

USN

Internal Assessment Test 3 –June

2024:solution

Sub: Introduction to Python Programming Sub Code: BPLCK205B Branch: Chemistry Cycle

Date: 27-06-2024 Duration: 90 min’s Max Marks: 50 Sem/Sec: II / Chemistry Cycle OBE

Answer any FIVE FULL Questions MARKS CO RBT

1.a Explain the following file operations in Python with suitable example:
i) Copying files and folders
ii) Moving files and folders

iii) Permanently deleting files and folders.

[6] CO3 L2

1.b Develop a program to backing Up a given Folder (Folder in a current working

Directory) into a ZIP File by using relevant modules and suitable methods.
[4] CO3 L3

2.a Describe logging methods used in python to categorize log messages by importance [5] CO4 L2
2.b Explain five buttons available in Debug control window. [5] CO4 L2
3.a Write a program to implement the following object diagram and its functionality

as shown. Initialize an attribute through a constructor and print the same

[5] CO4 L3

3.b Explain _ _init_ _ () and _ _str_ _ () method in detail. [5] CO2 L2
4.a Define Pure function and Modifier function. Illustrate with an example Python

program.

[5] CO4 L3

4.b Define a function which takes two objects representing complex numbers and returns a

new complex number with an addition of two complex numbers. Define a suitable class

Complex' to represent the complex number. Develop a program to read N complex

numbers and to compute the addition of N complex numbers.

[5] CO4 L3

.a What is a class? How to define a class in python? How to initiate a class and how the

class members are accessed?

[5] CO4 L2

5.b Discuss Operator overloading with an example program [5] CO4 L2
6.a Explain Assertions with an example program of how assertions used in traffic light

simulation
[5] CO3 L2

6.b List out the benefits of compressing files? Also explain reading of a zip file [5] CO3 L2
7.a Explain the concept of copy.copy() and copy.deepcopy() module in class with an

example object diagram.
[5] CO4 L2

7.b Briefly explain the printing of objects with examples. [5] CO4 L2

CI CCI HOD

Solution:

1a.Explain the following file operations in Python with suitable example:

i) Copying files and folders

ii) Moving files and folders

iii) Permanently deleting files and folders.

Answer:

Copying files and folders:

The shutil module provides functions for copying files, as well as entire folders.

Calling shutil.copy(source, destination) will copy the file at the path source to the folder at the

path destination. (Both source and destination can be strings or Path objects.) If destination is a

filename, it will be used as the new name of the copied file. This function returns a string

or Path object of the copied file.

Enter the following into the interactive shell to see how shutil.copy() works:

 >>> import shutil, os

 >>> from pathlib import Path

 >>> p = Path.home()

➊ >>> shutil.copy(p / 'spam.txt', p / 'some_folder')

 'C:\\Users\\Al\\some_folder\\spam.txt'

➋ >>> shutil.copy(p / 'eggs.txt', p / 'some_folder/eggs2.txt')

 WindowsPath('C:/Users/Al/some_folder/eggs2.txt')

The first shutil.copy() call copies the file at C:\Users\Al\spam.txt to the

folder C:\Users\Al\some_folder. The return value is the path of the newly copied file.

The second shutil.copy() call ➋ also copies the file at C:\Users\Al\eggs.txt to the

folder C:\Users\Al\some_folder but gives the copied file the name eggs2.txt.

While shutil.copy() will copy a single file, shutil.copytree() will copy an entire folder and every

folder and file contained in it. Calling shutil.copytree(source, destination) will copy the folder at the
path source, along with all of its files and subfolders, to the folder at the path destination.

The source and destination parameters are both strings. The function returns a string of the path of

the copied folder.

Enter the following into the interactive shell:

>>> import shutil, os

>>> from pathlib import Path
>>> p = Path.home()

>>> shutil.copytree(p / 'spam', p / 'spam_backup')

WindowsPath('C:/Users/Al/spam_backup')

The shutil.copytree() call creates a new folder named spam_backup with the same content as the

original spam folder. You have now safely backed up your precious, precious spam.

Moving and Renaming Files and Folders

Calling shutil.move(source, destination) will move the file or folder at the path source to the

path destination and will return a string of the absolute path of the new location.

If destination points to a folder, the source file gets moved into destination and keeps its current

filename. For example, enter the following into the interactive shell:

>>> import shutil

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')

'C:\\eggs\\bacon.txt'

Permanently Deleting Files and Folders

 You can delete a single file or a single empty folder with functions in the os module,

 whereas to delete a folder and all of its contents, you use the shutil module.

 Calling os.unlink(path) will delete the file at path.

