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1  a 

Write a C function for Floyd Warshall. 

#define INF 1000000 // A very large number to represent infinity 

#define V 4         // Number of vertices in the graph 

 

// Function to print the shortest distance matrix 

void printSolution(int dist[V][V]) { 

    printf("The shortest distances between every pair of vertices:\n"); 

    for (int i = 0; i < V; i++) { 

        for (int j = 0; j < V; j++) { 

            if (dist[i][j] == INF) 

                printf("%7s", "INF"); 

            else 

                printf("%7d", dist[i][j]); 

        } 

        printf("\n"); 

    } 
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} 

 

// Floyd-Warshall algorithm 

void floydWarshall(int graph[V][V]) { 

    int dist[V][V]; 

 

    // Initialize the solution matrix as a copy of the input graph matrix 

    for (int i = 0; i < V; i++) { 

        for (int j = 0; j < V; j++) { 

            dist[i][j] = graph[i][j]; 

        } 

    } 

 

    // Update dist[][] for each intermediate vertex k 

    for (int k = 0; k < V; k++) { 

        for (int i = 0; i < V; i++) { 

            for (int j = 0; j < V; j++) { 

                // If vertex k is on the shortest path from i to j, update dist[i][j] 

                if (dist[i][k] != INF && dist[k][j] != INF && dist[i][k] + dist[k][j] < 

dist[i][j]) { 

                    dist[i][j] = dist[i][k] + dist[k][j]; 

                } 



 

            } 

        } 

    } 

 

    // Print the shortest distance matrix 

    printSolution(dist); 

} 

 

int main() { 

    /* Example graph with 4 vertices: 

       INF means there is no direct edge between two vertices. 

    */ 

    int graph[V][V] = { 

        {0, 3, INF, 7}, 

        {8, 0, 2, INF}, 

        {5, INF, 0, 1}, 

        {2, INF, INF, 0} 

    }; 

 

    floydWarshall(graph); 

 



 

    return 0; 

} 

 

  
b 

 

Apply Heapsort for the list [9,7,1,8,3,6,2,4,10,5]  

 

Answer: 

1. Build a max heap from the input array. 

2. Extract the maximum element (root of the heap) repeatedly and adjust the heap. 

 

Input Array: 

 

[9, 7, 1, 8, 3, 6, 2, 4, 10, 5] 

 

Step 1: Build the Max Heap 

 

Start from the last non-leaf node (index ) and heapify each subtree. 

 

Initial Array: 

 

[9, 7, 1, 8, 3, 6, 2, 4, 10, 5] 

 

Heapify Process (Bottom-up): 

 

1. Heapify subtree rooted at index 4 (value 3): 

 

Children: 10 (index 9), 5 (index 10). 

 

Largest = 10. Swap 3 and 10. 

 

Result: [9, 7, 1, 8, 10, 6, 2, 4, 3, 5]. 

 

2. Heapify subtree rooted at index 3 (value 8): 

 

Children: 4 (index 7), 3 (index 8). 

 

Largest = 8. No swap needed. 

 

 

 

3. Heapify subtree rooted at index 2 (value 1): 

 

Children: 6 (index 5), 2 (index 6). 

 

Largest = 6. Swap 1 and 6. 

 

Result: [9, 7, 6, 8, 10, 1, 2, 4, 3, 5]. 

 

4. Heapify subtree rooted at index 1 (value 7): 

 

Children: 8 (index 3), 10 (index 4). 
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Largest = 10. Swap 7 and 10. 

 

Result: [9, 10, 6, 8, 7, 1, 2, 4, 3, 5]. 

 

Now heapify the subtree rooted at index 4 (value 7): 

 

Children: 5 (index 9), no second child. 

 

Largest = 7. No swap needed. 

 

5. Heapify subtree rooted at index 0 (value 9): 

 

Children: 10 (index 1), 6 (index 2). 

 

Largest = 10. Swap 9 and 10. 

 

Result: [10, 9, 6, 8, 7, 1, 2, 4, 3, 5]. 

 

Now heapify the subtree rooted at index 1 (value 9): 

 

Children: 8 (index 3), 7 (index 4). 

