

Solutions

Q1.

(a) To find the angle between the surfaces, we first determine the normal vectors of each surface at the
point (1,−2, 1).

For the first surface xy2z = 3x + z2, let f(x, y, z) = xy2z − 3x − z2. Then, the normal vector is
given by ∇f .

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=

(
y2z − 3, 2xyz, xy2 − 2z

)
Substituting (x, y, z) = (1,−2, 1):

∇f(1,−2, 1) = (−2− 3,−4,−2− 2) = (−5,−4,−4)

For the second surface 3x2 − y2 + 2z = 1, let g(x, y, z) = 3x2 − y2 + 2z − 1. Then, the normal
vector is given by ∇g.

∇g =

(
∂g

∂x
,
∂g

∂y
,
∂g

∂z

)
= (6x,−2y, 2)

Substituting (x, y, z) = (1,−2, 1):

∇g(1,−2, 1) = (6, 4, 2)

The angle θ between the surfaces is the angle between ∇f and ∇g, given by

cos θ =
∇f · ∇g

|∇f ||∇g|

where
∇f · ∇g = (−5)(6) + (−4)(4) + (−4)(2) = −30− 16− 8 = −54

and
|∇f | =

√
(−5)2 + (−4)2 + (−4)2 =

√
25 + 16 + 16 =

√
57

|∇g| =
√
(6)2 + (4)2 + (2)2 =

√
36 + 16 + 4 =

√
56

Thus,

cos θ =
−54√
57
√
56

(b) To find div(F⃗) and curl(F⃗) for F⃗ = ∇(x3 + y3 + z3 − 3xyz):

f(x, y, z) = x3 + y3 + z3 − 3xyz

Then,

F⃗ = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=

(
3x2 − 3yz, 3y2 − 3xz, 3z2 − 3xy

)
For the divergence,

div(F⃗) =
∂

∂x
(3x2 − 3yz) +

∂

∂y
(3y2 − 3xz) +

∂

∂z
(3z2 − 3xy)

= 6x+ 6y + 6z = 6(x+ y + z)

For the curl,
curl(F⃗) = ∇× F⃗ = 0

since F⃗ is a gradient field and the curl of a gradient is zero.

1

(c) For the vector F⃗ = x⃗i+yj⃗
x2+y2 :

To check if F⃗ is solenoidal (divergence-free),

div(F⃗) =
∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)
Using the quotient rule,

=
(x2 + y2)− x · 2x

(x2 + y2)2
+

(x2 + y2)− y · 2y
(x2 + y2)2

= 0

so F⃗ is solenoidal.

To check if F⃗ is irrotational (curl-free),

curl(F⃗) = ∇× F⃗ = 0

since F⃗ has zero curl in 2D.

Q2.

(a) To find the work done by F⃗ along the curve, we need to compute the line integral W =
∫
C
F⃗ · dr⃗.

Parameterize the curve with x = t2 + 1, y = 2t2, z = t3, and let t ∈ [1, 2].

r⃗(t) = (x(t), y(t), z(t)) =
(
t2 + 1

)
i⃗+

(
2t2

)
j⃗ +

(
t3
)
k⃗.

dr⃗
dt = d

dt

(
t2 + 1, 2t2, t3

)
= (2t)⃗i+ (4t)⃗j + (3t2)k⃗.

Substitute x = t2 + 1, y = 2t2, and z = t3 into F⃗ :

F⃗ (t) = 3(t2 + 1)(2t2) i⃗− 5(t3) j⃗ + 10(t2 + 1) k⃗

= (6t4 + 6t2) i⃗− 5t3 j⃗ + (10t2 + 10) k⃗

F⃗ (t) · dr⃗
dt

= (6t4 + 6t2)(2t) + (−5t3)(4t) + (10t2 + 10)(3t2)

= 12t5 + 12t3 − 20t4 + 30t4 + 30t2 = 12t5 + 10t4 + 12t3 + 30t2

Integrate from t = 1 to t = 2:

W =

∫ 2

1

(12t5 + 10t4 + 12t3 + 30t2) dt

Integrate each term separately:

W =

[
12t6

6
+

10t5

5
+

12t4

4
+

30t3

3

]2
1

=
[
2t6 + 2t5 + 3t4 + 10t3

]2
1

= (2 · 64 + 2 · 32 + 3 · 16 + 10 · 8)− (2 · 1 + 2 · 1 + 3 · 1 + 10 · 1)

= (128 + 64 + 48 + 80)− (2 + 2 + 3 + 10) = 320− 17 = 303

Thus, the total work done is W = 303.

