is: %d", add);
 return 0;

 }

 Output

 Sum is: 40

 Explain the different types of storage classes.
 [8]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 Storage classes in C are used to determine the lifetime, visibility, memory location, and initial value of a
 variable. There are four types of storage classes in C

 ○ Automatic
 ○ External
 ○ Static
 ○ Register

 Storage
 Classes

 Storage
 Place

 Default Value Scope Lifetime

 auto RAM Garbage Value Local Within function

 extern RAM Zero Global Till the end of the main program Maybe
 declared anywhere in the program

 static RAM Zero Local Till the end of the main program, Retains value
 between multiple functions call

 register Register Garbage Value Local Within the function

 Automatic

 ○ Automatic variables are allocated memory automatically at runtime.
 ○ The visibility of the automatic variables is limited to the block in which they are defined.
 ○ The scope of the automatic variables is limited to the block in which they are defined.The

 automatic variables are initialized to garbage by default.
 ○ The memory assigned to automatic variables gets freed upon exiting from the block.
 ○ The keyword used for defining automatic variables is auto.
 ○ Every local variable is automatic in C by default.

 Example

 #include <stdio.h>

 int main()

 {

 int a; //auto

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 char b;

 float c;

 int d = 10;//auto

 printf("%d ",++d);

 printf("%d %c %f",a,b,c); // printing initial default value of automatic variables a, b, and c.

 return 0;

 }

 Output:

 11 garbage garbage garbage

 Static

 ○ The variables defined as static specifier can hold their value between the multiple function calls.
 ○ Static local variables are visible only to the function or the block in which they are defined.
 ○ A same static variable can be declared many times but can be assigned at only one time.
 ○ Default initial value of the static integral variable is 0 otherwise null.
 ○ The visibility of the static global variable is limited to the file in which it has declared.
 ○ The keyword used to define static variable is static.

 Example

 #include<stdio.h>

 void sum()

 {

 static int a = 10;

 static int b = 24;

 printf("%d %d \n",a,b);

 a++;

 b++;

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 }

 void main()

 {

 int i;

 for (i = 0; i< 3; i++)

 {

 sum(); // The static variables holds their value between multiple function calls.

 }

 }

 Output:

 10 24
 11 25
 12 26

 Register

 ○ The variables defined as the register is allocated the memory into the CPU registers depending
 upon the size of the memory remaining in the CPU.

 ○ We can not dereference the register variables, i.e., we can not use &operator for the register
 variable.

 ○ The access time of the register variables is faster than the automatic variables.
 ○ The initial default value of the register local variables is 0.
 ○ The register keyword is used for the variable which should be stored in the CPU register.

 However, it is compiler?s choice whether or not; the variables can be stored in the register.
 ○ We can store pointers into the register, i.e., a register can store the address of a variable.
 ○ Static variables can not be stored into the register since we can not use more than one storage

 specifier for the same variable.

 Example

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 #include <stdio.h>

 int main()

 {

 register int a; // variable a is allocated memory in the CPU register. The initial default value of a is 0.

 printf("%d",a);

 }

 Output:

 0

 External

 ○ The external storage class is used to tell the compiler that the variable defined as extern is
 declared with an external linkage elsewhere in the program.

 ○ The variables declared as extern are not allocated any memory. It is only declaration and
 intended to specify that the variable is declared elsewhere in the program.

 ○ The default initial value of external integral type is 0 otherwise null.
 ○ We can only initialize the extern variable globally, i.e., we can not initialize the external variable

 within any block or method.
 ○ An external variable can be declared many times but can be initialized at only once.
 ○ If a variable is declared as external then the compiler searches for that variable to be initialized

 somewhere in the program which may be extern or static. If it is not, then the compiler will
 show an error.

 Example

 #include <stdio.h>

 int main()

 {

 extern int a; // Compiler will search here for a variable a defined and initialized somewhere in the
 pogram or not.

 printf("%d",a);

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 c.

 }

 int a = 20;

 Output

 20

 What is recursion? Write a C program to find the factorial of a number using a recursion function.

 Definition:
 Recursion is the process of a function calling itself repeatedly till the given condition is satisfied. A
 function that calls itself directly or indirectly is called a recursive function and such kind of function
 calls are called recursive calls.