 Calling os.rmdir(path) will delete the folder at path. This folder must be empty of any files or

folders.

 Calling shutil.rmtree(path) will remove the folder at path, and all files and folders it contains

will also be deleted.

Be careful when using these functions in your programs! It’s often a good idea to first run your

program with these calls commented out and with print() calls added to show the files that would

be deleted.

Here is a Python program that was intended to delete files that have the .txt file extension but has a

typo (highlighted in bold) that causes it to delete .rxt files instead:

import os

from pathlib import Path

for filename in Path.home().glob('*.rxt'):

 os.unlink(filename)

If you had any important files ending with .rxt, they would have been accidentally, permanently

deleted. Instead, you should have first run the program like this:

import os

from pathlib import Path

for filename in Path.home().glob('*.rxt'):
 #os.unlink(filename)

 print(filename)

1b. Develop a program to backing Up a given Folder (Folder in a current working

Directory) into a ZIP File by using relevant modules and suitable methods.
Answer:

import os

import zipfile

zf = zipfile.ZipFile("myzipfile.zip", "w") #zip file name

for dirname, subdirs, files in os.walk("../Python_Programs"): #folder name to create zip

 zf.write(dirname)

 for filename in files:

 zf.write(os.path.join(dirname, filename))

zf.close()
2a.Describe logging methods used in python to categorize log messages by importance?
Answer:
ogging.basicConfig(level=logging.DEBUG, format=' %(asctime)s - %(levelname)s
- %(message)s')

The logging module’s basicConfig() function lets you specify what details about the LogRecord

object you want to see and how you want those details displayed.

 level=logging.DEBUG: This line sets the logging level to DEBUG, which means that all log

messages of severity DEBUG and above will be captured. The order of severity levels, from lowest

to highest, is DEBUG, INFO, WARNING, ERROR, and CRITICAL.
2b.Explain five buttons available in Debug control window.
Answer:
There are five buttons located at the top left-hand corner of the Debug window: Go, Step, Over,

Out, and Quit. These buttons control how the debugger moves through your code.

3a.Write a program to implement the following object diagram and its functionality as shown.
Initialize an attribute through a constructor and print the same

Answer:

import math class Point:

""" This is a class Point representing a coordinate point

"""

def read_point(p):

p.x=float(input("x coordinate:")) p.y=float(input("y coordinate:"))

def print_point(p): print("(%g,%g)"%(p.x, p.y))

p2=Point() #create second object print("Enter Second point:")

read_point(p2) #read x and y for p2

dist=distance(p1,p2) #compute distance print("First point is:")

print_point(p1) #print p1 print("Second point is:") print_point(p2) #print p2

print("Distance is: %g" %(distance(p1,p2))) #print d

Output:

Enter First point: x coordinate:10

y coordinate:20 Enter Second point: x coordinate:3
y coordinate:5

First point is: (10,20)

3b.Explain _ _init_ _ () and _ _str_ _ () method in detail.

Answer:

A method init () has to be written with two underscores before and after the word init)

Python provides a special method called as __init () which is similar to constructor method

in other programming languages like C++/Java. The term init indicates initialization. As the name
suggests, this method is invoked automatically when the object of a class is created. Consider the

example given here –

import math class Point:

def __init__(self,a,b):
 self.x=a

 self.y=b

def dist(self,p2):
d=math.sqrt((self.x-p2.x)**2 + (self.y-p2.y)**2) return d

 def __str (self):
return "(%d,%d)"%(self.x, self.y)

p1=Point(10,20)#__init__() is called automatically p2=Point(4,5) #__init__() is called

automatically

print("P1 is:",p1)#__str__() is called automatically print("P2 is:",p2)#__str__() is called

automatically

d=p1.dist(p2) #explicit call for dist() print("The distance is:",d)

The sample output is –

P1 is: (10,20)
P2 is: (4,5)

Distance is: 16.15549442140351

 The next method inside the class is str (). It is a special method used for string

representation of user-defined object. Usually, print() is used for printing basic types in

Python. But, user-defined types (class objects) have their own meaning and a way of

representation. To display such types, we can write functions or methods like print_point() as

we did in Section 4.1.2. But, more polymorphic way is to use __str () so that, when we write
just print() in the main part of the program, the __str__() method will be invoked

automatically. Thus, when we use the statement like –

print("P1 is:",p1)

the ordinary print() method will print the portion “P1 is:” and the remaining portion is taken

care by str () method. In fact, __str__() method will return the string format what we have given

inside it, and that string will be printed by print()
method.

4a.Define Pure function and Modifier function. Illustrate with an example Python program.

