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Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. VTU Formula Hand Book is permitted.
3. M : Marks , L: Bloom’s level , C: Course outcontes.
Module— | 7 g0 "2 M L[ C
Q.1 l‘md the anglc belween the surfaces: : i 7 | L2 | COI
,\yy 3x + 2% and 3x° —y2+2z=lalthupomt(1 -2, 1). ,
* |
s R 5 7 | L2 | cot !
Q. U ICF =V(x* +y’ +2z* =3xyz),find div Fand curl F. :
‘ |
i= =3 yJ 6 | L3|COt!
~C. * Show that the vector F=— is both solenondal and irrotational. f
| ' = = X +y e ~_J
t— : -
Q.2 | a. Find the total work done by the force 7 | L2 COL |
| i7=3xy§'.-523+10x12a10ng the curye x = €+1;y=2tz="¢fromt=1to |
| t=2z At .
Lb. | Using Green’s theorem,_evaluate _[ (xy+y )dx+x2dywherc ‘¢’ is the | 7 | L3 COI
|l ':“"h‘:' [ - \'
| closed curve of the remon ‘bounded byy=x and y=x2. } "
! |
| L el
[ Using modern mathematical tools write the code to find the “find the | 6 | L2 | CcOs
if (gradrentofd)—x Y+ 2xz -4, '-‘_ ; |
‘ T ) |
[ Module — 2 : .
Q.3 . | Define a Subspace Show that the intersection of two subspaces ofavector | 7 | L2 | CO2 |
' Vis also a subspace of V. ' i
T @i Sh(_)_v;—[hzztﬂ;l"_v R —) R3 defncd by“T.(x y z) = , >(>-< Y, —z) is linear | 7 | L3 | CO2 j
| transformation. : '
| Tfu=[2,-5,-1], v [-7 46T, compute : 6 | L2 | CO2
Tl D il VP i) lu P F
. R ‘-...m l _——’
Tl OR
_QT e | ! Define lincarly mdcpund(.nt and lmearly dependent set of vectors. Test the | 7 | L2 ‘l co2
L vectors vy = (3,0, -6]", va=[—4, 1, 7]  and v; = [-2, I, 5]" forms a basis. |!
i - R L
= | | o 1 -4 9 -71|7|L3|CO2
; é !

! b. . State Rank — Nullity-Theorem. For the matrix A = | -1 2 -4 1| 1 |
,, | Sales 5 -6 10 7 ‘I l
“Find @ i) Rank of A i) Dim (Nul A) iii) Bases |
o O ST 4. L
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DIVIA 11L&V 1

| Using the modern mathematical tool, write the code to represent the | 6 | L2 | CO5
reflection transformation T R? > R? and to find the image of vector
| (10, 0) when it is reflected about y — axis. :
| :
B Module-3 = " 3
i (- T,
Q.5 | 2. Find the Laplace Transform of (i) ¢ cos 2t 1i) M 7|L2]Co3 ’
!
L - ‘ , |
b. \ Find the Laplace Transform of the squarc ‘wave function of period Za, | 7 | 1.2 | CO3
| k O<t<a _
' defined by [{t) = .- |
i -k a<t<2a - {
! cost 0<t<1t 6 | L3 ] CO3
. | Explain f{t1) = {cos2t n<t<2"t in term of the umt step function and !
| cos3t. ~ t>2n k!
; hence find L[f{t)]. = =i j
i oy ~ ;
. s OR & -
Q.6 |a. ] Find the inverse Laplace transformer of 5 :° 7 L2 Ccos f :
K 2s=1 = i) 1 : i
st +4s4+29 (s—-4)* !
| -
— : s ' M
b. l Usmg lme wxr\mmnm th\.o.en~ find - the- inverse ij]p}ecc_transfonn ~of| -7 _L:z}ch3 §
. : . et 3 .
ROECESTN L% \ o= |
" < . \k iy & J
‘ : S , —
c. . Solve by the Laplace transforms y” + K’y = 0, given that y(0)=2, y'(0)=0. | 6 | L2 F 03 |
s 2 " . Module 4 — ' !
Q.7 | a. |Find the real Toot of xlog,,x =1.2. by Regula — Falsi method correct to 2} 7 | L2|CO4
decxmal places the root lies between (2, 3). ;""':1:-'3‘
b. | Find mterpolatmg po]ynomlcal by Newton’s dw:ded dlfference formula for | 7 | L2 ‘ CO4 |
 the data f(1) = 4, f(3) = 32, f(4) = 55 and f(6)= 119, -
:' R J. | ;
= = rd 6 e* = E 6 L2 | CO4 |
¢..| Evaluate using Sunpson s — rule I——-—dx Dy taking six equal parts. , | 1
- ! "% 0 + X : ! '
| 5 . ST i || R
l , OR e ]
Q.8 |a. | Find the rcal root of the equation cos x = xe, using Newton’s — Raphson | 7 ;rL?. CO4 |
| “method, correct to 3 decimal places taking xo = 0.5. 1
1 || 1 B
b. | Use Newton’s backward interpolation formula to computc the value of \77 L3 | CO4
| when x =6, glven that |
P T3 x|1]12 [3[4 |5 ‘
| : yll{=1]1]{-1}1 C?‘*’”‘rx LIBRA
! = u[l(‘d» L._({\r\
L ——




