CMR INSTITUTE OF TECHNOLOGY		USN										
Internal Assessment Test – I April 2024 (Scheme & Solutions)												
Sub: Mathematics-II for EC Engineering Code:						Code:	BM	BMATE201				
Date	e: 08/04/2024 Durat	on: 90 mins	Max Marks:	50	Sem:	II	Branch:]	ECE Phy Cycle			
	Question 1 is c	ompulsory and	Answer any 6 fr	om the re	maining	ques	tions.					
								Marks	Marks OBE CO RBT			
Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)i - 2xyj$, taken around the rectangle bounded by the lines $x = \pm a$, $y = 0$, $y = b$. (Stoke's theorem statement - 2m, Verification of LHS & RHS - 6 (3+3))							e bounded	[8]	CO1	L3		
Find the area between the parabolas $y^2 = 4x$ and $x^2 = 4y$, with the help of Green's theorem in a plane. (Green's theorem statement - 2, Graph & Point of intersections of given parabolas - 1m, Line integral evaluation along C1, C2 - 4m)								[7]	CO1	L3		
Find the work done in a moving particle in the force field $\vec{F} = 3x^{2}i + (2xz - y)j + zk$, the straight line from (0, 0, 0) to (2, 1, 3). (Line integral formula - 1m, Changing integral into parameter 't' - 2m, Evaluation of line integral and final answer - 4m)							luation	[7]	CO1	L3		
Find the directional derivative of the function xyz , along the direction of the normal to the surface $xy^2 + yz^2 + zx^2 = 3$, at the point (1, 1, 1). (Finding Grad of $xyx - 2m$, Finding Grad of $xy^2 + yz^2 + zx^2 = 3 - 2m$, D.D formula & final answer- 3m)						[7]	CO1	L3				

5	Show that the vector $\vec{F} = (2xy^2 + yz)i + (2x^2y + xz + 2yz^2)j + (2y^2z + xy)k$ is a conservative force field. Find it's scalar potential. (S.T \vec{F} is a conservative field - 2m, Finding scalar potential - 5m)	[7]	CO1	L3
6	Prove that intersection of two subspaces is also a subspace. (W1& W2 belongs to O - 1m, Vector addition of W1& W2 - 3m, Scalar multiplication of W1& W2 - 3m)	[7]	CO2	L3
7	Determine the dimension and basis of the subspace spanned by $S = \{(1, 2, 3), (3, 1, 0), (-2, 1, 3)\}.$ (Finding REF of S - 3m, Basis - 2m, Dimension - 2m)	[7]	CO2	L3
8	Determine whether the matrix $[-178 - 1]$ is a linear combination of $[1021]$, $[2 - 302]$, $[0120]$ in the vector space M_{22} of (2×2) matrix. (Writing the linear combination - 2m, Solving eqs and finding solution- 6m)	[7]	CO2	L3

Bit Given
$$\vec{F} = (x^2 + y^2) \vec{i} - 2xy \vec{j}$$
,
 $x = \pm \alpha$
 $y = 0$
 $y = b$
The bounded legion on $\vec{F} = (x^2 + y^2) \vec{i} - 2xy \vec{j}$,
 $x = \pm \alpha$
 $y = 0$
 $y = b$
The bounded legion on $\vec{F} = (x^2 + y^2) \vec{f} + \vec{f} = 0$
 $y = b$
The bounded legion on $\vec{F} = (x^2 + y^2) \vec{f} + \vec{f} = 0$
 $\vec{F} \cdot d\vec{r} = \int cul \vec{F} \cdot \hat{f} ds$,
 $\vec{F} \cdot d\vec{r} = \int cul \vec{F} \cdot \hat{f} ds$,
 $\vec{F} \cdot d\vec{r} = \int cul \vec{F} \cdot \hat{f} ds$,
 $\vec{F} \cdot d\vec{r} = \int \vec{F} \cdot d\vec{r} + \int \vec{F} \cdot d\vec{r} = (x^2 + y^2) \vec{i} - 2xy \vec{d} \cdot \vec{r} = \vec{F} \cdot d\vec{r} = (x^2 + y^2) d\vec{r} - 2xy d\vec{r} = \vec{F} \cdot d\vec{r} = \vec{$

I

Along AB'- y=0 = dy=0 $\chi:-\alpha \rightarrow \alpha$.