Answer:
Pure Functions

To understand the concept of pure functions, let us consider an example of creating a class

called Time. An object of class Time contains hour, minutes and seconds as attributes. Write a

function to print time in HH:MM:SS format and another function to add two time objects. Note
that, adding two time objects should yield proper result and hence we need to check whether

number of seconds exceeds 60, minutes exceeds 60 etc, and take appropriate action.

class Time:

"""Represents the time of a day Attributes: hour, minute, second """

def printTime(t): print("%.2d:%.2d:%.2d"%(t.hour,t.minute,t.second))

def add_time(t1,t2): sum=Time()

sum.hour = t1.hour + t2.hour sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second
if sum.second >= 60: sum.second -= 60

sum.minute += 1 if sum.minute >= 60:

sum.minute -= 60
sum.hour += 1 return sum

t1=Time() t1.hour=10 t1.minute=34 t1.second=25 print("Time1 is:") printTime(t1)

t2=Time() t2.hour=2 t2.minute=12 t2.second=41 print("Time2 is :") printTime(t2)

t3=add_time(t1,t2)

print("After adding two time objects:") printTime(t3)
Modifiers

Sometimes, it is necessary to modify the underlying argument so as to reflect the caller. That

is, arguments have to be modified inside a function and these modifications should be available to

the caller. The functions that perform such modifications are known as modifier function. Assume
that, we need to add few seconds to a time object, and get a new time. Then, we can write a

function as below –

def increment(t, seconds): t.second += seconds

while t.second >= 60: t.second -= 60

t.minute += 1

while t.minute >= 60: t.minute -= 60

t.hour += 1

4b.Define a function which takes two objects representing complex numbers and returns a new
complex number with an addition of two complex numbers. Define a suitable class Complex' to
represent the complex number. Develop a program to read N complex numbers and to compute the
addition of N complex numbers.
Answer: class Complex:
 # Constructor to accept real and imaginary part
 def __init__(self, tempReal, tempImaginary):
 self.real = tempReal
 self.imaginary = tempImaginary

 # Defining addComplex() method for adding two complex number
 def addComplex(self, C1, C2):

 # creating temporary object of class Complex
 temp=Complex(0, 0)
 # adding real part of complex numbers
 temp.real = C1.real + C2.real
 # adding Imaginary part of complex numbers
 temp.imaginary = C1.imaginary + C2.imaginary
 # returning the sum
 return temp
 csum = Complex(0,0)
csum is the final result initized to 0,0
n = int(input("Enter the number of complex numbers to be added: "))
for i in range(1, n+1):
 # end = "" will replace the default newline with a sting within the " "
 print("Enter real and imaginary part of a complex number %d :"%i, end=" ")
 c = input().split()
 csum = csum.addComplex(csum,Complex(int(c[0]), int(c[1])))
print("Sum of given Complex Numbers = %d + i%d"%(csum.real, csum.imaginary))
5a.What is a class? How to define a class in python? How to initiate a class and how the class
members are accessed?
Answer:
Python is an object-oriented programming language, and class is a basis for any object oriented
programming language. Class is a user-defined data type which binds data and functions together
into single entity. Class is just a prototype (or a logical entity/blue print) which will not consume
any memory. An object is an instance of a class and it has physical existence. One can create any
number of objects for a class. A class can have a set of variables (also known as attributes, member
variables) and member functions (also known as methods).

(Overview of general OOP concepts is given at the end of this module as an extra topic. Those who
are new to OOP concepts, it is suggested to have a glance and then continue reading).

Programmer-defined Types
A class in Python can be created using a keyword class. Here, we are creating an empty class
without any members by just using the keyword pass within it.

class Point:
pass print(Point)
The output would be –
<class ' main .Point'>

The term main indicates that the class Point is in the main scope of the current module. In other
words, this class is at the top level while executing the program.

Now, a user-defined data type Point got created, and this can be used to create any number of
objects of this class. Observe the following statements –

p=Point()

Now, a reference (for easy understanding, treat reference as a pointer) to Point object is created and
is returned. This returned reference is assigned to the object p. The process of creating a new object
is called as instantiation and the object is instance of a class. When we print an object, Python tells
which class it belongs to and where it is stored in the memory.
print(p)