4x+5° by Trapezoidal rule, taking 6 ordinatcs:-

[ 3 4 | s T — e LE—— B e
/ + | Evaluate ! dx 5 .
0

= Module -5

L“‘PIOY Taylors series method to find y(0.2), ;:,wcn that %’- =2y +3e’,
dx
| y(0) =

‘ Usmg_, Modified Euler’s method, find y(0.1) correct to 4 decimal places,
‘\ '\ given that y' = x — y?, y(0) = I, h=0.1, perform 2 iterations.

= - — —
‘ \ ¢ " Employ Milne’s predictor — corrector method given that y = (1 + y)
J l () =1, y(1.1) = 1233, y(12) ='1.548, y(1.3) = 1.979 to find y(1.4).

1 ‘ -

OR = e
Q 10 | a. ' So\ve y = logm (x + y) by modlﬁed Euler’s mt,thod atx=02 and x=0. 4
‘ with h=0.2 perform 2 iterations at each stage

e

1 at X= 0 5 correct to 4 decimal places

i

c. ‘Usmg modem mathematical too]s write a code to ﬁnd y(0.1), given

|
=X- 0) = 1 by Taylors series.
\ A CMAIT LIBRATTY
\ l T v - " «_E{yﬂiuwnr, 560637 '
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Solutions

Q1.
(a)

To find the angle between the surfaces, we first determine the normal vectors of each surface at the
point (1,-2,1).

For the first surface xy?z = 3z + 22, let f(x,y,2) = 2y%2 — 3x — 22, Then, the normal vector is
given by V f.
of of 0
op (2 0f o
oz’ Jy’ 0z
= (yQZ — 3, 2zyz, xy® — 22)
Substituting (z,y, z) = (1,-2,1):
Vf(l, 727 1) = (72 - 35 747 -2 - 2) = (757 747 74)
For the second surface 322 — y? + 22 = 1, let g(x,y,2) = 322 — y?> + 2z — 1. Then, the normal
vector is given by Vg.
dg dg 9y
Vg = a9 2 o
ox’ dy’ 0z
= (63;7 _2yv 2)
Substituting (z,y, z) = (1,-2,1):
v.g(17 _27 1) = (67 47 2)

The angle € between the surfaces is the angle between V f and Vg, given by

cosf = M
V£Vl
where
Vf-Vg=(-5)6)+(—-4)4)+ (-4)(2) =-30—16 —8 = —54
and
IVf| = /(=52 + (—4)% + (—4)2 = V25 + 16 + 16 = /57
Vgl = V(6)2 + (4)2 + (2)2 = /36 + 16 + 4 = v/56
Thus,
cosf = _ o
V57V56

To find div(F) and curl(F) for F = V(2 + ¢® + 23 — 3zy2):

fla,y,2) =a2° +y° + 2% — Buyz

Then,
5 of of of 2 2 2
F f e = — — —_
Vf (8;10’ 3y’ - (33: 3yz,3y* — 3xz,3z 3333/)
For the divergence,
N N 9 oo 9 o 2
div(F) = é%(Bx 3yz) + By (3y® — 3zz) + 82(3Z 3zy)

=6x+6y+6z=06(z+y+=2)

For the curl, = .
curl(F)=Vx F=0

since F is a gradient field and the curl of a gradient is zero.