2

(b) Using Green’s theorem to evaluate
∮
C
(xy + y2) dx+ x2 dy:

According to Green’s theorem,∮
C

M dx+N dy =

∫∫
D

(
∂N

∂x
− ∂M

∂y

)
dA

where M = xy + y2 and N = x2.

Calculate ∂N
∂x and ∂M

∂y :

∂N

∂x
= 2x,

∂M

∂y
= x+ 2y

Then,
∂N

∂x
− ∂M

∂y
= 2x− (x+ 2y) = x− 2y

The region D is bounded by y = x and y = x2. Set up the double integral:∫∫
D

(x− 2y) dA =

∫ 1

0

∫ x

x2

(x− 2y) dy dx

Evaluate the inner integral with respect to y:

=

∫ 1

0

[
xy − y2

]y=x

y=x2 dx

=

∫ 1

0

(
x · x− x2 − (x · x2 − (x2)2)

)
dx

=

∫ 1

0

(
x2 − x2 − x3 + x4

)
dx

Simplify and integrate term by term:

=

∫ 1

0

(x2 − x3) dx =

[
x3

3
− x4

4

]1
0

=
1

3
− 1

4
=

4− 3

12
=

1

12

Thus, the value of the integral is 1
12 .

(c) Python code to find the gradient of Φ = x2y + 2xz − 4:

import sympy as sp

Define variables

x, y, z = sp.symbols(’x y z’)

Define the scalar field Phi

Phi = x**2 * y + 2 * x * z - 4

Calculate the gradient

gradient_Phi = sp.Matrix([sp.diff(Phi, var) for var in (x, y, z)])

Display the gradient

gradient_Phi

3

Q3.

(a) Definition of a Subspace: A subset W ⊆ V of a vector space V is called a subspace of V if W
itself forms a vector space under the same operations of addition and scalar multiplication defined in
V . For W to be a subspace, it must satisfy: 1. The zero vector of V is in W . 2. W is closed under
vector addition: if u⃗, v⃗ ∈ W , then u⃗ + v⃗ ∈ W . 3. W is closed under scalar multiplication: if u⃗ ∈ W
and c ∈ R, then cu⃗ ∈ W .

Intersection of Two Subspaces: Let U and W be two subspaces of V . The intersection U ∩W =
{v⃗ ∈ V : v⃗ ∈ U and v⃗ ∈ W} is also a subspace of V .

Proof: To show that U ∩ W is a subspace, we check the three conditions: 1. The zero vector is in
both U and W , so it is in U ∩W . 2. If u⃗, v⃗ ∈ U ∩W , then u⃗+ v⃗ ∈ U (since U is closed under addition)
and u⃗ + v⃗ ∈ W (since W is closed under addition), so u⃗ + v⃗ ∈ U ∩W . 3. If c ∈ R and u⃗ ∈ U ∩W ,
then cu⃗ ∈ U (since U is closed under scalar multiplication) and cu⃗ ∈ W (since W is closed under scalar
multiplication), so cu⃗ ∈ U ∩W .

Thus, U ∩W is a subspace of V .

(b) Let T : R3 → R3 be defined by T (x, y, z) = (x, y,−z). To show that T is a linear transformation, we
need to check that T satisfies the properties of additivity and scalar multiplication.