 

Largest = 9. No swap needed. 

 

Max Heap: 

 

[10, 9, 6, 8, 7, 1, 2, 4, 3, 5] 

 

Repeatedly extract the maximum element (swap root with the last element) and 

reduce the heap size. 

 

1. Extract max (10): 

 

Swap 10 with 5 (last element). 

 

Result: [5, 9, 6, 8, 7, 1, 2, 4, 3, 10]. 

 

Heapify root (index 0): 

 

Children: 9 (index 1), 6 (index 2). 

 

Largest = 9. Swap 5 and 9. 

 

Result: [9, 5, 6, 8, 7, 1, 2, 4, 3, 10]. 

 

Now heapify subtree rooted at index 1: 

 

Children: 8 (index 3), 7 (index 4). 

 

Largest = 8. Swap 5 and 8. 

 

Result: [9, 8, 6, 5, 7, 1, 2, 4, 3, 10]. 

 

Heap after extraction: [9, 8, 6, 5, 7, 1, 2, 4, 3] 

 

 



 

 

2. Extract max (9): 

 

Swap 9 with 3 (last element). 

 

Result: [3, 8, 6, 5, 7, 1, 2, 4, 9, 10]. 

 

Heapify root: 

 

Children: 8 (index 1), 6 (index 2). 

 

Largest = 8. Swap 3 and 8. 

 

Result: [8, 3, 6, 5, 7, 1, 2, 4, 9, 10]. 

 

Now heapify subtree rooted at index 1: 

 

Children: 5 (index 3), 7 (index 4). 

 

Largest = 7. Swap 3 and 7. 

 

Result: [8, 7, 6, 5, 3, 1, 2, 4, 9, 10]. 

 

 

 

Heap after extraction: [8, 7, 6, 5, 3, 1, 2, 4] 

 

 

 

3. Extract max (8): 

 

Swap 8 with 4 (last element). 

 

Result: [4, 7, 6, 5, 3, 1, 2, 8, 9, 10]. 

 

Heapify root: 

 

Children: 7 (index 1), 6 (index 2). 

 

Largest = 7. Swap 4 and 7. 

 

Result: [7, 4, 6, 5, 3, 1, 2, 8, 9, 10]. 

 

Now heapify subtree rooted at index 1: 

 

Children: 5 (index 3), 3 (index 4). 

 

Largest = 5. Swap 4 and 5. 

 

Result: [7, 5, 6, 4, 3, 1, 2, 8, 9, 10]. 

 

 

 

Heap after extraction: [7, 5, 6, 4, 3, 1, 2] 

 

 



 

 

4. Repeat the process until the heap size reduces to 1. 

 

 

 

 

--- 

 

Final Sorted Array: 

 

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
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a 

Explain the key concept of dynamic programming and provide a simple example 

where it is used. 

Answer: 

 

Key Concept of Dynamic Programming: 

 

Dynamic Programming (DP) is a method for solving complex problems by breaking 

them into simpler overlapping subproblems, solving each subproblem once, and 

storing its result (memoization) to avoid redundant computations. It is particularly 

effective for optimization problems and problems that exhibit the overlapping 

subproblems and optimal substructure properties. 

 

Overlapping Subproblems: The problem can be divided into smaller subproblems 

that are solved multiple times. 

 

Optimal Substructure: The solution to a problem can be constructed from the 

solutions of its subproblems. 

 

DP is commonly implemented using: 

 

1. Top-Down Approach: Recursion with memoization. 

 

2. Bottom-Up Approach: Iterative method with a table to store results. 

 

Simple Example: Fibonacci Sequence 

The Fibonacci sequence is defined as: 

 

F(n) =  

\begin{cases}  

0 & \text{if } n = 0, \\ 

1 & \text{if } n = 1, \\ 

F(n-1) + F(n-2) & \text{if } n > 1. 

\end{cases} 
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Obtain the Huffman tree and the code for the following  

Char A B F H I Y  Z 

Frequency 10  7 4 2 8 1 3 

 

Answer: 
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Step 1: Build the Huffman Tree 

We combine the two smallest frequencies iteratively until one root remains. 