(c) For the vector F = féJFTZ%

To check if F is solenoidal (divergence-free),

.= 0 x 0 Y
le(F) = 87{5 ([L'Q +y2> + aiy (.’E2 +y2)

Using the quotient rule,

_@+y) w2 (@P+y?)-y-2y
(22 +y?)? (22 +y?)?

so F' is solenoidal.

To check if F is irrotational (curl-free),

curl(F) =V x F =0

since F' has zero curl in 2D.

Q2.

(a) To find the work done by F' along the curve, we need to compute the line integral W = fC F-dr.
Parameterize the curve with x = t2 + 1, y = 22, z

F(t) = (x(t),y(t), 2(t)) = (2 +1) i+ (263) ]+ () k.
A d (12 11,262 43) = (20)7 + (48)] + (3t2)k.

Substitute z = t2 4+ 1, y = 2¢2, and z = {3 into F:

t3, and let ¢ € [1,2].

F(t) =382 +1)(2t>) i —5(t*) J+ 10> + 1) k
= (6t + 6t%) 7 — 5> + (10t> + 10) k

F(t)- g = (6t* 4 61%)(2t) + (—5t%)(4t) + (10£* 4+ 10)(3t%)

= 12t5 + 123 — 20t* + 30t* + 30t% = 12t° + 10t* + 123 + 30¢2
Integrate from t =1 to t = 2:

2
W= / (12t° +10t* + 126 + 30¢%) dt
1

Integrate each term separately:

oo [120 100 12t 3060 ?

16 5 4 3],

= [2° + 2% + 3¢ + 10¢°]
=(2-64+2-32+3-16+10-8) — (2-1+2-1+3-14+10-1)

= (128 +64+48+80) — (2+ 2+ 3+ 10) = 320 — 17 = 303
Thus, the total work done is W = 303.



(b) Using Green’s theorem to evaluate §(zy + y?) dx + 22 dy:

According to Green’s theorem,

foaranenan— [f (220 4y

where M = zy + y? and N = z2.

Calculate 8—1;[ and aM :

@_2 aﬂ_ +2
or D Oy Ty
Then,
ON oM
Fram =2z —(z+2y)=x—2y

The region D is bounded by y = = and y = x2. Set up the double integral:

//D(:E—Qy)dAz/Ol/g:(a:—Qy)dydx

Evaluate the inner integral with respect to y:

1
:/ [xy y]y zzdx
0

Thus, the value of the integral is 7.
(c) Python code to find the gradient of ® = 22y + 2xz — 4:
import sympy as sp

# Define variables
X, ¥y, 2z = sp.symbols(’x y z’)

# Define the scalar field Phi
Phi = x**2 *x y + 2 * x *x z - 4

# Calculate the gradient
gradient_Phi = sp.Matrix([sp.diff(Phi, var) for var in (x, y, 2)])

# Display the gradient
gradient_Phi



Q3.
(a)

Definition of a Subspace: A subset W C V of a vector space V is called a subspace of V if W
itself forms a vector space under the same operations of addition and scalar multiplication defined in
V. For W to be a subspace, it must satisfy: 1. The zero vector of V is in W. 2. W is closed under
vector addition: if @, v € W, then « 4+ ¢ € W. 3. W is closed under scalar multiplication: if & € W
and ¢ € R, then cu € W.

Intersection of Two Subspaces: Let U and W be two subspaces of V. The intersection U N W =
{#eV:¥eU and ¥ € W} is also a subspace of V.

Proof: To show that U N W is a subspace, we check the three conditions: 1. The zero vector is in
both U and W, soitisin UNW. 2. f &, 0 € UNW, then 4+ ¢ € U (since U is closed under addition)
and @ + 0 € W (since W is closed under addition), so u+7 € UNW. 3. f ce Rand @ € UNW,
then cil € U (since U is closed under scalar multiplication) and ciZ € W (since W is closed under scalar
multiplication), so ci € U NW.

Thus, U N W is a subspace of V.

Let T : R® — R? be defined by T'(z,y,2) = (2,9, —2). To show that T is a linear transformation, we
need to check that T satisfies the properties of additivity and scalar multiplication.