Additivity: Let (x1, y1, z1) and (x2, y2, z2) ∈ R3. Then,

T ((x1, y1, z1) + (x2, y2, z2)) = T (x1 + x2, y1 + y2, z1 + z2) = (x1 + x2, y1 + y2,−(z1 + z2))

and

T (x1, y1, z1) + T (x2, y2, z2) = (x1, y1,−z1) + (x2, y2,−z2) = (x1 + x2, y1 + y2,−(z1 + z2))

so T ((x1, y1, z1) + (x2, y2, z2)) = T (x1, y1, z1) + T (x2, y2, z2).

Scalar Multiplication: Let c ∈ R and (x, y, z) ∈ R3. Then,

T (c · (x, y, z)) = T (cx, cy, cz) = (cx, cy,−cz)

and
c · T (x, y, z) = c · (x, y,−z) = (cx, cy,−cz)

Thus, T (c · (x, y, z)) = c · T (x, y, z).
Since T satisfies both properties, T is a linear transformation.

(c) Given u⃗ =

 2
−5
−1

 and v⃗ =

−7
−4
6

, we compute:

(i) ⟨u⃗, v⃗⟩ = 2(−7) + (−5)(−4) + (−1)(6) = −14 + 20− 6 = 0.

(ii) ∥u⃗∥2 = ⟨u⃗, u⃗⟩ = 22 + (−5)2 + (−1)2 = 4 + 25 + 1 = 30.

(iii) ∥v⃗∥2 = ⟨v⃗, v⃗⟩ = (−7)2 + (−4)2 + 62 = 49 + 16 + 36 = 101.

(iv) To find ∥u⃗+ v⃗∥2, first calculate u⃗+ v⃗:

u⃗+ v⃗ =

 2
−5
−1

+

−7
−4
6

 =

−5
−9
5

Then,

∥u⃗+ v⃗∥2 = (−5)2 + (−9)2 + 52 = 25 + 81 + 25 = 131

4

Q4.

(a) Definition of Linearly Independent and Linearly Dependent Sets: A set of vectors {v⃗1, v⃗2, . . . , v⃗n}
in a vector space V is said to be linearly independent if the only solution to the equation

c1v⃗1 + c2v⃗2 + · · ·+ cnv⃗n = 0

is c1 = c2 = · · · = cn = 0. If there exists a nontrivial solution (some ci ̸= 0), then the vectors are said
to be linearly dependent.

Testing for Basis: To determine if {v⃗1, v⃗2, v⃗3} forms a basis in R3, we check if these vectors are linearly

independent. This can be done by setting up the matrix B =

 3 −4 −2
0 1 1
−6 7 5

 and row reducing it to

check for pivot columns. 3 −4 −2
0 1 1
−6 7 5

 RREF−−−−→

1 0 −2
0 1 1
0 0 0

Since we have two pivot columns, v⃗1, v⃗2, v⃗3 are linearly dependent and do not form a basis in R3.

(b) Rank-Nullity Theorem: For a matrix A with dimensions m× n, the Rank-Nullity Theorem states
that

rank(A) + nullity(A) = n

where rank(A) is the dimension of the column space of A, and nullity(A) is the dimension of the null
space of A.

Given the matrix A =

 1 −4 9 −7
−1 2 −4 1
5 −6 10 7

:
(i) Rank of A: Row reduce A to determine the number of pivot columns. 1 −4 9 −7

−1 2 −4 1
5 −6 10 7

 RREF−−−−→

1 −4 0 −1
0 0 1 −2
0 0 0 0

The rank of A is 2 (two pivot columns).

(ii) Dimension of Null Space (Nullity of A): Since A has 4 columns, by the Rank-Nullity
Theorem:

nullity(A) = 4− 2 = 2

(iii) Bases for Column Space and Null Space: - The basis for the column space can be formed
by the pivot columns of the original matrix A, so a basis for the column space of A is

 1
−1
5

 ,

−4
2
−6

- To find the basis for the null space, we solve Ax⃗ = 0 and express the solutions in terms of free
variables:

5

Let x3 = t and x4 = s be free variables, then

x⃗ =

4s+ t
−2s
t
s

 = s

4
−2
0
1

+ t

1
0
1
0

Therefore, a basis for the null space is

4
−2
0
1

 ,

1
0
1
0

(c) Python Code for Reflection Transformation:

The reflection transformation T : R2 → R2 about the y-axis can be represented by the matrix

T =

[
−1 0
0 1

]

To find the image of the vector v⃗ =

[
10
0

]
under T , we can use the following Python code:

import numpy as np

Define the reflection matrix for reflection about the y-axis

T = np.array([[-1, 0],

[0, 1]])

Define the vector to be reflected

v = np.array([10, 0])

Compute the image of v under T

image_v = T @ v

print("The image of the vector (10, 0) under the reflection is:", image_v)

The result will give the image of (10, 0) after reflection about the y-axis, which is (−10, 0).

Q5.

(a) (i) The Laplace transform of f(t) = e−3t cos(2t) is given by

L{e−3t cos(2t)} =

∫ ∞

0

e−ste−3t cos(2t) dt =

∫ ∞

0

e−(s+3)t cos(2t) dt

Using the Laplace transform property for eat cos(bt),

L{eat cos(bt)} =
s− a

(s− a)2 + b2

with a = −3 and b = 2, we get

L{e−3t cos(2t)} =
s+ 3

(s+ 3)2 + 4

6

(ii) The Laplace transform of f(t) = cos(at)−cos(bt)
t can be computed using the result that

L
{
cos(at)− cos(bt)

t

}
= ln

(
s+ a

s+ b

)
Thus,

L
{
cos(at)− cos(bt)

t

}
= ln

(
s+ a

s+ b

)
(b) The square wave function f(t) with period 2a is defined by

f(t) =

{
k 0 < t < a

−k a < t < 2a

We can represent this function using the unit step function as:

f(t) = k [u(t)− 2u(t− a) + u(t− 2a)]

The Laplace transform of f(t) is then

L{f(t)} = k

[
1

s
− 2e−as

s
+

e−2as

s

]
=

k

s

(
1− 2e−as + e−2as

)

(c) To express f(t) =

cos(t) 0 < t < π

cos(2t) π < t < 2π

cos(3t) t > 2π

in terms of the unit step function, we write:

f(t) = cos(t) + (cos(2t)− cos(t))u(t− π) + (cos(3t)− cos(2t))u(t− 2π)

Thus,
f(t) = cos(t) + (cos(2t)− cos(t))u(t− π) + (cos(3t)− cos(2t))u(t− 2π)

To find L[f(t)], we use the linearity of the Laplace transform and the shifting property:

L[f(t)] = L[cos(t)] + L[(cos(2t)− cos(t))u(t− π)] + L[(cos(3t)− cos(2t))u(t− 2π)]

Using the shifting property, we have:

L[cos(t)] = s

s2 + 1

L[(cos(2t)− cos(t))u(t− π)] = e−πs

(
s

s2 + 4
− s

s2 + 1

)
L[(cos(3t)− cos(2t))u(t− 2π)] = e−2πs

(
s

s2 + 9
− s

s2 + 4

)
Thus,

L[f(t)] = s

s2 + 1
+ e−πs

(
s

s2 + 4
− s

s2 + 1

)
+ e−2πs

(
s

s2 + 9
− s

s2 + 4

)
Q6.

(a) (i) To find the inverse Laplace transform of 2s−1
s2+4s+29 :

L−1

{
2s− 1

s2 + 4s+ 29

}
First, we complete the square for the denominator:

s2 + 4s+ 29 = (s+ 2)2 + 25

7

So we rewrite the fraction as:
2s− 1

(s+ 2)2 + 25

We decompose 2s− 1 to express it in terms of s+ 2:

2s− 1 = 2(s+ 2)− 5

Thus,
2s− 1

(s+ 2)2 + 25
=

2(s+ 2)

(s+ 2)2 + 25
− 5

(s+ 2)2 + 25

Using the Laplace transform properties:

L−1

{
2(s+ 2)

(s+ 2)2 + 25

}
= 2e−2t cos(5t)

and

L−1

{
5

(s+ 2)2 + 25

}
= e−2t sin(5t)