Along BC:
$$-\chi = \alpha, dx = 0$$

 $\chi: 0 - b$
Along CD: $-\chi = b, dy = 0$
 $\chi: \alpha \rightarrow -\alpha$

 $\frac{A \log DA}{(DA)} = \chi = -\alpha \Rightarrow d\chi = 0$ β: b → 0

- a-

From (i)
$$f(x^2 + o^2) dx + 2 \cdot x \cdot o \cdot o = + \int [(a^2 + y^2) \cdot o - 2 \cdot a \cdot y dy]$$

- $a^{-a} + \int [(x^2 + b^2) dx + 2 \cdot x \cdot b \cdot o] + \int [((-a)^2 + y^2) \cdot o - 2 \cdot a \cdot y dy]$
= $a^{-a} \int x^2 dx + \int -2a y dy + \int (x^2 + b^2) dx + \int 2a y dy$

a -

$$\begin{bmatrix} 1 & H \cdot S = \frac{\alpha}{2} \left(\frac{x^2 dx}{2} - \frac{\beta \alpha}{2} \right) \frac{b}{y} dy - \int x^2 dx + \frac{b^2}{2} dx - \frac{\beta \alpha}{2} \int y dy$$

$$= -4\alpha \int y dy + \frac{b^2}{2} \int dx$$

$$= -4\alpha \left[\frac{W^2}{2} \right]^{\frac{b}{2}} + \frac{b^2}{2} \left[x \right]^{-\alpha}_{\alpha}$$

$$= -\frac{4\alpha}{2} \left(\frac{b^2 - 0^2}{2} \right) + \frac{b^2}{2} \left(-\alpha - \alpha \right)$$

$$= -\frac{2\alpha b^2 - 2\alpha b^2}{2} = -4\alpha b^2$$

$$\begin{bmatrix} HS = -4\alpha b^2 \\ -\alpha b^2 \\ \end{bmatrix} - \frac{(3)}{2}$$
Next we find coull of \vec{F} for $\vec{R} \cdot H \cdot S$.

$$Cul \vec{F} = \begin{bmatrix} i & j & K \\ \frac{3}{2\pi} & \frac{3}{2\pi} & \frac{3}{2\pi} \\ \pi^2 + y^2 & -2xy & 0 \end{bmatrix}$$

$$= i \left[0 - 0 \right] - j \left[0 - 0 \right] + K \left[-2y - \beta y \right]$$

$$Cul \vec{F} = -4y K$$

$$\operatorname{Cul} \vec{F} \cdot Ads = (0.1 + 0.3 - 4yk) \cdot (dydzi + dzdxj + dxdyk)$$

$$\Rightarrow \operatorname{Cul} \vec{F} \cdot Ads = -4ydxdy$$

$$R \cdot H \cdot s = \iint_{ABCD} \operatorname{Cul} \vec{F} \cdot Ads = \iint_{ABCD} -4ydxdy$$

$$= -4 \iint_{BCD} -4ydxdy$$

CMR

8.2 By truen's theorem,

$$\int_{C} M dx + N dy = \int_{R} \left(\frac{\Im N}{\Im x} - \frac{\Im M}{\Im y} \right) dx dy$$

$$\Im M = -\frac{N}{2} + N = \frac{\chi}{2}$$
then

$$\int_{C} \left(-\frac{N}{2} dx + \frac{\chi}{2} dy \right) = \int_{R} \left(\frac{1}{2} + \frac{1}{2} \right) dx dy$$

$$\Rightarrow \frac{1}{2} \int_{C} \left(\chi dy - y dx \right) = \int_{R} dx dy = Area.$$
Area = $\frac{1}{2} \int \chi dy - y dx - 0$
The bounded sugion is interaction of $y^{2} = 4x$

$$4 \chi^{2} = 4y.$$
Point of interaction in $\frac{\chi^{2}}{4} = 4x$

$$\Rightarrow \left(\frac{\chi^{2}}{4} \right)^{2} = 4x \Rightarrow \frac{\chi^{4}}{16} = 4x$$

$$\Rightarrow \chi^{4} = 64x \Rightarrow \chi (\chi^{3} - 64) = 0 \Rightarrow \chi = 0, \chi = 4$$