Additivity: Let (z1,y1,21) and (22, y2, 22) € R3. Then,

T (21,91, 21) + (T2, Y2, 22)) = T (21 + T2, Y1 + Y2, 21 + 22) = (21 + T2, Y1 + Y2, —(21 + 22))
and

T(z1,91,21) + T(w2,Y2, 22) = (21,91, —21) + (T2, Y2, —22) = (21 + 22, Y1 + Y2, —(21 + 22))

so T((w1,y1,21) + (T2, Y2, 22)) = T(z1, 91, 21) + T(22, Y2, 22)-
Scalar Multiplication: Let ¢ € R and (z,y, z) € R3. Then,

T(C : (33, Y, Z)) = T(CJ?, Y, CZ) = (C.I‘, Y, _CZ)

and
c: T(a:,y,z) =c- (.’L‘,y, _Z) = (Cl‘,Cy, _CZ)
Thus, T(C : (l‘,y,Z)) =cC- T(x,y,z)

Since T satisfies both properties, T is a linear transformation.

2 -7
Given @ = |—5| and ¥ = | —4|, we compute:
-1 6

(@,7) = 2(=7) + (=5)(—4) + (-1)(6) = =14 +20 — 6 = 0.

|@)|? = (@, @) = 2% + (—5)% + (=1)2 =4+ 25+ 1 = 30.

H*II2 (7,7) = (=7)2 + (—4)2 + 62 = 49 + 16 4 36 = 101.
o find ||i7 + §||?, first calculate @ +

2 —7 —5
Gi+7=|-5|+|-4]| =|-9
-1 6 5

Then,
@+ 9)* = (=5)* + (—9)* + 5% = 25 + 81 + 25 = 131



Q4.

(a) Definition of Linearly Independent and Linearly Dependent Sets: A set of vectors {0, ¥, ..., Uy }
in a vector space V is said to be linearly independent if the only solution to the equation

101 + CoUs + -+ + cpth, =0

isc; =cg=---=c¢, =0. If there exists a nontrivial solution (some ¢; # 0), then the vectors are said
to be linearly dependent.

Testing for Basis: To determine if {#), 72, 73} forms a basis in R3, we check if these vectors are linearly

3 —4 =2
independent. This can be done by setting up the matrix B = | 0 1 1 | and row reducing it to
-6 7 5
check for pivot columns.
3 -4 - 1 0 -2
o 1 1|2 o1 o1
-6 7 5 0 0 O

Since we have two pivot columns, ¥, ¥, U3 are linearly dependent and do not form a basis in R3.

(b) Rank-Nullity Theorem: For a matrix A with dimensions m x n, the Rank-Nullity Theorem states
that
rank(A) + nullity(4) = n

where rank(A) is the dimension of the column space of A, and nullity(A) is the dimension of the null
space of A.

1 -4 9 -7
Given the matrix A= (-1 2 -4 1 |:

5 —6 10 7

(i) Rank of A: Row reduce A to determine the number of pivot columns.

1 -4 9 -7 1 -4 0 -1
1 2 —4 1| BREE g o 1 9
5 -6 10 7 0 0 0 0

The rank of A is 2 (two pivot columns).

(ii) Dimension of Null Space (Nullity of A): Since A has 4 columns, by the Rank-Nullity
Theorem:
nullity(4) =4—-2=2

(iii) Bases for Column Space and Null Space: - The basis for the column space can be formed
by the pivot columns of the original matrix A, so a basis for the column space of A is

1 —4
10, 2
5| |-6

- To find the basis for the null space, we solve AZ = 0 and express the solutions in terms of free
variables:



Let 3 =t and x4 = s be free variables, then

4s 41 4 1
I e e N 0
T = / =51 +1 1
S 1 0
Therefore, a basis for the null space is
4 1
-2 0
0’1
1 0

(¢c) Python Code for Reflection Transformation:

The reflection transformation T : R2 — R? about the y-axis can be represented by the matrix
-1 0
=[]
To find the image of the vector v = [100] under 7', we can use the following Python code:

import numpy as np
# Define the reflection matrix for reflection about the y-axis
T = np.array([[-1, 0],

o, 111

# Define the vector to be reflected
v = np.array([10, 0])

# Compute the image of v under T
image_ v = T @ v

print ("The image of the vector (10, 0) under the reflection is:", image_v)

The result will give the image of (10,0) after reflection about the y-axis, which is (—10,0).
Q5.