 #include <stdio.h>

 // A recursive function to calculate factorial
 int factorial(int n) {

 if (n == 0) {
 return 1; // Base case

 } else {
 //function calling itself with modified argument
 return n * factorial(n - 1);

 }
 }

 int main() {
 int num;

 // Prompt user to enter a number
 printf("Enter a non-negative integer: ");
 scanf("%d", &num); //store the number in num

 // Validate the input. Check whether the entered
 // number is non-negative.
 if (num < 0) {

 printf("Factorial is calculated for negative numbers.\n");
 } else {

 // Calculate and print the factorial for input number
 printf("Factorial of %d is %d\n", num, factorial(num));

 }

 [6]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 return 0;
 }

 OUTPUT:

 Enter a non-negative integer: 5
 Factorial of 5 is 120

 OR

 6.a. What is an array? Explain how one dimensional arrays are declared and initialized. Write a C program
 to find the largest of ‘N’ elements.

 An array is a collection of elements of the same type stored in contiguous memory locations. This
 organization allows efficient access to elements using their index. Arrays can also be of different types
 depending upon the direction/dimension they can store the elements. It can be 1D, 2D, 3D, and more.
 We generally use only one-dimensional, two-dimensional, and three-dimensional arrays.
 One-Dimensional Arrays in C
 A one-dimensional array can be viewed as a linear sequence of elements. We can only increase or
 decrease its size in a single direction.

 Only a single row exists in the one-dimensional array and every element within the array is accessible
 by the index. In C, array indexing starts zero-indexing i.e. the first element is at index 0, the second at
 index 1, and so on up to n-1 for an array of size n.

 Syntax of One-Dimensional Array in C
 The following code snippets shows the syntax of how to declare an one dimensional array and how to
 initialize it in C.

 1D Array Declaration Syntax

 In declaration, we specify then name and the size of the 1d array.

 elements_type array_name[array_size];

 [12]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 In this step, the compiler reserved the given amount of memory for the array but this step does not
 define the value of the elements. They may contain some random values. So we initialize the array to
 give its elements some initial valu

 1D Array Initialization Syntax

 In declaration, the compiler reserved the given amount of memory for the array but does not define the
 value of the element. To assign values, we have to initialize an array.

 elements_type array_name[array_size] = {value1, value2, ... };
 This type of The values will be assigned sequentially, means that first element will contain value1,
 second value2 and so on.

 This initialization only works when performed with declaration.

 #include <stdio.h>

 int main() {

 int n;

 double arr[100];

 printf("Enter the number of elements (1 to 100): ");

 scanf("%d", &n);

 for (int i = 0; i < n; ++i) {

 printf("Enter number%d: ", i + 1);

 scanf("%lf", &arr[i]);

 }

 // storing the largest number to arr[0]

 for (int i = 1; i < n; ++i) {

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 b.

 if (arr[0] < arr[i]) {

 arr[0] = arr[i];

 }

 }

 printf("Largest element = %.2lf", arr[0]);

 return 0;

 }

 Output
 Enter the number of elements (1 to 100): 5
 Enter number1: 34.5
 Enter number2: 2.4
 Enter number3: -35.5
 Enter number4: 38.7
 Enter number5: 24.5
 Largest element = 38.70

 Write a C program to sort the given set of N numbers using Bubble Sort technique.

 #include <stdio.h>
 int main()
 {
 int array[100], n, c, d, swap;
 printf("Enter number of elements\n");
 scanf("%d", &n);
 printf("Enter %d integers\n", n);
 for (c = 0; c < n; c++)
 scanf("%d", &array[c]);
 for (c = 0 ; c < n - 1; c++)
 {
 for (d = 0 ; d < n - c - 1; d++)
 {
 if (array[d] > array[d+1]) /* For decreasing order use '<' instead of '>' */
 {
 swap = array[d];
 array[d] = array[d+1];
 array[d+1] = swap;
 }

 [8]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 }
 }
 printf("Sorted list in ascending order:\n");
 for (c = 0; c < n; c++)
 printf("%d\n", array[c]);
 return 0;
 }

 OUTPUT:
 Enter number of elements
 5
 Enter 5 integers
 9 3 1 7 0
 Sorted list in ascending order:
 0
 1
 3
 7
 9

 MODULE 4

 7.a.

 b.

 List the applications of arrays.

