USN

Internal Assessment Test 1 – JUNE 2024

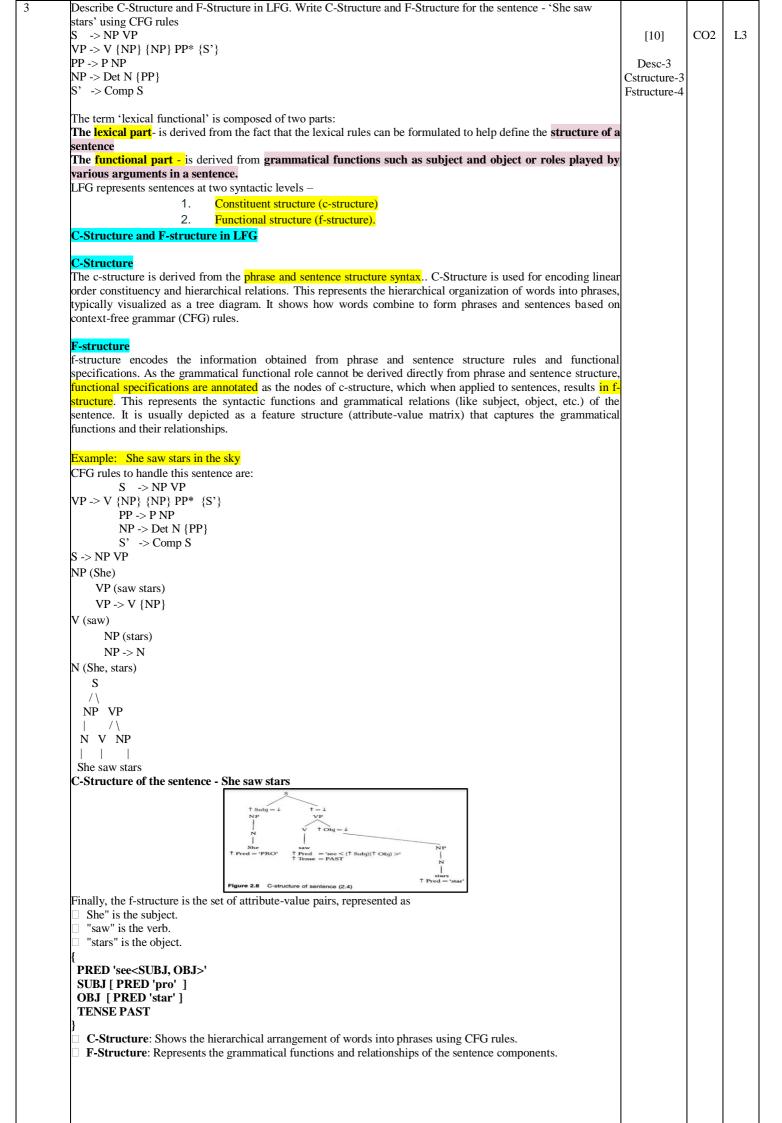
Sub: Natural Language Processing							21AI643	Branch:	AIMI	_	
Date:	04/06/2024	Duration:	90 mins	Max Marks:	50	Sem / Sec:	VI/A				BE
Answer Any of 5 Questions								MA	ARKS	CO	RBT

