

USN						1
						1

Internal Assessment Test – I

Sub	ub: Introduction to Electronics Engineering/Basic Electronics Code									(ode)		SCK204C 3BEE203		
Da	te:	12/ 04 / 2024	Duration:	90 mins	Max Marks:	50	Sem:	Π	Sec:	Sec: Physics Cycle				
	Answer Any FIVE FULL Questions								Mar	·ks	OB CO	E R B T		
1.	Perform the following Conversions. 1. $(i) (144.98)_{10} \rightarrow (?)_{8}$ (ii) $(1764.36)_{8} \rightarrow (?)_{10}$ (iii) $(446.15)_{8} \rightarrow (?)_{2} \rightarrow (?)_{10}$ (iv) (ABCD.EF) $_{16} \rightarrow (?)_{8}$ (v) $(888.86)_{10} \rightarrow (?)_{2}$								10 8	[2*5	5=10]	CO3	L3	
2	Express the Boolean function in a sum of minterms, (i) $F = A^2 + B^2 C$ (ii) $F = A^2 B + B^2 A + C$ (iii) $F = A^2 B + B^2 A + C$							L3						
3.	pro ope	otain the truth table, oblem statements. a. To operate the erated. b. A logic circuit nenever two or more	lamp, switcl t is to be co	h A and onstructed	either switch H	B or sw	itch C r	nust l	be	[10]	CO3	L4	

USN					

Sub:	Internal Assessment Test – I Sub: Introduction to Electronics Engineering/Basic Electronics Code: BESCK2 /BBEE										
Date:12/04/2024Duration:90 minsMax Marks:50Sem:IISec									Pł	ysics C	ycle
	Answer Any FIVE FULL Questions								Marks	OE CO	BE R B T
1.	Perform the following Conversions. (i) $(144.98)_{10} \rightarrow (?)_{8}$ (ii) $(1764.36)_{8} \rightarrow (?)_{10}$ (iii) $(446.15)_{8} \rightarrow (?)_{2} \rightarrow (?)_{10}$ (iv) $(ABCD.EF)_{16} \rightarrow (?)_{8}$ (v) $(888.86)_{10} \rightarrow (?)_{2}$								[2*5=10	CO3	L3
2	Express the Boolean function in a sum of minterms, (i) $F = A^2 + B^2 C$ (ii) $F = A^2 B + B^2 A + C$ [4+4+2] CO3							L3			
3.	Obtain the truth table, SOP Boolean equation and logic diagram for the given problem statements. a. To operate the lamp, switch A and either switch B or switch C must be operated. b. A logic circuit is to be constructed that will produce a logic 1 output whenever two or more of its three inputs are at logic 1.							L4			

4	Perform (55) ₁₀ – (218) ₁₀ using a. 1's complement method b. 2's complement method	Perform (38) ₁₀ – (19) ₁₀ using a. 1's complement method b. 2's complement method	5+5]	CO3/ CO4	L3
5	With the help of truth table explain the diagram and reduce the expression for Sur	[10]	CO3/ CO4	L2	
6	Mention the different theorems and Postul them with truth table.	ates of Boolean Algebra and Prove each of	[2*5]	CO3/ CO4	L2
/	Subtract using (r-1)'s compliment method Subtract using r's compliment method	a) $4456_{(10)}$ - $34234_{(10)}$ a) $1010100_{(2)}$ - $1000100_{(2)}$	[5+5]	CO3/ CO4	L3
	Simplify following Boolean expression (i) $F(A,B,C)=(A + B' + C')(A + B' + C)(A + B' + C)(A + B' + C)(A + B + B)$ (ii) $F(A,B,C)=A'B+BC'+BC+AB'C'$	A + B + C')	[5+5]	CO3/ CO4	L3

CI

CCI

HOD

	Perform (55) ₁₀ – (218) ₁₀ using	U	5+5]	CO3	L3		
4	a. 1's complement method	a. 1's complement method					
	b. 2's complement method	b. 2's complement method					
5	With the help of truth table explain the diagram and reduce the expression for Su	operation of Full Adder with its circuit	[10]	CO3/ CO4	L2		
	diagram and reduce the expression for Su	n und curry.					
	6 Mention the different theorems and Postulates of Boolean Algebra and Prove each of them with truth table.						
/ /	Subtract using (r-1)'s compliment method Subtract using r's compliment method	a) $4456_{(10)}$ - $34234_{(10)}$ a) $1010100_{(2)}$ - $1000100_{(2)}$	[5+5]	CO3/ CO4	L3		
8	Simplify following Boolean expression (i) $F(A,B,C)=(A + B' + C')(A + B' + C)(A + B + C)(A + B + C)(A + B' + C)(A$	A + B + C')	[5+5]	CO3/ CO4	L3		