(a) (i) The Laplace transform of f(t) = e=3! cos(2t) is given by
L{e 3 cos(2t)} = / e ste 3 cos(2t) dt = / e~ (5Tt cos(2¢) dt
0 0

Using the Laplace transform property for e® cos(bt),

ut B s—a
L{e* cos(bt)} = Goariie
with a = —3 and b = 2, we get
+3
B og(2) = — o2
£lem cos(2t)} (s+3)2+4



(ii) The Laplace transform of f(t) = Cos(at)tw can be computed using the result that

r { cos(at) ; cos(bt) } ln (Z j: Z)

r { cos(at) ; cos(bt) } n (Z j: Z)

(b) The square wave function f(¢) with period 2a is defined by

f(t)—{k O<t<a

Thus,

-k a<t<2a
We can represent this function using the unit step function as:
f@) =ku(t) —2u(t —a) +u(t — 2a))

The Laplace transform of f(t) is then

1 2e—as e—2as
- - +
S

_ﬁ _ —as —2as
- }_8(1 2e” " + %)

clroy=r|

cos(t) O<t<m
(c) To express f(t) = < cos(2t) m <t < 27 in terms of the unit step function, we write:
cos(3t) t>2m

f(t) = cos(t) + (cos(2t) — cos(t))u(t — m) + (cos(3t) — cos(2t))u(t — 2m)

Thus,
f(t) = cos(t) + (cos(2t) — cos(t))u(t — m) + (cos(3t) — cos(2t))u(t — 2m)

To find L[f(t)], we use the linearity of the Laplace transform and the shifting property:
L[f(t)] = L]cos(t)] + L[(cos(2t) — cos(t))u(t — 7)] + L[(cos(3t) — cos(2t))u(t — 27)]

Using the shifting property, we have:

s
L ] = ——
cos(t)] = "
L[(cos(2t) — cos(t)u(t —m)] = e ™ [ — —
" = 244 s2+41
L 2 2 _ ,—27s S S
[(cos(3t) — cos(2t))u(t — 2m)] =e 19 i
Thus,
— S —Ts S _ S —27s S . S
L) = o +e (SQH SQH) e <82+9 82+4>
Q6.
(a) (i) To find the inverse Laplace transform of 752_%Z;i29:

2s — 1
E_l
{52+4s+29}

First, we complete the square for the denominator:

s +45+29=(s+2)*+25



So we rewrite the fraction as:
2s — 1

(s+2)2+25
We decompose 2s — 1 to express it in terms of s + 2:
2s—1=2(s+2)—5
Thus,
25 — 1 o 2(s+2) 5
(s+2)2+25 (s+2)2+25 (s+2)2+25
Using the Laplace transform properties:

1 2(5 + 2) _ —2t
L {((9_’_2)2_‘_25} = 2e~ " cos(bt)

and

= e *'sin(5t)

5
Ly ——
{ (s+2)2+25 }
Therefore,

25 —1
£71 {24_844_29} = 2672t COS(5t) — 6721t Sln(5t)
S S

(ii) To find the inverse Laplace transform of @:

i)

Using the property £! {(S_la)Q} = te™, with a = 4, we get:

Rt i

(b) Using the convolution theorem to find the inverse Laplace transform of

Ry S SR G
e o |~ 090

where f(t) = £71 {sil} =eland g(t) = L7} {321“} = sin(t).
The convolution of f(t) and g(t) is:

1 .
(s—1)(s2+1)"

f@®) *g(t) = /0 e’ sin(t — 1) dr

e?" (asin(brt)—bcos(br))
a?+b2

Using the identity [ e sin(br) dr = , we get:

f@®) gt = % (e — e ") = sinh(t)

Thus,
1

N



(c) To solve the differential equation y” + k?y = 0 with initial conditions y(0) = 2 and 3'(0) = 0 using
Laplace transforms:

Take the Laplace transform of both sides:
L{y"} + K L{y} =0
Using L{y"} = s2Y (s) — sy(0) — 4/ (0) and L{y} = Y (s), we get:
s2Y (s) — 25 + k%Y (s) = 0
Rearranging terms:
(s + k*)Y(s) = 2s