The output would be –
< main .Point object at 0x003C1BF0>
5b. Discuss Operator overloading with an example program
Answer:
Operator Overloading
Ability of an existing operator to work on user-defined data type (class) is known as operator
overloading. It is a polymorphic nature of any object oriented programming. Basic operators like +,
-, * etc. can be overloaded. To overload an operator, one needs to write a method within user-
defined class. Python provides a special set of methods which have to be used for overloading
required operator. The method should consist of the code what the programmer is willing to do
with the operator. Following table shows gives a list of operators and their respective Python
methods for overloading.
class Point:
def init (self,a=0,b=0): self.x=a
self.y=b +

def __add__(self,p2):
 p3=Point()
 p3.x=self.x+p2.x p3.y=self.y+p2.y
 return p3

def __str (self):
return "(%d,%d)"%(self.x, self.y)

p1=Point(10,20) p2=Point(4,5) print("P1 is:",p1)
print("P2 is:",p2)
p4=p1+p2 #call for add () method print("Sum is:",p4)

The output would be –
P1 is: (10,20)
P2 is: (4,5)
Sum is: (14,25)
6a.Explain Assertions with an example program of how assertions used in traffic light simulation
Answer:
def trafficLight():
 signal = input("Enter the colour of the traffic light: ")
 if (signal not in ("RED","YELLOW","GREEN")):
 print("Please enter a valid Traffic Light colour in CAPITALS")
 else:
 value = light(signal) #function call to light()
 if (value == 0):
 print("STOP, Your Life is Precious.")
 elif (value == 1):
 print ("PLEASE GO SLOW.")
 else:
 print("GO!,Thank you for being patient.")
#function ends here

def light(colour):
 if (colour == "RED"):
 return(0);
 elif (colour == "YELLOW"):
 return (1)

 else:
 return(2)
#function ends here

trafficLight()
print("SPEED THRILLS BUT KILLS")
6b. List out the benefits of compressing files? Also explain reading of a zip file

 Reduce the size of files and their storage requirements without losing information.
 Improve transfer speed over the network due to reduced size and single-file transfer.
 Pack several related files together into a single archive for efficient management.

To read the contents of a ZIP file, first you must create a ZipFile object (note the capital
letters Z and F). ZipFile objects are conceptually similar to the File objects you saw returned by
the open() function in the previous chapter: they are values through which the program interacts
with the file. To create a ZipFile object, call the zipfile.ZipFile() function, passing it a string of
the .ZIP file’s filename. Note that zipfile is the name of the Python module, and ZipFile() is the
name of the function.
For example, enter the following into the interactive shell:

 >>> import zipfile, os

 >>> from pathlib import Path
 >>> p = Path.home()
 >>> exampleZip = zipfile.ZipFile(p / 'example.zip')
 >>> exampleZip.namelist()
 ['spam.txt', 'cats/', 'cats/catnames.txt', 'cats/zophie.jpg']
 >>> spamInfo = exampleZip.getinfo('spam.txt')
 >>> spamInfo.file_size
 13908
 >>> spamInfo.compress_size
 3828
➊ >>> f'Compressed file is {round(spamInfo.file_size / spamInfo
 .compress_size, 2)}x smaller!'
)
 'Compressed file is 3.63x smaller!'
 >>> exampleZip.close()
7a. Explain the concept of copy.copy() and copy.deepcopy() module in class with an example
object diagram.
Answer:

An object will be aliased whenever there an object is assigned to another object of same class. This
may happen in following situations –

 Direct object assignment (like p2=p1)
 When an object is passed as an argument to a function
 When an object is returned from a function

The last two cases have been understood from the two programs in previous sections. Let us
understand the concept of aliasing more in detail using the following program –

>>> import copy #import module copy
>>> p3=copy.copy(p1) #use the method copy()
>>> print(p1)
< main .Point object at 0x01581BF0>
>>> print(p3)

< main .Point object at 0x02344A50>
>>> print(p3.x,p3.y) 10 20
import copy class Point:
""" This is a class Point representing coordinate point
"""

class Rectangle:
""" This is a class Rectangle. Attributes: width, height and Corner Point """

box1=Rectangle() box1.corner=Point() box1.width=100 box1.height=200 box1.corner.x=0
box1.corner.y=0

box2=copy.copy(box1)
print(box1 is box2) #prints False print(box1.corner is box2.corner) #prints True
7b.Briefly explain the printing of objects with examples.

You can use the python function vars() and pprint() to print current object properties and

values in Python. The vars() returns a dictionary containing the object's attributes and their current

values. We can then use the pprint() function to print the dictionary in a human-readable format

class Person:

 def __init__(self, name, age, gender):

 self.name = name

 self.age = age
 self.gender = gender

 def __str__(self):
 return f"My name is {self.name} and I am {self.age} years old."

person1 = Person("John", 30, "male")

person2 = Person("Jane", 25, "female")

print(person1)

print(person2)