 In the C programming language, arrays are used in a wide range of applications. Few of them are as
 follows

 ● Arrays are used to Store List of values
 ● Arrays are used to Perform Matrix Operations
 ● Arrays are used to implement Search Algorithms
 ● Arrays are used to implement Sorting Algorithms
 ● Arrays are used to implement Data Structures
 ● Arrays are also used to implement CPU Scheduling Algorithms

 Write a C program to implement Matrix multiplication and validate the rules of multiplication.

 #include<stdio.h>

 int main()
 {

 int a[10][10],b[10][10],c[10][10];
 int m,n,p,q;
 int i,j,k;

 [4]

 [10]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 // Input the order of Matrix A - m x n
 printf("Enter the order of matrix A :");
 scanf("%d%d",&m,&n);

 // Input the order of Matrix B - p x q
 printf("Enter the order of matrix B:");
 scanf("%d%d",&p,&q);

 /* For multiplication of two matrices, the
 number of columns in the first matrix
 should be equal to the number of rows
 in the second matrix */
 if(n!=p)
 {

 printf("Number of columns of Matrix A is not equal to number of rows of matrix B\n");
 printf("Matrix Multiplication not possible....\n");
 return (1);

 }

 // Input the elements into Matrix A
 printf("\nEnter %d elements into matrix A : ", m*n);
 for(i=0;i<m;i++)
 {

 for(j=0;j<n;j++)
 {

 scanf("%d",&a[i][j]);
 }

 }

 // Display matrix A in matrix format
 printf("\nThe matrix A is ---\n");
 for(i=0;i<m;i++)
 {

 for(j=0;j<n;j++)
 {

 printf("%d\t",a[i][j]);
 }
 printf("\n");

 }

 // Input the elements into Matrix B
 printf("\nEnter %d elements into matrix B : ", p*q);
 for (i=0;i<p;i++)
 {

 for (j=0;j<q;j++)

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 {
 scanf("%d",&b[i][j]);

 }
 }

 // Display Matrix B in matrix format
 printf("\nThe matrix B is ---\n");
 for(i=0;i<p;i++)
 {

 for(j=0;j<q;j++)
 {

 printf("%d\t",b[i][j]);
 }
 printf("\n");

 }

 // Compute (Matrix A) X (Matrix B)
 for(i=0;i<m;i++)
 {

 for(j=0;j<q;j++)
 {

 c[i][j] = 0;
 for(k=0;k<n;k++)
 {

 c[i][j] = c[i][j] + (a[i][k] * b[k][j]);
 }

 }
 }

 // Display product matrix - Matrix C
 printf("\nThe product matrix is ---\n\n");
 for(i=0;i<m;i++)
 {

 for(j=0;j<q;j++)
 {

 printf("%d\t",c[i][j]);
 }
 printf("\n");

 }

 return 0;
 }

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 c.

 OUTPUT
 Enter the order of matrix A :2 2
 Enter the order of matrix B:2 2

 Enter 4 elements into matrix A : 2 2 2 2

 The matrix A is ---
 2 2
 2 2

 Enter 4 elements into matrix B : 1 1 1 1

 The matrix B is ---
 1 1
 1 1

 The product matrix is ---

 4 4
 4 4

 With syntax and examples, explain the scan set function.

 scanf family functions support scanset specifiers which are represented by %[] . Inside scanset, we can
 specify single character or range of characters. While processing scanset, scanf will process only those
 characters which are part of scanset. We can define scanset by putting characters inside square brackets.
 Please note that the scansets are case-sensitive.

 We can also use scanset by providing comma in between the character you want to add.

 Syntax:
 scanf(“%[characters/range]”,name_scanf);

 Example: scanf(%s[A-Z,_,a,b,c]s,str);

 /* A simple scanset example */
 #include <stdio.h>

 int main(void)
 {

 char str[128];

 [6]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 printf("Enter a string: ");
 scanf("%[A-Z]s", str);

 printf("You entered: %s\n", str);

 return 0;
 }

 Output:

 Enter a string: Skill Vertex
 You entered: Skill Vertex

 OR

 8.a. Explain the different methods of reading and writing strings using formatted and unformatted functions.
 Write an example for each.