Explain various levels of Natural Language Frocessing with suitable examples.	[10] Def 5	COI	L2
Natural Language Processing (NLP) is a field of artificial intelligence that focuses on the interaction between computers and humans through natural language. NLP involves several levels of language processing, each handling different aspects of language understanding and generation. Here are the various levels of NLP, explained with suitable examples: 1. Phonological Level	Def-5 Types with example-5		
The phonological level deals with the analysis of speech sounds and their patterns. It involves understanding and processing the phonemes (the smallest units of sound) in spoken language. Example :			
 Speech Recognition: Converting spoken language into text. For instance, recognizing the spoken phrase "hello" and converting it to the text "hello". Morphological Level 			
The morphological level involves the study of the structure and formation of words. It focuses on the identification and analysis of morphemes, the smallest meaningful units in a language.			
Example :Word Formation: Analyzing the word "unhappiness" into its morphemes: "un-" (prefix), "happy" (root), and "-ness" (suffix).			
3. Lexical Level			
The lexical level involves understanding and processing words and their meanings. It deals with the analysis of vocabulary and the relationships between words. Example :			
• Part-of-Speech Tagging: Assigning parts of speech to each word in a sentence. For instance, in the sentence "The cat sat on the mat," the words are tagged as: "The/DT cat/NN sat/VBD on/IN the/DT mat/NN."			
4. Syntactic Level The syntactic level focuses on the structure and grammar of sentences. It involves analyzing the arrangement of words and phrases to form grammatically correct sentences. Example :			
• Parsing: Constructing a parse tree for the sentence "The cat sat on the mat" to represent its grammatical structure.			
Semantic Level			
The semantic level deals with understanding the meaning of words, phrases, and sentences. It involves interpreting the intended meaning and resolving ambiguities. Example :			
 Word Sense Disambiguation: Determining the correct meaning of a word based on context. For example, in the sentence "I went to the bank to deposit money," the word "bank" refers to a financial institution, not a riverbank. 6. Pragmatic Level 			
The pragmatic level involves understanding the use of language in context and the intentions behind utterances. It considers the context and the speaker's intentions to derive meaning beyond the literal interpretation. Example :			
• Speech Act Recognition: Identifying the intention behind a statement. For example, the sentence "Can you pass the salt?" is interpreted as a request rather than a question about someone's ability.			
7. Discourse Level			
The discourse level involves the analysis of language beyond individual sentences, considering the context and coherence of multiple sentences in a text or conversation. Example :			
 Coreference Resolution: Identifying when different expressions refer to the same entity. For instance, in the sentences "Alice went to the park. She enjoyed the weather," the pronoun "She" refers to "Alice." 			
8. Pragmatic Level			
The pragmatic level deals with the social aspects of language use. It involves understanding the implications, intentions, and conversational norms in communication.			
Example:			
 Implicature: Understanding implied meanings. For example, if someone says, "It's getting late," it might imply that they want to leave. 			

2 (a)	Explain Statistical language model and find the probability of the test sentence – P("They play in a big garden") in the following training set using the bi-gram model <s>There is a big garden. Children play in the garden.</s>	[05] Def-3 Eg:2	CO1	L3
	They play inside beautiful garden.			
	A statistical language model assigns probabilities to sequences of words, aiming to predict the likelihood of a given word sequence occurring in a language. One common approach is the n-gram model, where the probability of a word depends on the preceding n-1n-1n-1 words. Bi-Gram Model A bi-gram model (n=2) predicts the probability of a word based on the previous word. The probability of a sentence is calculated as the product of the conditional probabilities of each word given the previous word.			
	<s> There is a big garden.</s>			
	Children play in the garden.			
	They play inside beautiful garden. Steps to Calculate Sentence Probability			
	1. Tokenize the training sentences and count bi-grams.			
	2. Calculate bi-gram probabilities.			
	3. Compute the probability of the test sentence.			
	Tokenization and Counting			
	Tokenize the sentences and include start (<s>) and end () markers: 1. <s> There is a big garden.</s></s>			
	 			
	3. <s> They play inside beautiful garden.</s>			
	Unigram and Bi-gram Counts			
	Unigrams:			
	• <\$>:3			
	• There: 1			
	• is: 1			
	• a: 2 • big: 1			
	 big: 1 garden: 3 			
	Children: 1			
	 play: 2 			
	• pray. 2 • in: 2			
	• the: 2			
	• They: 1			
	• inside: 1			
	• beautiful: 1			
	• . \$: 3			
	Bi-grams:			
	• (<s>, There): 1</s>			
	• (There, is): 1			
	• (is, a): 1			
	• (a, big): 1			
	• (big, garden): 1			
	• (garden, .): 1			
	• (<s>, Children): 1</s>			
	• (Children, play): 1			
	• (play, in): 1			
	• (in, the): 1			
	• (the, garden): 1 • $(\operatorname{conden} - \langle S \rangle) \cdot 1$			
	• $(garden, .): 1$			
	• (<s>, They): 1</s>			
			l	

- (They, play): 1
- (play, inside): 1
- (inside, beautiful): 1
- (beautiful, garden): 1
- (garden, .): 1
- **Calculating Bi-Gram Probabilities** The bi-gram probability P(wi|wi-1) is calculated as: P(wi|wi-1)=Count(wi-1)/ Count(wi-1,wi) **Bi-Gram Probabilities**:
 - P(There|<S>)=1/3
 - P(is|There)=1
 - P(a|is)=1
 - P(big|a)=1/2
 - P(garden|big)=1
 - P(.|garden)=1/3
 - P(Children|<S>)=1/3
 - P(play|Children)=1
 - P(in|play)=1/2
 - P(the|in)=1/2
 - P(garden|the)=1/2
 - P(.|garden)=1/3
 - P(They|<S>)=1/3
 - P(play|They)=1
 - P(inside|play)=1/2
 - P(beautiful|inside)=1
 - P(garden|beautiful)=1
 - P(.|garden)=1/3