So,
2s

Y(s) = poass

Using the inverse Laplace transform, we find:

y(t) = 2 cos(kt)

Thus, the solution to the differential equation is:

y(t) = 2 cos(kt)

Q7.
(a) Regula-Falsi Method
We aim to find the root of f(x) = zlog;ox — 1.2 in the interval z = [2, 3].
f(z) =zlogoz —1.2. f(2) and f(3):
f(2) =2logp2— 1.2~ —0.90, f(3)=3log;;3—1.2~0.43

Using the Regula-Falsi method, apply the formula:

_ f(@1)(z2 — 71)
b (@) — f(@)

r =2

Iteration 1:
r1 =2, x3=3
—0.90 x (3—2)
~0.43 — (—0.90)
f(2.41) = —0.07. Since f(2.41) < 0, we update z; = 2.41.

Iteration 2:

r=2 ~ 2.41

r1 =241, z9=23
—0.07 x (3 —2.41)

0.43 — (—0.07)
£(2.46) ~ 0.01. Since f(2.46) > 0, update x5 = 2.46.

Iteration 3:

r=241— ~ 2.46

z, =241, x5 =2.46
—0.07 x (2.46 — 2.41)
0.01 — (—0.07)

r =241 — ~ 2.45

£(2.45) ~ —0.002.

The root is accurate to two decimal places, yielding:

T~ 245



(b) Newton’s Divided Difference Interpolating Polynomial
Given data points: (zo, f(z0)) = (1,4), (x1, f(z1)) = (3,32), (22, f(z2)) = (4,55), (z3, f(x3)) =
(6,119).
Create the divided difference table:

fleol =4, flea] =32, flzo] =55, flag] =119

32 -4 55 — 32 119 — 55
= =1 = = = — =
flzo, 1] 51 4, flz1, 2] 1—3 -2 flz2, 23] -1 52
23-14 32 —23
flwo, o1, 2] = ——= =3, fla1,22,23] = 6_3 —°

flwo, x1, 22, 23] = % =0
P(z):
P(z) = flzo]+ flzo, x1](x — z0) + flwo, 21, 22](x — 20) (2 — 1) + f[20, 21, T2, T3] (T — 20 ) (T — 1) (7 — 22)
Substituting values:
Px) =4+ 14(z — 1) + 3(z — 1)(z — 3)

P(z):
P(z)=4+14(x — 1)+ 3(z® — 4z +3) =3z> + 22 — 1

Expanding and simplifying further, we obtain the interpolating polynomial.

. 1
(c) Simpson’s 3-Rule
To evaluate fOG 11—2 dx with n = 6, we apply Simpson’s %—rule with h = 1, where f(z) = f;:x
e =2.7182.
f(x) at the required points z =0, 1,2, 3,4, 5, 6:
0

10) = 1?0 =1
f) =< = 2'72182 = 1.3591
2 271822 7.3891
f2)= % =S5 = T R 24630
3 271823 20.0855
f3) = % == ==, ~b0u
4 271824 54.5982
f4) = % == == ~10.91%
5 27182°  148.4132
f(5) = % = =g N 24T
£6) = ? _ 2.717826 _ 403.;1288 57 6397

Applying Simpson’s %—rule:

6 T
[ o e = 10+ 40+ 3+ ) +2(7(2) + 74 + 16

Substitute the values:

1
~ 3 [1+4(1.3591 + 5.0214 + 24.7355) + 2(2.4630 4 10.9196) + 57.6327]

10



1
= 3 [1+4(31.1160) + 2(13.3826) + 57.6327]
1
= 5 [1+124.464 4 26.7652 + 57.6327]

1
=3 x 209.8619 ~ 69.9540

Thus, the approximate value of the integral is:

6 e;v
/ dzr ~ 69.95
o 1+=x

Q8
(a)

The Newton-Raphson formula is given by:

For the equation cos(x) = ze®, we define:
f(x) = cos(x) — xe®
and
f(x) = —sin(z) — e® — ze”

Starting with the initial approximation xy = 0.5, we compute the iterations until the solution converges
to 3 decimal places.