1. Initial frequencies: 

A (10), B (7), F (4), H (2), I (8), Y (1) 

2. Combine smallest (H=2, Y=1): 

Create a new node  with frequency . 

Remaining: A (10), B (7), F (4), I (8),  

3. Combine smallest (N1=3, F=4): 

Create a new node  with frequency . 

Remaining: A (10), B (7), I (8),  

4. Combine smallest (B=7, N2=7): 

Create a new node  with frequency . 

Remaining: A (10), I (8),  

5. Combine smallest (I=8, A=10): 

Create a new node  with frequency . 

Remaining: ,  

6. Combine last two (N3=14, N4=18): 

Create the root node  with frequency . 

Step 2: Assign Huffman Codes 

Traverse the tree to assign binary codes (0 for left, 1 for right). 

Resulting Huffman Codes: 

char code 

A 11 

B 000 

F 0011 

H 00100 

I 10 

Y 00101 

 

 

Final Answer: 

 

Huffman Tree: The tree structure is built as explained in Step 1. 

 

Huffman Codes: 

A = 11 



 

B = 000 

F = 0011 

H = 00100 

I = 10 

Y = 00101 
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 Write a C function for performing quicksort, apply the same to the following set of 

numbers 15,5,24,8,1,3,16,10,20 

 

Answer: 

#include <stdio.h> 

// Function to swap two elements 

void swap(int *a, int *b) { 

    int temp = *a; 

    *a = *b; 

    *b = temp; 

} 

// Partition function 

int partition(int arr[], int low, int high) { 

    int pivot = arr[high]; // Choose the last element as pivot 

    int i = low - 1;       // Index of the smaller element 

 

    for (int j = low; j < high; j++) { 

        if (arr[j] < pivot) { 

            i++; 

            swap(&arr[i], &arr[j]); 

        } 

    } 

    // Swap pivot to the correct position 

    swap(&arr[i + 1], &arr[high]); 

    return i + 1; // Return the partition index 

} 

 

// Quick sort function 

void quickSort(int arr[], int low, int high) { 

    if (low < high) { 

        int pi = partition(arr, low, high); // Partition index 

 

        // Recursively sort elements before and after partition 

        quickSort(arr, low, pi - 1); 

        quickSort(arr, pi + 1, high); 

    } 

} 

 

// Function to print an array 

void printArray(int arr[], int size) { 

    for (int i = 0; i < size; i++) { 
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        printf("%d ", arr[i]); 

    } 

    printf("\n"); 

} 

 

// Main function 

int main() { 

    int arr[] = {15, 5, 24, 8, 1, 3, 16, 10, 20}; 

    int n = sizeof(arr) / sizeof(arr[0]); 

 

    printf("Original array:\n"); 

    printArray(arr, n); 

 

    quickSort(arr, 0, n - 1); 

 

    printf("Sorted array:\n"); 

    printArray(arr, n); 

 

    return 0; 

} 

 

Step-by-Step Execution: 

Given array: 15, 5, 24, 8, 1, 3, 16, 10, 20 

Step 1: First Partition (Pivot = 20) 

Initial array: 15, 5, 24, 8, 1, 3, 16, 10, 20 

Elements smaller than 20 are moved to the left. 

Partition result: 15, 5, 10, 8, 1, 3, 16, 20, 24 

Partition index = 7 (pivot 20 placed in the correct position). 

Step 2: Recursively Sort Left Subarray (15, 5, 10, 8, 1, 3, 16) 

Pivot = 16. 

Partition result: 15, 5, 10, 8, 1, 3, 16, 20, 24 

Partition index = 6. 

Step 3: Recursively Sort Left Subarray (15, 5, 10, 8, 1, 3) 

Pivot = 3. 

Partition result: 1, 3, 10, 8, 5, 15, 16, 20, 24 

Partition index = 1. 

Step 4: Recursively Sort Left Subarray (1) 

Single element, no sorting needed. 

Step 5: Recursively Sort Right Subarray (10, 8, 5, 15) 

Pivot = 15. 

Partition result: 10, 8, 5, 15, 16, 20, 24 

Partition index = 5. 