Probability Calculation:


- 1. $\dot{P}(They|<S>)=1/3$
- 2. P(play|They)=1
- 3. P(in|play)=1/2
- 4. P(a|in)=1/2 (Note: "a" is not directly after "in" in training, let's assume "a" after "in" as seen in unigram counts)
- 5. P(big|a)=1/2P
- 6. P(garden|big)=1
- 7. P(.|garden)=1/3

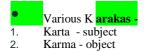
Sentence Probability:

P("They play in a big garden")=P(They|<S>)×P(play|They)×P(in|play)×P(a|in)×P(big|a)×P(garden|big)×P(.| garden)

 $\begin{array}{l} =1/3 * 1 * 1/2 * 1/2 * 1/2 * 1/2 * 1 * 1/3 \\ =1/3 * 1/8 * 1/3 \\ =1/72 \end{array}$

2b)	List the problems associated with the n-gram model. Explain how these problems are handled.	[05] Def-3 Eg:-2	CO1	L2
	 The n-gram model is a widely used statistical language model that predicts the probability of a word given its preceding n-ln-ln-l words. Despite its simplicity and usefulness, the n-gram model has several inherent problems. Here are the key issues and how they are typically addressed: Problems with the N-gram Model Data Sparsity: 			
	• Problem : As the value of nnn increases, the number of possible n-grams grows exponentially, leading to many n-grams that are not observed in the training data.			
	 Solution: This issue is addressed using various smoothing techniques such as: Laplace Smoothing: Adds a small constant (usually 1) to all counts to ensure no zero probabilities. Good-Turing Smoothing: Adjusts the probability of unseen n-grams based on the 			
	count of n-grams seen once, twice, etc.			
	2.Context Limitation:			
	• Problem : N-grams only consider a fixed-length context, which may not capture long-range dependencies effectively.			
	 Solution: Using more advanced models such as: 			
	 Neural Networks: Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks can capture long-range dependencies by maintaining a state that evolves over time. 			
	 Transformers: These models use self-attention mechanisms to capture dependencies across the entire sequence, overcoming the fixed context limitation of n-grams. 			
	3.Inability to Handle Out-of-Vocabulary (OOV) Words:			
	 Problem: N-gram models struggle with words not seen during training, assigning zero 			
	 Kneser-Ney Smoothing: A more sophisticated method that redistributes the probability mass of unseen n-grams more effectively. 			
	4.High Memory Consumption:			
	 Problem: Storing large n-gram models requires significant memory, especially for large values of nnn and extensive vocabularies. 			
	 Solution: Several techniques can be employed to reduce memory usage: 			
	 Pruning: Removing low-frequency n-grams from the model. 			
	 Backoff and Interpolation: Combining lower-order n-grams with higher-order ones to reduce the model size while maintaining performance. probability to any sequence containing an OOV word. 			
	 probability to any sequence containing an OOV word. Solution: Various strategies can mitigate this issue: 			
	 UNK Token: Replacing rare or unseen words with a special token (e.g., UNK) to handle unknown words. 			
	 Subword Models: Breaking words into smaller units such as characters or subwords, which can generalize better to unseen words (e.g., Byte Pair Encoding 			
	(BPE), WordPiece). 5 Lack of Semantic Understanding:			
	 5Lack of Semantic Understanding: Problem: N-grams rely purely on surface statistics and do not understand the meaning or 			
	context beyond the immediate words.			
	• Solution: Incorporating models that capture semantic information:			
	 Word Embeddings: Representing words as dense vectors that capture semantic similarities (e.g., Word2Vec, GloVe). 			
	 Contextualized Embeddings: Using models like BERT or GPT that provide context-sensitive word representations. 			