IAT-1 (1) (144.98) 10 -> (···)8 $\frac{8|1444}{8|180} (144)_{10} \rightarrow (220)_{8} \qquad Fraction Part$ $9|180 (144)_{10} \rightarrow (220)_{8} \qquad 0.98 \times 8 = 7.84|7$ $1000 (0.98)_{10} \rightarrow (0.7656)_{8} \qquad 0.84 \times 8 = 6.72|6$ $0.72 \times 8 = 5.76|5$ $0.72 \times 8 = 5.76|5$ $(144.98)_{10} \rightarrow (220.7656)_{8} \qquad 0.76 \times 8 = 6.08|6$ $(ii)(1764.36)_{R} \rightarrow (200)_{10}$ $(13210 - 1-2)_{R}$ =) $1 \times 8^{3} + 7 \times 8^{2} + 6 \times 8^{1} + 4 \times 8^{0} + 3 \times 8^{-1} + 6 \times 8^{-2}$ = 512+448+48+4+0.375+0-09375 = 1012 + 0.46875 = 1012.46875 $(1764.36)_{8} \rightarrow (1012.46875)_{10}$ $(iii)(446.15) B \rightarrow ()_2 \rightarrow ()$ 446.15 (446.15)8.] writing in team of (100100110.001101)2 3-bit 3-bit

(446.15) (100100110.001101)2 -> ()10 $\begin{bmatrix} -896543910 - 1 - 2 - 3 - 4 - 5 \\ 100100110 - 001101 \end{bmatrix}_{2} = \frac{100}{10} = 2^{8} + 2^{5} + 2^{4} +$ = 294 + 0.12,70.6

= 1×10 + 1×10 + 1×10 + 1×10 + 1×10 + 1×10 + 1×10 - 4+1×10 - 4 = 1000 20000 + 100 000 + 100 + 10 + 1 + 104 + 106 * - 108 × 10° + 10 = (1000000.001101)00(446.15)8->(100100110.001101) =>(294.765625) (446.15)8-> (10010011 (A B C D. E F) is] writing in terms of 4 bits 0010101011100101.11101010 25715.736)8 (ABCD. EF)16 -> (125715.736)8 $(V)(888.86)_{10} \rightarrow ()2$ (888 ho->(1101111000), 888 444 2220 0.86×2=1.72 1111 0 0.72x2=1.44 55 0.44×2=0.88 D 2711 D.88×2=1.76 13 $D - 76 \times 2 = 1.52 | 1$ 6. 0.52+2 (.0.86) ~ ~ (0.11011)2

(888.86)10 ->(110111000.11011)2 2.) (P F=A'+ B'C !! F= A'(B+B')(C+C') + B'C (A+A') = (A'B'+ A'B') (c+c') + AB'C + A'B'C - A'BC + A'BC + A'B'G + A'B'C + AB'C+A'B'C 3-11-15-18-4 = A'BC + A'BC' + A'B'C + A'B'C' + AB'C 011 010 001, 000 101 $= m_{2} + m_{2} + m_{1} + m_{0} + m_{5}$ $F = \sum_{i=1}^{n_0 + m_1 + m_2 + m_3 + m_5} F_{i=1} \sum_{i=1}^{n_0 + m_1 + m_2 + m_3 + m_5} F_{i=1}$ Sum of minterms = 5 (0,1,2,3,5) F = A'B+B'A+C $= \frac{(A'B+CC+)}{(A+A')} + B'A(C+C') + C(A+A')(B+B')$ = A'B(C+C') + B'A(C+C') + C(A+A')(B+B') = A'B(+A'B(' + AB'C + AB'C' + (AC+A'C)(B+B'))= A'BC+A'B(+AB'C+AB'C+AB'C+ACB+ACB'+A'BC+A'BC = A'BC + A'BC' + AB'C + A'B'C' + ACB+A'B'C 011 010 101 1001 $= m_3 + m_2 + m_5 + m_4 + m_7 + m_1$ F= S(1,2,3,4,5,7) sum of minterms = { (1,2,3,4,5,7) product of maniforms using De Morgan's law $\bigcirc F = A' + B'C$ F'-(A'+B'C)' =(A')'.(B'C)'