 Formatted and Unformatted I/O Statements/functions
 Formatted I/O functions are used to take various inputs from the user and display multiple
 outputs to the user.
 Formatted I/O functions
 1. printf()
 2. scanf()
 3. sprintf()
 4. sscanf()

 1. printf():
 printf() function is used in a C program to display any value like float, integer, character, string,
 etc on the console screen. It is a pre-defined function that is already declared in the
 stdio.h(header file).
 Syntax :
 To display any variable value.
 printf(“Format Specifier”, var1, var2, …., varn);
 Example:
 printf(“Enter the text which you want to display”);
 Output:
 Enter the text which you want to display

 Or
 #include<stdio.h>
 void main()
 {
 int a;

 [12]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 a = 20; // Assigning a value in a variable
 printf("%d", a); // Printing the value of a variable
 }
 Output:
 20

 2. scanf():
 scanf() function is used in the C program for reading or taking any value from the keyboard by
 the user, these values can be of any data type like integer, float, character, string, and many
 more. This function is declared in stdio.h(header file).

 Syntax:
 scanf(“Format Specifier”, &var1, &var2, …., &varn);

 Example:
 #include<stdio.h>
 int main()
 {
 int num1;
 printf("Enter a integer number: ");
 scanf("%d", &num1);
 printf("You have entered %d", num1);
 return 0;
 }
 Output:
 Enter a integer number: 56
 You have entered 56
 3. sprintf():
 sprintf stands for “string print”. This function is similar to printf() function but this function
 prints the string into a character array instead of printing it on the console screen.
 Syntax:
 sprintf(array_name, “format specifier”, variable_name);
 Example:
 #include <stdio.h>
 int main()
 {
 char str[50];
 int a = 2, b = 8; // The string "2 and 8 are even number"
 sprintf(str, "%d and %d are even number", a, b); // is now stored into str
 printf("%s", str); // Displays the string
 return 0;
 }
 Output
 2 and 8 are even number

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 4. sscanf():
 sscanf stands for “string scanf”. This function is similar to scanf() function but this function
 reads data from the string or character array instead of the console screen.
 Syntax:
 sscanf(array_name, “format specifier”, &variable_name);
 Example:
 #include <stdio.h>
 int main()
 {
 char str[50];
 int a = 2, b = 8, c, d; // The string "a = 2 and b = 8"
 sprintf(str, "a = %d and b = %d",a, b); // is now stored into str , character array
 sscanf(str, "a = %d and b = %d",&c, &d); // The value of a and b is now in c and d
 printf("c = %d and d = %d", c, d); // Displays the value of c and d
 return 0;
 }
 Output:
 c = 2 and d = 8

 Unformatted Input/Output Statements/functions
 Unformatted I/O functions are used only for character data type or character array/string and
 cannot be used for any other datatype. These functions are used to read single input from the
 user at the console and it allows to display the value at the console.
 These functions are called unformatted I/O functions because we cannot use format specifiers
 in these functions and hence, cannot format these functions according to our needs.
 Unformatted Input/Output Statements
 1. getch()
 2. getche()
 3. getchar()
 4. putchar()
 5. gets()
 6. puts()
 7. putch()

 1. getch():
 getch() function reads a single character from the keyboard by the user but doesn’t display that
 character on the console screen and immediately returned without pressing enter key. This
 function is declared in conio.h(header file). getch() is also used for hold the screen.
 Syntax:
 getch();
 or
 variable-name = getch();
 Example:
 #include <conio.h>
 #include <stdio.h>

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 int main()
 {
 printf("Enter any character: ");
 getch();// Reads a character but & not displays
 return 0;
 }
 Output:
 Enter any character:
 2. getche():
 getche() function reads a single character from the keyboard by the user and displays it on the
 console screen and immediately returns without pressing the enter key. This function is
 declared in conio.h(header file).
 Syntax:
 getche();
 or
 variable_name = getche();
 Example:
 #include <conio.h>
 #include <stdio.h>
 int main()
 {
 printf("Enter any character: "); // Reads a character and displays immediately
 getche();
 return 0;
 }
 Output:
 Enter any character: g

 3. getchar():
 The getchar() function is used to read only a first single character from the keyboard whether
 multiple characters is typed by the user and this function reads one character at one time until
 and unless the enter key is pressed. This function is declared in stdio.h(header file)
 Syntax:
 Variable-name = getchar();
 Example:
 #include <conio.h>
 #include <stdio.h>
 int main()
 {
 char ch; // Declaring a char type variable
 printf("Enter the character: ");
 ch = getchar(); // Taking a character from keyboard
 printf("%c", ch); // Displays the value of ch
 return 0;
 }