Finite automata are mathematical models used to represent and analyze the behavior of discrete	[06]	CO2
systems. They come in two primary types: Deterministic Finite Automaton (DFA) and Non-	Des-3	
deterministic Finite Automaton (NFA).	Eg:3	
Deterministic Finite Automaton (DFA)		
A DFA is a finite state machine where for each state and input symbol, there is exactly one transition		
to a next state. In other words, given the current state and an input symbol, the next state is uniquely		
determined.		
Formal Definition : A DFA is defined by a 5-tuple $(Q, \Sigma, \delta, q0, F)(Q, \forall gma, \forall delta, q_0, F)(Q, \Sigma, \delta, q0)$		
F), where:		
• QQQ is a finite set of states.		
• $\Sigma \setminus \text{Sigma}\Sigma$ is a finite set of input symbols (alphabet).		
• $\delta: Q \times \Sigma \rightarrow Q$ delta: Q \times \Sigma \rightarrow $Q \delta: Q \times \Sigma \rightarrow Q$ is the transition function.		
 q0∈Qq_0 \in Qq0∈Q is the start state. F⊆QF \subseteq QF⊆Q is the set of accept states (final states). 		
Example : Consider a DFA that accepts binary strings ending in "01":		
• $Q=\{q0,q1,q2\}Q= \setminus \{q_0, q_1, q_2\} \setminus \{q_0,q1,q2\}$		
• $\Sigma = \{0,1\} \setminus \text{Sigma} = \setminus \{0,1\} \setminus \Sigma = \{0,1\}$		
• δ \delta δ is defined as:		
$\circ \delta(q0,0) = q1 \ delta(q_0, 0) = q_1 \delta(q0,0) = q1$		
$\circ \delta(q0,1) = q0 \det(q_0, 1) = q_0 \delta(q0,1) = q_0$		
$\circ \delta(q1,0) = q1 \\ delta(q_1, 0) = q_1 \\ \delta(q1,0) = q1$		
$\circ \delta(q1,1) = q2 \ (q1,1) = q_2 \delta(q1,1) = q_2$		
$\circ \delta(q2,0) = q1 \ (q2,0) = q_1 \delta(q2,0) = q_1 $		
$\circ \qquad \delta(q2,1) = q0 \ \text{delta}(q_2, 1) = q_0 \delta(q2,1) = q0$		
• $q0q_0q0$ is the start state. • $F_{-}(a2)F_{-}(a2)F_{-}(a2)$		
• $F=\{q_2\}F= \setminus \{q_2\}F=\{q_2\}$ Non-deterministic Finite Automaton (NFA)		
An NFA is a finite state machine where for each state and input symbol, there can be zero, one, or		
multiple transitions to the next state. This allows the NFA to have multiple possible next states for a		
given state and input symbol, including the possibility of transitioning without consuming any input		
symbol (ε-transitions).		
Formal Definition : An NFA is defined by a 5-tuple $(Q, \Sigma, \delta, q0, F)(Q, \Sigma, \delta, q_0, F)(Q, \Sigma, \delta, q0)$		
F), where:		
• QQQ is a finite set of states.		
• Σ \Sigma Σ is a finite set of input symbols (alphabet).		
• $\delta: Q \times \Sigma \rightarrow 2Q$ delta: Q \times \Sigma \rightarrow $2^Q \delta: Q \times \Sigma \rightarrow 2Q$ is the transition function, where $2Q2^Q 2Q$ denotes the power set of QQQ (i.e., the set of all subsets of QQQ).		
 q0∈Qq_0 \in Qq0∈Q is the start state. 		
• $F \subseteq QF$ \subseteq QF $\subseteq Q$ is the set of accept states (final states).		
Example: Consider an NFA that accepts the language of binary strings containing "01":		
• Q={q0,q1,q2}Q = \{q_0, q_1, q_2\}Q={q0,q1,q2}		
• $\Sigma = \{0, 1\} \setminus Sigma = \{0, 1\} \Sigma = \{0, 1\}$		
 δ\deltaδ is defined as: 		
• o $\delta(q0,0)=\{q0,q1\}\$ $delta(q_0, 0) = \{q_0, q_1\}$		
• o $\delta(q0,1) = \{q0\} \setminus \{q_0, 1\} = \{q_0\} \delta(q0,1) = \{q0\}$		
$ \delta(q1,1) = \{q2\} \ delta(q_1, 1) = \{q_2\} \ \delta(q1,1) = \{q2\} \ \delta(q1,2) = \{q2$		
$ \delta(q2,0)=\{q2\}\$ $ \delta(q2,1)=\{q2\}\$ $ \delta(q2,1)=\{q2\}\$ $ \delta(q2,1)=\{q2\}\$		
• $q0q_0q0$ is the start state.		
• $F=\{q2\}F=\{q2\}F=\{q2\}$		
Properties of Finite Automata		
1. Determinism:		
• DFA: For each state and input symbol, there is exactly one transition.		
 NFA: For each state and input symbol, there can be multiple transitions, including none. Accontance of Languages: 		
 Acceptance of Languages: Both DFAs and NFAs accept the same class of languages, known as regular languages. 		
 For every NFA, there is an equivalent DFA that accepts the same language. 		
3. Transition Function:		
○ DFA: $\delta:Q \times \Sigma \rightarrow Q$ \delta: Q \times \Sigma \rightarrow Q $\delta:Q \times \Sigma \rightarrow Q$		
○ NFA: $\delta:Q \times \Sigma \rightarrow 2Q$ \delta: Q \times \Sigma \rightarrow 2^Q $\delta:Q \times \Sigma \rightarrow 2Q$		
	1	1