- A . ((B')' + c') - A. (B+C') - (A+BB') (B+('+ AA') = (A+B) (A+B') (B+C'+A) (B+C+A') = (A+B+'CC') (A+B'+ (C') (B+E'+A) (B+C'+A') -(A+B+C)(B+B+C')(A+B+C)(A+B+C')(A+B+000,00,010 Mo M -(A+B+C)(A+B+C')(A+B'+C)(A+B'+C')(A'+B+C')= MO MIM2 M3 MF F' = TT(0, 1, 2, 3, 5)F=TT(4,6,7)=> product of Maniterim F' = (A'B + B'A + C)'-(A'B)'(B'A)'(c)' $=((A')'+B') \neq (B')'+A') C'$ = (A + B') (B + A') C'= (A+B'+(C') (A'+B+(C') (C'+A+) = (A + B' + C)(A + B' + C')(A' + B + C)(A' + B + C')(B' + A' + C')(B' + A' + C')(A' + B + C')((14) (14) = (A + B' + c) (A + B' + c') (A' + B + c') (A + c' + BB')(A'+ C'+ B" = (A+B'+c)(A+B'+c')(A'+B+c)(A'+B+c')(A'+B+C')(A'+B'+C')

CMR

$$= (A + B^{1} + C)(A + B^{1} + C)(A^{1} + B + C)(A^{1} + B + C)(A + B + C)(A^{1} + B + C)(A^{1} + B + C)(A^{1} + B^{1} + C)(A^$$

1/0010 110011 - Answer (001101) Answer ~> (38)10-(19)10 using 2's complement. (38)10= (100110)2 States and the second $(19)io = (100i1)_2$ $(19)io = (100i1)_2$ (19)io = 01100 +12'S complement = > DIIOI Now, 100110 - (381)10 + 001.1.0.1 - 2's complement of (19)10 110011 - result carry not generated so answer will be in 2's complement. 001100 and get a to the other start 0011011-Answer 1: Output Inputs Cout Sum Cin B A 5 D 0, 0 Ο 0 00, 4 \bigcirc 0) ١ Ο 0 6 O 0 ١ Ð 0 ľ 0 0 1 0 0 I

Full adden takes there inputs and gives
two outputs. First two input A and B
and third is input carry (Cin) and gives
output as sum and Cout
Sum = A'B'cin+A'B cin+AB'cin+AB'cin
= A'B'cin+ABCin+AB'cin+AB'cin
= Cin(A'B'+AB) + Cin(A'B+AB')
= Cin(A
$$\oplus B$$
) + Cin(A'B+AB')
= Cin(A $\oplus B$) + Cin(A $\oplus B$)
Sum = Cin($\oplus A \oplus B$)
Carry (Cout) = A'B cin+AB'cin+AB cin+AB cin
= Cin(A $\oplus B$) + AB(Cin+Cin)
= Cin(A $\oplus B$) + Cin(A $\oplus B$) + AB(Cin+Cin)
= Cin(A $\oplus B$) + Cin(A

/

١

(i) F(A,B,C) = A'B+BC'+BC+AB'C'= A'B + B((+c) + AB'c')= A'B + B + AB'C'= B(I+A') + AB'C' = B+AB'C' = B((+(') + AB'(' = BC+ BC + ABC + = BC+ E' (B+AB') = B(+L'(A+B)(B+B')= BC +AC' + BC' $= B(c+c^{\dagger}) + Ac^{\dagger}$ = BtAc' 1 1 28 4 - 1 + 1 + 1 + 1 + 1 14

Apply: Distribution $(A+\overline{B}+C)(A+B+\overline{C})A+(A+\overline{B}+C)(A+B+\overline{C})\overline{B}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply: Distribution $(A+B+\overline{C})AA+(A+B+\overline{C})A\overline{B}+(A+B+\overline{C})AC+(A+\overline{B}+C)(A+B+\overline{C})\overline{B}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply the Idempotent Law: AA = A $(A+B+\overline{C})A+(A+B+\overline{C})A\overline{B}+(A+B+\overline{C})AC+(A+\overline{B}+C)(A+B+\overline{C})\overline{B}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply the Absorption Law: A+AB = A $(A+B+\overline{C})A+(A+B+\overline{C})AC+(A+\overline{B}+C)(A+B+\overline{C})\overline{B}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply the Absorption Law: A+AB = A $(A+B+\overline{C})A+(A+\overline{B}+C)(A+B+\overline{C})\overline{B}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply: Distribution $AA+AB+A\overline{C}+(A+\overline{B}+C)(A+B+\overline{C})\overline{B}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply the Idempotent Law: AA = A $A+AB+A\overline{C}+(A+\overline{B}+C)(A+B+\overline{C})\overline{B}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply the Absorption Law: A+AB = A $A+A\overline{C}+(A+\overline{B}+C)(A+B+\overline{C})\overline{B}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply the Absorption Law: A+AB = A $A+(A+\overline{B}+C)(A+B+\overline{C})\overline{B}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply: Distribution $A+(A+B+\overline{C})\overline{B}A+(A+B+\overline{C})\overline{B}\overline{B}+(A+B+\overline{C})\overline{B}C+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply the Idempotent Law: AA = A $A+(A+B+\overline{C})\overline{B}A+(A+B+\overline{C})\overline{B}+(A+B+\overline{C})\overline{B}C+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply the Absorption Law: A+AB = A $A+(A+B+\overline{C})\overline{B}+(A+B+\overline{C})\overline{B}C+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply the Absorption Law: A+AB = A $A+(A+B+\overline{C})\overline{B}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply: Distribution $A+\overline{B}A+\overline{B}B+\overline{B}\overline{C}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply the Complement Law: $A\overline{A} = 0$ $A + \overline{B}A + 0 + \overline{B}\overline{C} + (A + \overline{B} + C)(A + B + \overline{C})\overline{C}$