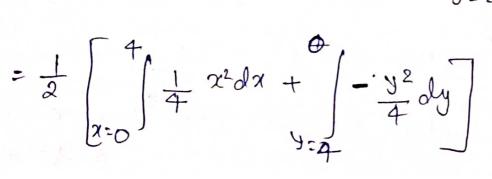
I

Thur fore the points of interaction are
$$(0,0)$$
 $d(4,4)$.
Along OA i.e. $C_1 :=$
 $\chi^2 = 4y \Rightarrow y = \chi^2$
 $\Rightarrow \chi dx = 4 dy$
 $\Rightarrow \int dy = \chi dx$
 $\Rightarrow \int dy = \chi dx$
 $\chi : O - 4$
Along AO i.e. C_2 \vdots
 $\chi^2 = 4x \Rightarrow \chi dy = 4 dx$
 $\Rightarrow \chi^2 = 4x \Rightarrow \chi dy = 4 dx$
 $\Rightarrow \chi = \frac{y^2}{4} \Rightarrow \int dx = \frac{y}{2} dy$

From ()

$$Area = \frac{1}{2} \int x \, dy - y \, dx = \frac{1}{2} \left[\int (x \, dy - y \, dx) + \int (x \, dy - y \, dx) \right]$$

= $\frac{1}{2} \int \left(\frac{4}{x \cdot x \cdot dx} - \frac{\chi^2}{2} \cdot dx + \int \frac{1}{2} \int \frac{y^2}{4} \, dy - y \cdot \frac{y \cdot dy}{2} \right]$
 $y = 4$



=) Area =
$$\frac{1}{2} \cdot \frac{1}{4} \begin{bmatrix} \frac{1^3}{3} \end{bmatrix}_{0}^{4} - \begin{bmatrix} \frac{1^3}{3} \end{bmatrix}_{0}^{4} -$$

CMR

.

۱

$$\begin{array}{l} 0.5 \quad \overrightarrow{F} = (2\pi y^{2} + yz)i + (2x^{2}y + xz + 2yz^{2})j + (2y^{2}z + 2y)k\\ \mbox{Curl } \overrightarrow{F} = \begin{bmatrix} i & j & k\\ \frac{2}{\sqrt{3}} & \frac{2}{\sqrt{3}}y & \frac{2}{\sqrt{3}}z\\ 2xy^{2} + yz & 2x^{2}y + xz + 2yz^{2} & 2y^{2}z + xy\\ = i\left[4yz + x - x - 4yz \right]\\ & -\dot{y}\left[y - y \right] + k\left[4xy + z - 4xy - z \right]\\ \Rightarrow Curl \overrightarrow{F} = 0\\ \Rightarrow \overrightarrow{F} is a consurvative force field.\\ \Rightarrow \exists a scalar bokentral & such that \\ \forall \overrightarrow{\Phi} = F\\ \forall a = F\\ \forall a = \frac{24y}{\sqrt{3}}i + \frac{24y}{\sqrt{3}}i + \frac{24}{\sqrt{2}}k\\ \Rightarrow \frac{24y}{\sqrt{3}}i + \frac{24y}{\sqrt{3}}i + \frac{24}{\sqrt{2}}k\\ \Rightarrow \frac{24y}{\sqrt{3}}i + \frac{24}{\sqrt{3}}j + \frac{24}{\sqrt{3}}k\\ = \frac{24y}{\sqrt{3}}i + \frac{24}{\sqrt{3}}j + \frac{24}{\sqrt{3}}k\\ = \frac{24y}{\sqrt{3}}i + \frac{24}{\sqrt{3}}j + \frac{24}{\sqrt{3}}k\\ = \frac{24y}{\sqrt{3}}i + \frac{24}{\sqrt{3}}k\\ = \frac{24y}{\sqrt{3}$$

CMR

Thundons,

$$\frac{2+1}{\sqrt{2x}} = 2^{\chi}y^{2} + yz \implies 2^{\chi} = 2^{\chi}y^{2} + yz = 2^{\chi}y^{2} + yz + 2yz^{2} \implies 2^{\chi}y + \chi = 2^{\chi}y^{2} + \chi = 2^{\chi}y^{2}$$