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 Output:
 Enter the character: a
 a
 4. putchar():
 The putchar() function is used to display a single character at a time by passing that character
 directly to it or by passing a variable that has already stored a character. This function is
 declared in stdio.h(header file)
 Syntax:
 putchar(variable_name);
 Example:
 #include <conio.h>
 #include <stdio.h>
 int main()
 {
 char ch;
 printf("Enter any character: ");
 ch = getchar(); // Reads a character
 putchar(ch); // Displays that character
 return 0;
 }
 Output:
 Enter any character: Z
 Z

 5. gets():
 gets() function reads a group of characters or strings from the keyboard by the user and these
 characters get stored in a character array. This function allows us to write space-separated texts
 or strings. This function is declared in stdio.h(header file).
 Syntax:
 char str[length of string in number]; //Declare a char type variable of any length
 gets(str);
 Example:
 #include <conio.h>
 #include <stdio.h>
 int main()
 {
 char name[50]; // Declaring a char type array of length 50 characters
 printf("Please enter some texts: ");
 gets(name); // Reading a line of character or a string
 printf("You have entered: %s",name); // Displaying this line of character or a string
 return 0;
 }
 Output:
 Please enter some texts: Welcome to CCP/POP
 You have entered: Welcome to CCP/POP

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 b.

 6. puts():
 puts() function is used to display a group of characters or strings which is already stored in a
 character array. This function is declared in stdio.h(header file).
 Syntax:
 puts(identifier_name);
 Example:
 #include <stdio.h>
 int main()
 {
 char name[50];
 printf("Enter your text: ");
 gets(name); // Reads string from user
 printf("Your text is: ");
 puts(name); // Displays string
 return 0;
 }
 Output:
 Enter your text: GeeksforGeeks
 Your text is: GeeksforGeeks

 7. putch():
 putch() function is used to display a single character which is given by the user and that
 character prints at the current cursor location. This function is declared in conio.h(header file)
 Syntax:
 putch(variable_name);
 Example:
 #include <conio.h>
 #include <stdio.h>
 int main()
 {
 char ch;
 printf("Enter any character:\n ");
 ch = getch(); // Reads a character from the keyboard
 printf("\nEntered character is: ");
 putch(ch); // Displays that character on the console
 return 0;
 }
 Output:
 Enter any character:
 Entered character is: d

 Write a C program to pass a two dimensional array to the function and display in matrix format.

 #include <stdio.h>

 [8]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 #define ROWS 3
 #define COLS 4

 // Function to display the matrix
 void displayMatrix(int matrix[ROWS][COLS], int rows, int cols) {

 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < cols; j++) {

 printf("%d\t", matrix[i][j]);
 }
 printf("\n");

 }
 }

 int main() {
 // Initialize a 2D array
 int matrix[ROWS][COLS] = {

 {1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 10, 11, 12}

 };

 // Display the matrix
 printf("The matrix is:\n");
 displayMatrix(matrix, ROWS, COLS);

 return 0;
 }

 OUTPUT:

 The matrix is:
 1 2 3 4
 5 6 7 8
 9 10 11 12

 MODULE 5

 9.a. Explain the following string manipulation functions:
 (i) strlen() (ii) strcpy() (iii) strcmp() (iv) strcat()

 String manipulation functions in C are part of the <string.h> library and are used to perform various
 operations on strings (character arrays). Let's go through the functions you've mentioned:

 (i) strlen()

 [8]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 Function:

 ● The strlen() function is used to calculate the length of a string (i.e., the number of characters in
 the string before the null terminator '\0').

 Syntax:

 size_t strlen(const char *str);

 Parameters:

 ● str: A pointer to the first character of the string whose length is to be determined.

 Returns:

 ● The function returns the length of the string as an integer (size_t), excluding the null terminator.

 Example:

 #include <stdio.h>

 #include <string.h>

 int main() {

 char str[] = "Hello, World!";

 printf("Length of the string is: %lu\n", strlen(str));

 return 0;

 }

 Output:

 Length of the string is: 13

 (ii) strcpy()

 Function:

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 ● The strcpy() function is used to copy a string from the source (src) to the destination (dest).

 Syntax:

 char *strcpy(char *dest, const char *src);

 Parameters:

 ● dest: A pointer to the destination array where the content will be copied.
 ● src: A pointer to the source string to be copied.

 Returns:

 ● The function returns a pointer to the destination string (dest).