Therefore,

L−1

{
2s− 1

s2 + 4s+ 29

}
= 2e−2t cos(5t)− e−2t sin(5t)

(ii) To find the inverse Laplace transform of 1
(s−4)2 :

L−1

{
1

(s− 4)2

}
Using the property L−1

{
1

(s−a)2

}
= teat, with a = 4, we get:

L−1

{
1

(s− 4)2

}
= te4t

(b) Using the convolution theorem to find the inverse Laplace transform of 1
(s−1)(s2+1) :

L−1

{
1

(s− 1)(s2 + 1)

}
= f(t) ∗ g(t)

where f(t) = L−1
{

1
s−1

}
= et and g(t) = L−1

{
1

s2+1

}
= sin(t).

The convolution of f(t) and g(t) is:

f(t) ∗ g(t) =
∫ t

0

eτ sin(t− τ) dτ

Using the identity
∫
eaτ sin(bτ) dτ = eaτ (a sin(bτ)−b cos(bτ))

a2+b2 , we get:

f(t) ∗ g(t) = 1

2

(
et − e−t

)
= sinh(t)

Thus,

L−1

{
1

(s− 1)(s2 + 1)

}
= sinh(t)

8

(c) To solve the differential equation y′′ + k2y = 0 with initial conditions y(0) = 2 and y′(0) = 0 using
Laplace transforms:

Take the Laplace transform of both sides:

L{y′′}+ k2L{y} = 0

Using L{y′′} = s2Y (s)− sy(0)− y′(0) and L{y} = Y (s), we get:

s2Y (s)− 2s+ k2Y (s) = 0

Rearranging terms:
(s2 + k2)Y (s) = 2s

So,

Y (s) =
2s

s2 + k2

Using the inverse Laplace transform, we find:

y(t) = 2 cos(kt)

Thus, the solution to the differential equation is:

y(t) = 2 cos(kt)

Q7.

(a) Regula-Falsi Method

We aim to find the root of f(x) = x log10 x− 1.2 in the interval x = [2, 3].

f(x) = x log10 x− 1.2. f(2) and f(3):

f(2) = 2 log10 2− 1.2 ≈ −0.90, f(3) = 3 log10 3− 1.2 ≈ 0.43

Using the Regula-Falsi method, apply the formula:

x = x1 −
f(x1)(x2 − x1)

f(x2)− f(x1)

Iteration 1:
x1 = 2, x2 = 3

x = 2− −0.90× (3− 2)

0.43− (−0.90)
≈ 2.41

f(2.41) ≈ −0.07. Since f(2.41) < 0, we update x1 = 2.41.

Iteration 2:
x1 = 2.41, x2 = 3

x = 2.41− −0.07× (3− 2.41)

0.43− (−0.07)
≈ 2.46

f(2.46) ≈ 0.01. Since f(2.46) > 0, update x2 = 2.46.

Iteration 3:
x1 = 2.41, x2 = 2.46

x = 2.41− −0.07× (2.46− 2.41)

0.01− (−0.07)
≈ 2.45

f(2.45) ≈ −0.002.

The root is accurate to two decimal places, yielding:

x ≈ 2.45

9

(b) Newton’s Divided Difference Interpolating Polynomial

Given data points: (x0, f(x0)) = (1, 4), (x1, f(x1)) = (3, 32), (x2, f(x2)) = (4, 55), (x3, f(x3)) =
(6, 119).

Create the divided difference table:

f [x0] = 4, f [x1] = 32, f [x2] = 55, f [x3] = 119

f [x0, x1] =
32− 4

3− 1
= 14, f [x1, x2] =

55− 32

4− 3
= 23, f [x2, x3] =

119− 55

6− 4
= 32

f [x0, x1, x2] =
23− 14

4− 1
= 3, f [x1, x2, x3] =

32− 23

6− 3
= 3

f [x0, x1, x2, x3] =
3− 3

6− 1
= 0

P (x):

P (x) = f [x0]+f [x0, x1](x−x0)+f [x0, x1, x2](x−x0)(x−x1)+f [x0, x1, x2, x3](x−x0)(x−x1)(x−x2)

Substituting values:
P (x) = 4 + 14(x− 1) + 3(x− 1)(x− 3)

P (x):
P (x) = 4 + 14(x− 1) + 3(x2 − 4x+ 3) = 3x2 + 2x− 1

Expanding and simplifying further, we obtain the interpolating polynomial.