	 Computational Power: Both DFAs and NFAs have the same computational power, meaning they can recognize the same set of regular languages. 			
	4. Epsilon Transitions (ε-transitions):			
	 DFA: Does not allow ε-transitions. NFA: Allows ε-transitions, where the automaton can move to a new statewithout consuming any input symbol. 2. Determ inistic vs. Non-deterministic Behavior: 			
	 DFA: Deterministic in nature, meaning the next state is uniquely determined. NFA: Non-deterministic, meaning there can be multiple possible next states for a given state and input. 			
	 Conversion: An NFA can be converted to an equivalent DFA using the subset construction (or powerset construction) method. 			
4b)	Define morphology. Explain Stem and Affix classes of morphemes with examples.	Desc-2 Exam-2	CO2	L3
	Morphology is the branch of linguistics that studies the structure and form of words in a language. It focuses on the way words are constructed from smaller units called morphemes. A morpheme is the smallest grammatical unit in a language that carries meaning. Morphology examines how these morphemes combine to form words and how they interact within a language's grammatical rules.			
	Classes of Morphemes Morphemes can be broadly categorized into two main classes: stems and affixes. 1. Stem (Root)			
	A stem, or root, is the base part of a word that carries the core meaning. It is the part of the word to which affixes (prefixes, suffixes, infixes, or circumfixes) can be attached to modify its meaning or grammatical function. Stems can often stand alone as words themselves. Examples:			
	 In the word "unhappiness": "happy" is the stem. In the word "running": 			
	• "run" is the stem.			
	2. Affix • An affix is a morpheme that is attached to a stem to form a new word or alter its meaning. Affixes cannot stand alone and are always bound morphemes. Affixes can be further divided into different types based on their position relative to the stem:			
	 Prefix: An affix that is attached to the beginning of a stem. Examples: 			
	 "un-" in "unhappy" (where "un-" means "not") "pre-" in "preview" (where "pre-" means "before") Suffix: An affix that is attached to the end of a stem. 			
	 Suffix: An affix that is attached to the end of a stern. Examples: "-ness" in "happiness" (where "-ness" turns an adjective into a noun) "-ing" in "running" (where "-ing" indicates a present participle or gerund) 			
	• Infix: An affix that is inserted within a stem. Infixes are less common in English but are found in other languages.			
	 Examples: In Tagalog (a language spoken in the Philippines), the infix "-um-" can be inserted within a root word. For instance, "sulat" (to write) 			
	 becomes "sumulat" (wrote). Circumfix: An affix that surrounds a stem, attaching to both the beginning and the end. Circumfixes are also rare in English but can be found in other languages. Examples: In German, the word "gearbeitet" (worked) uses the circumfix "get" 			
	with the stem "arbeit" (work).			
	 Morphology studies the structure of words and how they are formed from morphemes. Stem (root) is the core part of a word carrying its main meaning. Examples: "happy" in "unhappy", "run" in "running" 			
	 Affix is a morpheme attached to a stem to modify its meaning or function. o Prefix: "un-" in "unhappy" 			