 Example:

 #include <stdio.h>

 #include <string.h>

 int main() {

 char src[] = "Hello, World!";

 char dest[20];

 strcpy(dest, src);

 printf("Copied string: %s\n", dest);

 return 0;

 }

 Output:

 Copied string: Hello, World!

 (iii) strcmp()

 Function:

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 ● The strcmp() function is used to compare two strings (str1 and str2).

 Syntax:

 int strcmp(const char *str1, const char *str2);

 Parameters:

 ● str1: A pointer to the first string to be compared.
 ● str2: A pointer to the second string to be compared.

 Returns:

 ● The function returns an integer that can be:
 ○ 0 : If str1 and str2 are equal.
 ○ < 0 : If str1 is less than str2.
 ○ > 0 : If str1 is greater than str2.

 Example:

 #include <stdio.h>

 #include <string.h>

 int main() {

 char str1[] = "Hello";

 char str2[] = "World";

 int result = strcmp(str1, str2);

 if (result == 0) {

 printf("The strings are equal.\n");

 } else if (result < 0) {

 printf("str1 is less than str2.\n");

 } else {

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 printf("str1 is greater than str2.\n");

 }

 return 0;

 }

 Output:

 str1 is less than str2.

 (iv) strcat()

 Function:

 ● The strcat() function is used to concatenate (append) the source string (src) to the end of the
 destination string (dest).

 Syntax:

 char *strcat(char *dest, const char *src);

 Parameters:

 ● dest: A pointer to the destination array, which should contain a string and have enough space to
 hold the result.

 ● src: A pointer to the source string to be appended.

 Returns:

 ● The function returns a pointer to the resulting string (dest).

 Example:

 #include <stdio.h>

 #include <string.h>

 int main() {

 char dest[20] = "Hello";

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 b.

 char src[] = ", World!";

 strcat(dest, src);

 printf("Concatenated string: %s\n", dest);

 return 0;

 }

 Output:

 Concatenated string: Hello, World!

 Define pointer. Explain the declaration and initialization of a pointer variable with an example.

 Definition:
 A pointer is defined as a derived data type that can store the address of other C variables or a memory
 location. We can access and manipulate the data stored in that memory location using pointers.
 Syntax of C Pointers
 The syntax of pointers is similar to the variable declaration in C, but we use the (*) dereferencing
 operator in the pointer declaration.
 datatype * ptr;

 1. Pointer Declaration

 In pointer declaration, we only declare the pointer but do not initialize it. To declare a pointer, we use
 the (*) dereference operator before its name.

 Example

 int *ptr;

 The pointer declared here will point to some random memory address as it is not initialized. Such
 pointers are called wild pointers.

 2. Pointer Initialization

 [4]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 c.

 Pointer initialization is the process where we assign some initial value to the pointer variable. We
 generally use the (&: ampersand) addressof operator to get the memory address of a variable and
 then store it in the pointer variable.

 Example

 int var = 10;
 int * ptr;
 ptr = &var;

 Write a C program to compute the sum mean and standard deviation of all elements stored in an array of
 N real numbers using pointers.

 #include <stdio.h>
 #include <math.h>

 int main()
 {

 int i, n;
 float a[10],sum,mean,var,sd;
 float *p; // p is a pointer to float data

 // Accept number of elements - n
 printf("Enter Number of elements:");
 scanf("%d", &n);

 // Accept n real numbers
 printf("Enter %d numbers :",n);
 p = a; // pointer p points to first element of a
 for (i=0;i<n;i++)
 {

 scanf("%f", p);
 p++; // pointer p points to the next element of a

 }

 // Compute Sum of array elements
 sum = mean = var = sd = 0.0;
 p = a; // pointer p points to the first element of a
 for(i=0;i<n;i++)
 {

 sum = sum + (*p);
 p++;

 }

 // Compute mean

 [8]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 mean = sum / (float) n;

 // Compute Variance
 p = a;
 for(i=0;i<n;i++)
 {

 var = var + pow((*p - mean),2);
 p++;

 }
 var = var / (float) n;

 // Compute Standard Deviation
 sd = sqrt(var);

 // print sum, mean and standard deviation
 printf("Sum = %f\n", sum);
 printf("Mean = %f\n", mean);
 printf("Standard Deviation = %f\n", sd);

 return 0;
 }

 OUPUT

 Enter Number of elements:5
 Enter 5 numbers :1
 2
 3
 4
 5
 Sum = 15.000000
 Mean = 3.000000
 Standard Deviation = 1.414214

 OR

 10.a Define structure. Explain the declaration of structure with an example.