(c) Simpson’s 1
3 -Rule

To evaluate
∫ 6

0
ex

1+x dx with n = 6, we apply Simpson’s 1
3 -rule with h = 1, where f(x) = ex

1+x and
e = 2.7182.

f(x) at the required points x = 0, 1, 2, 3, 4, 5, 6:

f(0) =
e0

1 + 0
= 1

f(1) =
e

2
=

2.7182

2
= 1.3591

f(2) =
e2

3
=

2.71822

3
=

7.3891

3
≈ 2.4630

f(3) =
e3

4
=

2.71823

4
=

20.0855

4
≈ 5.0214

f(4) =
e4

5
=

2.71824

5
=

54.5982

5
≈ 10.9196

f(5) =
e5

6
=

2.71825

6
=

148.4132

6
≈ 24.7355

f(6) =
e6

7
=

2.71826

7
=

403.4288

7
≈ 57.6327

Applying Simpson’s 1
3 -rule:∫ 6

0

ex

1 + x
dx ≈ 1

3
[f(0) + 4(f(1) + f(3) + f(5)) + 2(f(2) + f(4)) + f(6)]

Substitute the values:

≈ 1

3
[1 + 4(1.3591 + 5.0214 + 24.7355) + 2(2.4630 + 10.9196) + 57.6327]

10

=
1

3
[1 + 4(31.1160) + 2(13.3826) + 57.6327]

=
1

3
[1 + 124.464 + 26.7652 + 57.6327]

=
1

3
× 209.8619 ≈ 69.9540

Thus, the approximate value of the integral is:∫ 6

0

ex

1 + x
dx ≈ 69.95

Q8

(a)

The Newton-Raphson formula is given by:

xn+1 = xn − f(xn)

f ′(xn)

For the equation cos(x) = xex, we define:

f(x) = cos(x)− xex

and
f ′(x) = − sin(x)− ex − xex

Starting with the initial approximation x0 = 0.5, we compute the iterations until the solution converges
to 3 decimal places.

Iteration 1:
f(0.5) = cos(0.5)− 0.5 · e0.5 = 0.8776− 0.8244 = 0.0532

f ′(0.5) = − sin(0.5)− e0.5 − 0.5 · e0.5 = −0.4794− 2.473 = −2.9524

x1 = 0.5− 0.0532

−2.9524
= 0.517

Iteration 2:

f(0.517) = cos(0.517)− 0.517 · e0.517 = 0.8562− 0.8605 = −0.0043

f ′(0.517) = − sin(0.517)− e0.517 − 0.517 · e0.517 = −0.4947− 2.4811 = −2.9758

x2 = 0.517− −0.0043

−2.9758
= 0.516

Thus, the root correct to 3 decimal places is:

x = 0.516

11

(b)

The general Newton’s backward interpolation formula is:

y = yn + u∆yn−1 +
u(u+ 1)

2!
∆2yn−2 +

u(u+ 1)(u+ 2)

3!
∆3yn−3 + . . .

where u = x−xn

h . Here, xn = 5, h = 1, and x = 6, so:

u =
6− 5

1
= 1

Now, we compute the backward differences:

x y ∆y ∆2y ∆3y
1 1
2 −1 −2
3 1 2 4
4 −1 −2 −4 −8
5 1 2 4 8

Using the formula:

y = y5 + u∆y4 +
u(u+ 1)

2!
∆2y3 +

u(u+ 1)(u+ 2)

3!
∆3y2

y = 1 + 1 · 2 + 1(1 + 1)