• Suffix: "-ness" in "happiness"			
• Infix: "-um-" in Tagalog "sumulat"			
•			
 o Circumfix: "get" in German "gearbeitet" Understanding morphology helps in analyzing word formation, language structure, and the meaning is constructed in different languages. What is Poss Tagging?List & Explain Different taggers with suitable examples? Part-of-Speech (POS) tagging is the process of assigning a part of speech to each word in a given text. The pof speech include categories like nouns, verbs, adjectives, adverbs, pronouns, conjunctions, prepositions, more. POS tagging helps in understanding the syntactic structure of a sentence and is a crucial step in matural language processing (NLP) tasks. 	[05] arts and	CO2	L
Different Types of POS Taggers There are several types of POS taggers, each employing different methods and algorithms to perform tagg Here are some of the common types:	ing.		
1. Rule-Based Taggers			
Rule-based taggers use a set of hand-crafted linguistic rules to assign POS tags to words. These rules are based the morphological, syntactic, and sometimes semantic properties of the words.	l on		
Example:			
• Brill Tagger : The Brill tagger is a well-known rule-based tagger that starts with an initial assignmen POS tags and then applies a series of transformational rules to correct the tags. For instance, it might use rules like "if a word ending in 'ed' is preceded by 'was,' then tag it as a past participle."			
Example Sentence:			
 "The cat sat on the mat." Initial tagging: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. After applying rules: (No changes needed in this simple example.) 			
2. Statistical Taggers			
Statistical taggers use probabilistic models to assign POS tags based on the likelihood of a particular sequence ags. These models are trained on annotated corpora.	of		
Example:			
Daunpit.			
 Hidden Markov Model (HMM) Tagger: HMM taggers use the probabilities of tag sequences (state transitions) and the probabilities of words given tags (emissions) to determine the most likely tag sequence for a sentence. 	2		
 Hidden Markov Model (HMM) Tagger: HMM taggers use the probabilities of tag sequences (state transitions) and the probabilities of words given tags (emissions) to determine the most likely tag 	2		
 Hidden Markov Model (HMM) Tagger: HMM taggers use the probabilities of tag sequences (state transitions) and the probabilities of words given tags (emissions) to determine the most likely tag sequence for a sentence. 	2		
 Hidden Markov Model (HMM) Tagger: HMM taggers use the probabilities of tag sequences (state transitions) and the probabilities of words given tags (emissions) to determine the most likely tag sequence for a sentence. Example Sentence: "The cat sat on the mat." 	3		
 Hidden Markov Model (HMM) Tagger: HMM taggers use the probabilities of tag sequences (state transitions) and the probabilities of words given tags (emissions) to determine the most likely tag sequence for a sentence. Example Sentence: "The cat sat on the mat." Tagging: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. 			
 Hidden Markov Model (HMM) Tagger: HMM taggers use the probabilities of tag sequences (state transitions) and the probabilities of words given tags (emissions) to determine the most likely tag sequence for a sentence. Example Sentence: "The cat sat on the mat." Tagging: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. Machine Learning-Based Taggers 			

5a)

	-													1
	•	tags given the									onal probabilities of the xtual features.			
	_	e Sentence:			-									
	•	"The cat sat or												
	• 4 Nours	Tagging with I Network-Bas			ne/DT cat	/NN s	at/VE	BD on/	IN the/D]	` mat/NN				
					v those us	sing de	eep le	arning	techniqu	es. have b	become popular due to			
		ity to capture co								,				
	Example													
	•	can handle sec								t-Term M	lemory (LSTM) networks,			
	•		-		-					in both d	irections (forward and			
		backward), ca							sequence	in ootn u	incetions (for ward and			
	•										presentations from			
	Transformers) have set new benchmarks in POS tagging by using self-attention mechanisms to										on mechanisms to			
		understand co	ntext.											
		Exampl e Sen	ntonco. "T	ha cat s	at on the	mat "								
	•	Tagging with					on/IN	J the/Г)T mat/N	N				
		rugging with	DEICI: III	0/11/0	uv 1 1 1 1 5uu		011/11	(the L						
5b)	Calculate	e the Minimum	Edit Dista	nce Alg	gorithm b	y give	n stri	ng "ab	cdef" to "	adcgef".		[5]	C02	L3
56)												[9]		
											e algorithm, calculates the ations considered are:			
	mmm	in number of ope		quileu i			e su n	ig into	another.	The opera	utoris considered are.			
		of a character.												
		of a character.												
	Initializ	ion of a charact	ter.											
	•		table whe	re the	cell at ro	w iii	and o	colum	n iii repi	esents th	e minimum edit			
											jjj characters of the			
		second string	g.						-	-				
	•										esents transforming an			
											first column represents			
	1	transforming Filling the T		string	into an e	mpty	strin	g, wn	ich requi	res in de	eletions.			
	1.		each cell	(i.j)(i.	i)(i,i), cl	heck	the fo	ollowi	ng condi	tions:				
]==str2[j-1]str1[i-1] ==			
			str2	[j-1]str	1[i-1]==	=str2[j-1])), then	the valu	e is the s	same as the diagonal			
					no addi						f the three			
					acters do (insertio			,			m of the three			
			oper	nul	a	d d	c	g	e	f f]			
1				1			1	0		-				
			null	0	1	2	3	4	5	6				
l			a	1	0	1	2	3	4	5				
			b	2	1	1	2	3	4	5	4			
			c d	3	2 3	2	$\frac{1}{2}$	2	3	4	4			
			e e	4	3	3	2	2	2	3	-			
			f	6	5	4	4	4	3	2				
	•	For cell $(1,1)$): Charact	-	-	atch.		ost = 0	-	s diagon	al value).			
	•										in(insert 1+1, delete			
		1+1, substitu	ite $1+1) =$	1.					-					
	•	Continue fill								o				
										2. This n	neans the minimum			
I	number	of operations	required	io tran	storm "a	ocaei	to	aucge	ei 18 2.					
l														