Apply the Identity Law: A+0 = AA+BA+BC+(A+B+C)(A+B+C)C

Apply the Absorption Law: A+AB = A $A+\overline{BC}+(A+\overline{B}+C)(A+B+\overline{C})\overline{C}$

Apply: Distribution $A+\overline{B}\overline{C}+(A+B+\overline{C})\overline{C}A+(A+B+\overline{C})\overline{C}\overline{B}+(A+B+\overline{C})\overline{C}C$

Apply the Complement Law: $A\overline{A} = 0$ $A + \overline{B}\overline{C} + (A + B + \overline{C})\overline{C}A + (A + B + \overline{C})\overline{C}\overline{B} + 0$

Answer 6. Laws of Boolean Algebra

There are six types of Boolean algebra laws. They are:

- Commutative law
- Associative law
- Distributive law
- AND law
- OR law
- Inversion law

Those six laws are explained in detail here.

Commutative Law

Any binary operation which satisfies the following expression is referred to as a commutative operation. Commutative law states that changing the sequence of the variables does not have any effect on the output of a logic circuit.

- A. B = B. A
- A + B = B + A

Associative Law

It states that the order in which the logic operations are performed is irrelevant as their effect is the same.

- (A.B).C=A.(B.C)
- (A + B) + C = A + (B + C)

Distributive Law

Distributive law states the following conditions:

- A. (B + C) = (A. B) + (A. C)
- A + (B. C) = (A + B) . (A + C)

AND Law

These laws use the AND operation. Therefore they are called AND laws.

- A.1=A
- A. A = A
- A.A⁻⁼⁰

OR Law

These laws use the OR operation. Therefore they are called OR laws.

- A + 0 = A
- A + 1 = 1
- A + A = A
- *A*+*A*⁻=1

Inversion Law

In Boolean algebra, the inversion law states that double inversion of variable results in the original variable itself.

• A⁻⁻⁻=A

Boolean Algebra Theorems

The two important theorems which are extremely used in Boolean algebra are De Morgan's First law and De Morgan's second law. These two theorems are used to change the Boolean expression. This theorem basically helps to reduce the given Boolean expression in the simplified form. These two De Morgan's laws are used to change the expression from one form to another form. Now, let us discuss these two theorems in detail.

De Morgan's First Law:

De Morgan's First Law states that (A.B)' = A'+B'.

The first law states that the complement of the product of the variables is equal to the sum of their individual complements of a variable.

The truth table that shows the verification of De Morgan's First law is given as follows:

0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

The last two columns show that (A.B)' = A'+B'.

Hence, De Morgan's First Law is proved.

De Morgan's Second Law:

De Morgan's Second law states that (A+B)' = A'. B'.

The second law states that the complement of the sum of variables is equal to the product of their individual complements of a variable.

The following truth table shows the proof for De Morgan's second law.

Α	В	Α'	В'	(A+B)'	A'. B'
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

The last two columns show that (A+B)' = A'. B'.

Hence, De Morgan's second law is proved.

7.(i) 4456 - 34234= -29778

7(ii). Binary value:

1010100 - 1000100

= 10000

Decimal value:

84 - 68

= 16

11m) Date _____ Page _____ Subhact using (2-1) o compliment [4456)10 - (34234) Subtraction using 9's complement as (2210 (x-129) 4456 - Minueral 34234 - Subtrehend Verification 2 82/234 93 complement of subtrehend of 4 456 29778 999999 - 34234 65765 - 9's comp of subtrahend Minuend + 95 complement of subtraherd 1 4 4 56 - Minnerd + 6 5 7 6 5 - 9's comp of subtrachend 7022 No carry. Take 9's complement of the result KAVITHA

9's comp of result. 29778 Subtract using r's complement in 2's complement 1010100 - Minnerd 00 25 complement of subtrehend 0-111011-15 complement 0111100 - 2's complement Minuend + 2's complement of subtrehend 010100 OO 180 Discard carry = 2/10000