Iteration 1:
£(0.5) = cos(0.5) — 0.5 - e"® = 0.8776 — 0.8244 = 0.0532

f/(0.5) = —sin(0.5) — %% — 0.5 - "® = —0.4794 — 2.473 = —2.9524

0.0532
— 05— —22% 0517
i —2.0524

Iteration 2:
£(0.517) = cos(0.517) — 0.517 - €>517 = 0.8562 — 0.8605 = —0.0043

f/(0.517) = —sin(0.517) — e*P17 — 0.517 - %517 = —0.4947 — 2.4811 = —2.9758

~0.0043
— 0517 — 22 _ (.516
2 —2.9758

Thus, the root correct to 3 decimal places is:

z =0.516
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(b)

The general Newton’s backward interpolation formula is:

u(u+1 u(u+ 1)(u+ 2
Y=9Yn+ UAyn—l + %AQZM—Q + %AS%—:& + ...
where u = *=*=. Here, v, =5, h =1, and x = 6, so:
6-—5
= — :1
YT
Now, we compute the backward differences:
x|y [Ay | A% [ A%y
111
2| —-11] -2
31 1 2 4
4|1 -1|-2| -4 | -8
5 1 2 4 8
Using the formula:
u(u+ 1 w(u+1)(u+2
Yy =ys+ulys + %A% + %Agyg
1(1+1 1(14+1)(1+2
y=14+1-2+ (2 )-4+ ( 25( )-(—8)

y=1+2+4-4=3

Thus, the value of y when x = 6 is:

y=3
(c)
The formula for the Trapezoidal rule is:
A n—1
I~ yo+2;yi+yn
where h = E’_T“ = 5g—0 = 1. The ordinates are:

1‘020, $1=1, 1‘2:2, $3=37 17424, $5:5

and

So:

—_

Now, applying the formula:

[~ 1+2 1+1+1+1 +1
215 9 13 17 " 21 25
171
I~ [5 +2(0.1111 4 0.0769 4 0.0588 4 0.0476) + 0.04]
1
2
Iz%x0.8288:0.4144

1
I~ 3[02+2-0.2044+0.04] = 7 [0.2+0.5888 + 0.04]

Thus, the value of the integral is:
I=0.414
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Q9
(a)

The Taylor’s series expansion for y(z) about xg = 0 is:

/ x2 1 ‘/'EB mn
y(z) = y(0) + 2y (0) + 1Y (0) + 31Y 0)+...
We need to find the derivatives of y. Given:
dy
—= =2y + 3¢e”
dr Y+ de”,

At z =0, y(0) =0:
y'(0)=2-0+3e"=3.

Next, differentiate y'(z) = 2y + 3e* with respect to z:
y"(z) =2y + 3e”.
Atz =0,9'(0) =3:
y"(0)=2-34+3"=6+3=0.
Now, differentiate y”(x) = 2y’ + 3e®:
y" (x) = 2y" + 3e”.

At 2 =0, y"(0) =9:
y"(0) =2-94 36" =18 43 = 21.
Thus, the Taylor series expansion becomes:
(0.2)? (0.2)3
2 o+ 6
y(0.2) = 0.6 + 0.18 + 0.028 = 0.808.

21 +...

y(0.2) =0+0.2-3+

Thus, y(0.2) ~ 0.808.

(b)

The formula for the modified Euler’s method is:

 F@nm) + F@nsn ).

Yn+1 = Yn + 9

where y* =y, + hf(xnayn)
First iteration (n=0):
.'L'():O, 90:1, f(071)20—12:—1

v =yo+h- f(0,1) =1+0.1-(~1) = 0.9,
£(0.1,0.9) = 0.1 — 0.9 = 0.1 — 0.81 = —0.71.
y=1+ % (=1 + (—0.71)) = 1+ 0.05 - (—1.71) = 1 — 0.085 = 0.9150.
Second iteration (n=1):
21 =01, y =0.9150, £(0.1,0.915) = 0.1 — 0.9152 = —0.736.

y* =0.915+0.1-(—0.736) = 0.915 — 0.0736 = 0.8414.

£(0.2,0.8414) = 0.2 — 0.8414%* = 0.2 — 0.708 = —0.508.
0.1
y2 = 0915+ — (—0.736 + (—0.508)) = 0.915 + 0.05 - (—1.244) = 0.915 — 0.0622 = 0.8528.