Paninia languag ordered and un syntacti Semant Layere	be Paninian framework for Indian languages. In grammar (PG) was written by Panini in 500 BC in Sanskrit. PG framework can be used for other Indian ges and even for some Asian languages. Unlike English, Asian languages are SOV (Subject-Object-Verb) and inflectionally rich. The inflections provide important syntactic and semantic for language analysis derstanding. The classical Paninian Grammar facilitates the task of obtaining the semantics through ical framework. In PG, an extensive and perfect interpretation of Phonology, Morphology, Syntax, and ics is available. d representation in panini grammar: In Grammar (PG) framework is said to be syntactico–semantic that is one can go from the surface layer	[05]	COI	
to deep achieve	b semantics by passing through immediate layers. PG works on various levels of language analysis to the meaning of the sentence from the hearer's perspective. To achieve the desired meaning, the grammar s is divided itself internally into various levels as shown in the figure below.			
	Semantic Level			
(
	Karaka Level			
(1			
	Vibhakti Level			
	1			
	Surface Level			
Seman	tic Level:			
•	Represents the speaker's actual intention, that is, his real thought for the sentence.			
Surfac	e L evel:			
٠	Surface level is the actual string or the sentence. It captures the written or the spoken sentences as it is.			
•	Vibhakti Level: words. At the Vibhakti level, a noun is formed containing a noun, which contains the instances of noun or pronoun, etc.			
•	Vibhakti is the word suffix, which helps to find out the participants, gender as well as form of the word.			
•	Vibhakti level is purely syntactic. At this level, the case endings are used to form the local groups of the Vibhakti for verbs includes the verb form and the auxiliary verbs.			
• Karaka	Vibhakti gives Tense Aspect Modality details of the word which is popularly known as TAM. a Level:			
•	At the Karaka level, the relation of the participant noun, in the action, to the verb is determined.			
•	Karaka relations are Syntactico-semantic.			
•	These relations are established in between the verb and other constituent nouns that are present in the sentences. Through, these relations, the Karakas try to capture the information from the semantics of the texts.			
•	Kakara level processes the semantics of the language but represents it at the syntactic level. Hence itacts as a bridge between semantic and syntactic analysis of a language.			
	a T heory:			
•	The etymological meaning of the word Karaka is 'one who does something', i.e. one who performs an action.			
•	The Karaka and the Kriya, i.e. the cases and verb are bounded with the sense of mutual requirement.			
•	The one who performs an action, accepts an action, or otherwise helps to perform an action is known as a Karaka.			
•	There is a mutual expectancy in between the action i.e. Kriya and the adjuncts i.e. Karaka.			
•	The presence of one calls for the existence of the other. In other wordsKirya and Karaka are mutually exclusive.			
bounde	d by space (place) or by time.			

- 1. Karana instrument
- 2. Sampradhana beneficiary
- 3. Apadana separation

4. Adhara or Adhikarana - locus

- 5. Sambandh relation
- 6. Tadarthya purpose

The Karta, Karma, and Karana are considered the foremost Karakas while Sampradana, Apadana, and Adhikarana Karakas are known as the influenced Karakas.