0.6 Let hat, I have be two subspaces of a verter space

$$V(F)$$
.
To prove $W_1 \cap W_2$ is also a subspace.
(i) Since W_1 , W_2 are subspace then
 $0 \in W_1$, $U = W_2$
 $\Rightarrow 0 \in W_1, \cap W_2$
(ii) Let $x, y \in W_1, \cap W_2$
 $\Rightarrow x, y \in W_1, \quad f = x, y \in W_2$
 $\Rightarrow x + y \in W_1, \quad f = x + y \in W_2$
 $\Rightarrow x + y \in W_1, \quad f = x + y \in W_1 \cap W_2$
(iii) Let $x \in R$ f $x \in W_1 \cap W_2$
 $\Rightarrow x \in W_1, \quad f = x \in W_2$
 $\Rightarrow x \in W_1, \quad f = x \in W_2$
 $\Rightarrow dx \in W_1, \quad W_2$.
Hence $W, \cap W_2$ is also a subspace of $V(F)$.

CMR

L

0.7) Determine the dimension and basis of the subspace
uppointed by
$$S = \{(1,2,3), (3,1,0), (-2,1,3)\}$$
.
Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \\ -2 & 1 & 3 \end{bmatrix}$
 $R_2 \rightarrow R_0 - 3R_1$
 $R_3 \rightarrow R_3 + 2R_1$
 $\simeq \begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -9 \\ 0 & 5 & 9 \end{bmatrix}$
 $R_3 \rightarrow R_3 + R_2$
 $\simeq \begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -9 \\ 0 & 5 & 9 \end{bmatrix}$
 $R_3 \rightarrow R_3 + R_2$
 $\simeq \begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -9 \\ 0 & 0 & 0 \end{bmatrix}$
Hence dimension of the subspace = 2
 Δ basis of the subspace is $\frac{1}{2}(1,2,3), (0,-5,-2)$

•

CMR

$$\begin{array}{c} 0.8 \\ \text{Ll} \quad d, \beta, \gamma \quad br \quad ony \quad \text{Acalars Juck that} \\ d \begin{bmatrix} 1 & 0 \\ 2 & r \end{bmatrix} + \beta \begin{bmatrix} 2 & -3 \\ 0 & 2 \end{bmatrix} + \gamma \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 7 \\ 8 & -1 \end{bmatrix} \\ \end{array}$$

$$\begin{array}{c} \Rightarrow \begin{bmatrix} d + 2\beta & -3\beta + \gamma \\ d + 2\beta & -3\beta + \gamma \\ d + 2\gamma & d + 2\beta \end{bmatrix} = \begin{bmatrix} -1 & 7 \\ 8 & -1 \end{bmatrix} \\ d + 2\beta = -1 & -0 \\ -3\beta + \gamma = 7 & -0 \\ 3d + 2\gamma = 8 & -0 \\ d + 2\beta = -1 & -0 \\ \end{array}$$

$$\begin{array}{c} d + 2\beta = -1 & -0 \\ -3\beta + \gamma = 7 & -0 \\ 3d + 2\gamma = 8 & -0 \\ d + 2\beta = -1 & -0 \\ \end{array}$$

$$\begin{array}{c} form (3), \\ d (d + \gamma) = 8 \\ \Rightarrow d + \gamma = 4 & -0 \\ \end{array}$$

$$\begin{array}{c} \text{Sub } (3) \quad \text{in } (3), \text{ an get} \\ 4 - \gamma + 2\beta = -1 & \Rightarrow 2\beta - \gamma = -5 \\ \Rightarrow \beta = -2 \\ \end{array}$$

$$\begin{array}{c} -3\beta + \gamma = 7 \\ -\beta = -2 \\ \hline \gamma = 0, \\ \end{array}$$

$$\begin{array}{c} -3\beta + \gamma = 7 \\ -\beta = 2 \\ \hline \gamma = -\beta = 2 \\ \end{array}$$

$$\begin{array}{c} \text{Henu the matrix} \begin{bmatrix} 1 & -7 \\ 8 & -1 \\ -\beta = 2 \\ \end{array}$$