Thus, y(0.1) =~ 0.8528.
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(c)
The predictor formula for Milne’s method is:

4h
Yntl = Yn—3 + 5 (2fn—2— fn-1+2fn).

Given:
h=01, f(z,y)=2*(1+y).

Compute [ values:
fL,D)=121+1) =2, f(1.1,1.233) = 1.21 - 2.233 = 2.704,
f(1.2,1.548) = 1.44 - 2.548 = 3.667, f(1.3,1.979) = 1.69 - 2.979 = 5.035.

Predictor step:
4-0.1
Y(1.4)prea =1+ —3 (2-2.704 — 3.667 + 2 - 5.035) .

0.4 0.4
y(L4)prea = 1+ = (5.408 — 3.667 + 10.07) = 1 + — - 11811,
Y(1.4) prea = 1 + 1.5748 = 2.5748.

Corrector step:

V(1 A)eom = y(1.2) + 5 (F(1:2,(1.2)) +47(13,y(13)) + (14, (1 A)pea).

0.1
y(1.4)corr = 1.548 + 3 (3.667 + 4 - 5.035 + 1.96 - 3.5748)

Q10
(a)

The Modified Euler’s method formula is:
h .
Yn+1 = Yn + 5 (f(xnayn) + f($n+1;y )) )

where y* = yn +h - f(2n, yn)-
Initial Step (for x =0.2):
Given yo = 0 (assumed for simplicity),

£(0,0) = logy7(0 + 0) = log;,(0) — undefined.

(We cannot proceed unless x # 0. Let’s assume y(0.2) = 0.01 for meaningful iterations.)
For the first iteration:

y* =10 +0.2-log4(0.2+0) =0+0.2- (—0.698) = —0.1396.
£(0.4,—0.1396) = log;(0.4 — 0.1396) = log;(0.2604) ~ —0.585.
y1 =0+ 0422 (—0.698 4+ (—0.585)) = 0+ 0.1 - (—1.283) = —0.1283.
For the second iteration:
y* = —0.1283 + 0.2 - log;,(0.4 — 0.1283) ~ —0.1283 — 0.117 = —0.2453.

£(0.6,—0.2453) = log,(0.6 — 0.2453) ~ log,(0.3547) ~ —0.451.
y2 = —0.1283 4 0.1 - (—1.036) = —0.2319.
Thus, after two iterations at z = 0.4, y(0.4) ~ —0.2319.
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(b)

The 4th order Runge-Kutta method formula is:

h
Yn+1 = Yn + g(kﬁ + 2ko + 2k3 + ky),

where:
h k1
klzh'f(‘rnvyn)7 k2:hf xn+§,yn+3 )
h ks
Given: )
= 04)=1, h=0..
Y=ty y(0.4) =1,
Compute the following:
1 1
k1 =01 ———— =0.1-— =0.02174
! 9.04+1 4.6 ’
1
ke =0.1- =0.1- ~ 0.01978,
2 9- (0.4 + 0.05) + (1 + 0.01087) 5.05587
1
ks =0.1- ~ 0.01979
K 9-(0.4+0.05) + (1 + 0.00989) ’
1
ky=0.1" ~ 0.01852.

9-(0.5) 4+ (14 0.01979)
Now, compute y(0.5):
0.1
y(0.5) =1+ ?(0.02174 +2-0.01978 + 2 - 0.01979 + 0.01852) ~ 1.0198.

Thus, y(0.5) ~ 1.0198.

(c)

import math

def taylor_series(x0, yO, h, x):

# Taylor series expansion: y(x) = y(0) + h * y’>(0) + (h~2 / 2!) % y’>’(0) + ...

def dy_dx(x, y):
return x -y

def d2y_dx2(x, y):
return 1 - dy_dx(x, y)

# Calculate terms of Taylor series
y1 yO + h * dy_dx(x0, yO0)
y2 y1 + (h*x2 / 2) * d2y_dx2(x0, yO0)

return round(y2, 4)

# Example usage

x0 = 0
yo = 1
h = 0.1
x = 0.1
result = taylor_series(x0, yO, h, x)

print (£"y ({x}) = {result}")
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