Karta Karaka:

The Karta Karaka is the premier one according to action and it is used to perform an action independently of its own. An action indicated in a sentence is entirely dependent upon the Karta-Karaka. Activity either resides in or rises from the Karta only. The man cut the wood **with** an axe Ram cuts the apple **with** knife.

karana - axe and knife

Sampradhana Karaka:

The word Sampradana can be interpreted as 'He to whom something is given properly'. Sampradana Karaka receives or gets benefited from the action. It can also be said that, the person/object for which the Karma is intentional, is known as Sampradana. In this regard, the Sampradana is the final destination of the action.

Example:

Dipti gave chocolates to Shambhavi Shambhavi is sampradhana.

Ram gave me a book. me is sampradhana

He gave flowers for Shanbhavi Shambhavi is sampradhana

Apadana Karaka:

About Apadana Karaka Panini stated that, as when separation is affected by a verbal action, the point of separation is called Apadana. During the execution of the action whenever the task of separation from a certain entity is executed then **whatever remains unmoved or constant is known as Apadana.** Thus, an Apadana denotes the starting point of an action of separation. The entity from which something gets separated or is separated out is known as Apadana.

Example: Shambhavi tore the page from the book with a scissor.

From the book is apadana

Adhikarana Karaka:

'Adhikarana' is the place or thing, which is the location of the action existing in the agent or the object. Adhikarana is assigned to the locus of the action i.e. Kriya. Adhikarana may indicate the place at which the Kriya (the action) is taking place or the time at which the Kriya is carried out. Any action i.e. the Kriya is either

Example:

'Yesterday Shambhavi hit the dog with the stick in front of the shop.' The Karaka annotation of the above sentence can be given as

above sente	nee can be given as	
hit	: verb (root)	
Yesterday	: Kala-Adhikarana (time)	
Shambhavi	: Agent i.e. Karta	
Dog	: Karma	
Stick	: Karana	
Shop	:Desh-Adhikarana (location i.e. Place)	

6b) Explain Transformational Grammar with Examples

5marks (

Col L1

Explanation-3 Steps & Examples -2

Transformational Grammar has 3 Components

Transformational Grammar, introduced by Noam Chomsky in the 1950s, is a theory of grammar that focuses on how different sentence structures can be generated from a common underlying structure through a series of transformations. The core idea is that sentences have a deep

structure (which captures the core semantic relations) and a surface structure (which is the actual spoken or written form). Transformations are the rules that convert deep structures into surface structures.

Key Concepts

- 1. **Deep Structure**: This represents the abstract syntactic representation of a sentence, capturing the basic syntactic relations and meaning.
- 2. **Surface Structure**: This is the actual sentence as spoken or written, which results from applying transformational rules to the deep structure.
- 3. **Transformational Rules**: These are rules that transform the deep structure into the surface structure. Examples include movement (e.g., moving a word or phrase to a different position in the sentence), insertion, deletion, and substitution.

Examples of Transformational Grammar

Example 1: Question Formation

- Consider the declarative sentence:
 - **Deep Structure**: "The cat is on the mat."
- To transform this into a question, we apply a movement transformation known as "Subject-Auxiliary Inversion":
 - Surface Structure: "Is the cat on the mat?"

Transformational Rule:

• Move the auxiliary verb ("is") to the front of the sentence.

Example 2: Passive Transformation

Consider the active sentence:

• Deep Structure: "The dog chased the cat."

To transform this into a passive sentence, we apply the passive transformation:

• Surface Structure: "The cat was chased by the dog."

Transformational Rules:

- 1. Move the object ("the cat") to the subject position.
- 2. Insert the auxiliary verb "was."
- 3. Add the preposition "by" before the original subject ("the dog").

Example 3: Relative Clause Formation

Consider the sentence with a relative clause:

• Deep Structure: "I met the man. The man is a doctor."

- To combine these sentences into one with a relative clause:
 - Surface Structure: "I met the man who is a doctor."

Transformational Rules:

- 1. Identify the noun phrase common to both sentences ("the man").
- 2. Replace the repeated noun phrase in the second sentence with a relative pronoun ("who").
- 3. Embed the second sentence within the first as a relative clause.

Tree Diagrams in Transformational Grammar

Tree diagrams (or syntax trees) are often used to represent the structures of sentences. They visually illustrate the relationships between different parts of a sentence.

Tree Diagram for "The cat is on the mat."

Deep Structure Tree:

S NP VP / Det V PP / The is P NP 1 on Det N the mat

Surface Structure Tree for "Is the cat on the mat?":

```
S
 / 
Aux NP VP
    /
Is Det N
          ΡP
   /
       cat P
   the
             NP
             1
          on
            Det N
            the mat
```

HOD-AIML