 The structure in C is a user-defined data type that can be used to group items of possibly different types
 into a single type. The struct keyword is used to define the structure in the C programming language.
 The items in the structure are called its member and they can be of any valid data type. Additionally,
 the values of a structure are stored in contiguous memory locations.

 [8]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 C Structure Declaration
 We have to declare structure in C before using it in our program. In structure declaration, we specify its
 member variables along with their datatype. We can use the struct keyword to declare the structure in C
 using the following syntax:

 Syntax

 struct structure_name {
 data_type member_name1;
 data_type member_name1;

 };
 The above syntax is also called a structure template or structure prototype and no memory is allocated
 to the structure in the declaration.

 Example:
 #include <stdio.h>

 // Declaration of the structure
 struct Person {

 char name[50]; // Name of the person
 int age; // Age of the person
 float height; // Height of the person in meters

 };

 int main() {
 // Declare a variable of type 'struct Person'
 struct Person person1;

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 b.

 // Assign values to the members of the structure
 printf("Enter the name of the person: ");
 scanf("%s", person1.name);
 printf("Enter the age of the person: ");
 scanf("%d", &person1.age);
 printf("Enter the height of the person in meters: ");
 scanf("%f", &person1.height);

 // Access and print the values of the structure members
 printf("\nPerson Details:\n");
 printf("Name: %s\n", person1.name);
 printf("Age: %d\n", person1.age);
 printf("Height: %.2f meters\n", person1.height);

 return 0;
 }

 Output:
 Enter the name of the person: John
 Enter the age of the person: 25
 Enter the height of the person in meters: 1.75

 Person Details:
 Name: John
 Age: 25
 Height: 1.75 meters

 Write a C program to implement structure to read, write and compute average marks and the students
 scoring above and below the average marks for a class of N students.

 #include<stdio.h>

 struct student
 {

 int id;
 char name[20];
 float sub[6];
 float avg;

 };

 int main()
 {

 struct student s[20];
 float sum=0;

 [12]

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 int i,j,n;

 // Accept the number of records/students
 printf("Enter the number of records :");
 scanf("%d",&n);

 // Accept data for all the fields/members of each record
 printf("Enter %d student details...\n",n);

 for(i=0;i<n;i++)
 {

 printf("\n\nEnter student ID, name :"); // Student ID
 scanf("%d%s",&s[i].id, s[i].name);

 printf("Enter 6 subject marks :");

 for (j=0;j<6;j++)
 {

 scanf("%f", &s[i].sub[j]);
 }

 }

 // Compute the average of each student

 for(i=0;i<n;i++)
 {

 sum=0;
 for (j=0;j<6;j++)

 {
 sum = sum + s[i].sub[j];

 }
 s[i].avg = sum / 6;

 }

 // Display student ID, name and average of all students
 // who have scored above average marks
 printf("Students scoring above the average marks....\n");
 printf("\n\nID\tName\tAverage\n\n");

 for(i=0;i<n;i++)
 {

 if(s[i].avg>=35.0)
 printf("%d\t%s\t%f\n",s[i].id,s[i].name,s[i].avg);

 }

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 // Display student ID, name and average of all students
 // who have scored below average marks

 printf("\n\nStudents scoring below the average marks....\n");
 printf("\n\nID\tName\tAverage\n\n");

 for(i=0;i<n;i++)
 {

 if(s[i].avg<35.0)
 printf("%d\t%s\t%f\n",s[i].id,s[i].name,s[i].avg);

 }

 return 0;
 }

 OUTPUT:
 Enter the number of records :3
 Enter 3 student details...

 Enter student ID, name :1 hema
 Enter 6 subject marks :90 89 78 99 100 98

 Enter student ID, name :2 Sanvi
 Enter 6 subject marks :66 65 45 23 42 58

 Enter student ID, name :3 Pavi
 Enter 6 subject marks :23 25 51 62 24 23
 Students scoring above the average marks....

 ID Name Average

 1 hema 92.333336
 2 Sanvi 49.833332

 Students scoring below the average marks....

 ID Name Average

 3 Pavi 34.666668

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

 Mrs. Rajeshwari R , Assistant professor,CSE Dept