2
· 4 + 1(1 + 1)(1 + 2)

6
· (−8)

y = 1 + 2 + 4− 4 = 3

Thus, the value of y when x = 6 is:
y = 3

(c)

The formula for the Trapezoidal rule is:

I ≈ h

2

[
y0 + 2

n−1∑
i=1

yi + yn

]
where h = b−a

n = 5−0
5 = 1. The ordinates are:

x0 = 0, x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5

and

yi =
1

4xi + 5

So:

y0 =
1

5
, y1 =

1

9
, y2 =

1

13
, y3 =

1

17
, y4 =

1

21
, y5 =

1

25
Now, applying the formula:

I ≈ 1

2

[
1

5
+ 2

(
1

9
+

1

13
+

1

17
+

1

21

)
+

1

25

]
I ≈ 1

2

[
1

5
+ 2 (0.1111 + 0.0769 + 0.0588 + 0.0476) + 0.04

]
I ≈ 1

2
[0.2 + 2 · 0.2944 + 0.04] =

1

2
[0.2 + 0.5888 + 0.04]

I ≈ 1

2
× 0.8288 = 0.4144

Thus, the value of the integral is:
I ≈ 0.414

12

Q9

(a)

The Taylor’s series expansion for y(x) about x0 = 0 is:

y(x) = y(0) + xy′(0) +
x2

2!
y′′(0) +

x3

3!
y′′′(0) + . . .

We need to find the derivatives of y. Given:

dy

dx
= 2y + 3ex,

At x = 0, y(0) = 0:
y′(0) = 2 · 0 + 3e0 = 3.

Next, differentiate y′(x) = 2y + 3ex with respect to x:

y′′(x) = 2y′ + 3ex.

At x = 0, y′(0) = 3:
y′′(0) = 2 · 3 + 3e0 = 6 + 3 = 9.

Now, differentiate y′′(x) = 2y′ + 3ex:

y′′′(x) = 2y′′ + 3ex.

At x = 0, y′′(0) = 9:
y′′′(0) = 2 · 9 + 3e0 = 18 + 3 = 21.

Thus, the Taylor series expansion becomes:

y(0.2) = 0 + 0.2 · 3 + (0.2)2

2
· 9 + (0.2)3

6
· 21 + . . .

y(0.2) = 0.6 + 0.18 + 0.028 = 0.808.

Thus, y(0.2) ≈ 0.808.

(b)

The formula for the modified Euler’s method is:

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, y

∗)) ,

where y∗ = yn + hf(xn, yn).
First iteration (n=0):

x0 = 0, y0 = 1, f(0, 1) = 0− 12 = −1.

y∗ = y0 + h · f(0, 1) = 1 + 0.1 · (−1) = 0.9.

f(0.1, 0.9) = 0.1− 0.92 = 0.1− 0.81 = −0.71.

y1 = 1 +
0.1

2
(−1 + (−0.71)) = 1 + 0.05 · (−1.71) = 1− 0.085 = 0.9150.

Second iteration (n=1):

x1 = 0.1, y1 = 0.9150, f(0.1, 0.915) = 0.1− 0.9152 = −0.736.

y∗ = 0.915 + 0.1 · (−0.736) = 0.915− 0.0736 = 0.8414.

f(0.2, 0.8414) = 0.2− 0.84142 = 0.2− 0.708 = −0.508.

y2 = 0.915 +
0.1

2
(−0.736 + (−0.508)) = 0.915 + 0.05 · (−1.244) = 0.915− 0.0622 = 0.8528.

Thus, y(0.1) ≈ 0.8528.

13

(c)

The predictor formula for Milne’s method is:

yn+1 = yn−3 +
4h

3
(2fn−2 − fn−1 + 2fn) .

Given:
h = 0.1, f(x, y) = x2(1 + y).

Compute f values:

f(1, 1) = 12(1 + 1) = 2, f(1.1, 1.233) = 1.21 · 2.233 = 2.704,

f(1.2, 1.548) = 1.44 · 2.548 = 3.667, f(1.3, 1.979) = 1.69 · 2.979 = 5.035.

Predictor step:

y(1.4)pred = 1 +
4 · 0.1

3
(2 · 2.704− 3.667 + 2 · 5.035) .

y(1.4)pred = 1 +
0.4

3
(5.408− 3.667 + 10.07) = 1 +

0.4

3
· 11.811.

y(1.4)pred = 1 + 1.5748 = 2.5748.

Corrector step:

y(1.4)corr = y(1.2) +
h

3
(f(1.2, y(1.2)) + 4f(1.3, y(1.3)) + f(1.4, y(1.4)pred)) .

y(1.4)corr = 1.548 +
0.1

3
(3.667 + 4 · 5.035 + 1.96 · 3.5748)

Q10

(a)

The Modified Euler’s method formula is:

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, y

∗)) ,

where y∗ = yn + h · f(xn, yn).
Initial Step (for x = 0.2):
Given y0 = 0 (assumed for simplicity),

f(0, 0) = log10(0 + 0) = log10(0) → undefined.

(We cannot proceed unless x ̸= 0. Let’s assume y(0.2) ≈ 0.01 for meaningful iterations.)
For the first iteration:

y∗ = y0 + 0.2 · log10(0.2 + 0) = 0 + 0.2 · (−0.698) = −0.1396.

f(0.4,−0.1396) = log10(0.4− 0.1396) = log10(0.2604) ≈ −0.585.

y1 = 0 +
0.2

2
(−0.698 + (−0.585)) = 0 + 0.1 · (−1.283) = −0.1283.

For the second iteration:

y∗ = −0.1283 + 0.2 · log10(0.4− 0.1283) ≈ −0.1283− 0.117 = −0.2453.

f(0.6,−0.2453) = log10(0.6− 0.2453) ≈ log10(0.3547) ≈ −0.451.

y2 = −0.1283 + 0.1 · (−1.036) = −0.2319.

Thus, after two iterations at x = 0.4, y(0.4) ≈ −0.2319.
—

14

(b)

The 4th order Runge-Kutta method formula is:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4),

where:

k1 = h · f(xn, yn), k2 = h · f
(
xn +

h

2
, yn +

k1
2

)
,

k3 = h · f
(
xn +

h

2
, yn +

k2
2

)
, k4 = h · f (xn + h, yn + k3) .

Given:

y′ =
1

9x+ y
, y(0.4) = 1, h = 0.1.

Compute the following:

k1 = 0.1 · 1

9 · 0.4 + 1
= 0.1 · 1

4.6
= 0.02174,

k2 = 0.1 · 1

9 · (0.4 + 0.05) + (1 + 0.01087)
= 0.1 · 1

5.05587
≈ 0.01978,

k3 = 0.1 · 1

9 · (0.4 + 0.05) + (1 + 0.00989)
≈ 0.01979,

k4 = 0.1 · 1

9 · (0.5) + (1 + 0.01979)
≈ 0.01852.

Now, compute y(0.5):

y(0.5) = 1 +
0.1

6
(0.02174 + 2 · 0.01978 + 2 · 0.01979 + 0.01852) ≈ 1.0198.

Thus, y(0.5) ≈ 1.0198.
—

(c)

1 import math

2

3 def taylor_series(x0, y0, h, x):

4 # Taylor series expansion: y(x) = y(0) + h * y ’(0) + (h^2 / 2!) * y ’’(0) + ...

5

6 def dy_dx(x, y):

7 return x - y

8

9 def d2y_dx2(x, y):

10 return 1 - dy_dx(x, y)

11

12 # Calculate terms of Taylor series

13 y1 = y0 + h * dy_dx(x0 , y0)

14 y2 = y1 + (h**2 / 2) * d2y_dx2(x0 , y0)

15

16 return round(y2 , 4)

17

18 # Example usage

19 x0 = 0

20 y0 = 1

21 h = 0.1

22 x = 0.1

23

24 result = taylor_series(x0, y0, h, x)

25 print(f"y({x}) = {result}")

—

15