Step 6: Recursively Sort Left Subarray (10, 8, 5) 

Pivot = 5. 

Partition result: 5, 8, 10, 15, 16, 20, 24 

Partition index = 0. 

Final Sorted Array: 

 

1, 3, 5, 8, 10, 15, 16, 20, 24 
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a 

Discuss Strassen's matrix multiplication with an example. and derive its time 

complexity. 

Answer: 

Strassen’s algorithm is a divide-and-conquer algorithm that improves the 

efficiency of matrix multiplication compared to the conventional  algorithm. 

It was introduced by Volker Strassen in 1969 and reduces the number of 

multiplications required to compute the product of two matrices. 

 

Key Idea 

 

Strassen’s algorithm reduces the number of scalar multiplications required to 

compute the product of two  matrices. The standard approach uses 8 scalar 

multiplications and 4 additions/subtractions for  matrices, whereas Strassen’s 

algorithm uses only 7 scalar multiplications but increases the number of 

additions/subtractions to 18. For large matrices, this reduction in 

multiplications leads to faster computations. 
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b 

Obtain the topological sort for the graph  by using source removal method 

and DFS method 

 

 

 

Answer: 
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Write a algorithm and solve the following instance of dynamic knapsack problem 

where n=4, m=40, p = (40, 42, 25, 

12) and w = (5, 15, 25, 35) 

Answer: 

10 
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he 0/1 Knapsack Problem involves maximizing the total profit of selected items 

such that their total weight does not exceed a given capacity. We solve it using 

a dynamic programming approach. Here's the solution step by step: 

 

Given: 

 

n = 4 (number of items) 

 

m = 40 (capacity of the knapsack) 

 

P = {40, 42, 25, 12} (profits of items) 

 

w = {5, 15, 25, 35} (weights of items) 

 

Step 1: Define the DP Table 

We define a 2D table dp[i][j], where: 

i represents the items (1 to n). 

j represents the knapsack capacity (0 to m). 

dp[i][j] stores the maximum profit we can achieve with the first i items and a 

knapsack capacity of j. 

Step 2: Initialization 

When the capacity j = 0, the profit is 0 for all items: dp[i][0] = 0. 

When there are no items (i = 0), the profit is 0 for all capacities: dp[0][j] = 0. 

Step 3: Transition Formula 

For each item i and capacity j: 

If the item's weight w[i-1] > j (doesn't fit in the knapsack), exclude the item: 

dp[i][j] = dp[i-1][j] 

Otherwise, consider the maximum of including or excluding the item: 

dp[i][j] = max(dp[i-1][j], dp[i-1][j - w[i-1]] + P[i-1]) 

Step 4: Fill the DP Table 

We'll iteratively compute the values for all i and j using the transition formula. 

Step 5: Extract the Result 

The maximum profit will be stored in dp[n][m]. 

Solution: Step-by-Step Table Filling 

Initialization 

n = 4, m = 40 

P = {40, 42, 25, 12} 



 

w = {5, 15, 25, 35} 

The dp table starts as: 

dp[i][j] = 0 for all i and j 

Fill the Table 

Now, iterate through items and capacities: 

1. Item 1 (weight = 5, profit = 40): For j from 1 to 40: 

If j < 5, dp[1][j] = dp[0][j] = 0. 

If j >= 5, dp[1][j] = max(dp[0][j], dp[0][j-5] + 40). 

Result after processing Item 1: 

dp[1][j] = [0, 0, 0, 0, 0, 40, 40, 40, ..., 40] (for j >= 5) 

2. Item 2 (weight = 15, profit = 42): For j from 1 to 40: 

If j < 15, dp[2][j] = dp[1][j]. 

If j >= 15, dp[2][j] = max(dp[1][j], dp[1][j-15] + 42). 

Result after processing Item 2: 

dp[2][j] = [0, 0, 0, 0, 0, 40, 40, ..., 82 (at j = 20), ..., 82 (for j >= 15)] 

3. Item 3 (weight = 25, profit = 25): For j from 1 to 40: 

If j < 25, dp[3][j] = dp[2][j]. 

If j >= 25, dp[3][j] = max(dp[2][j], dp[2][j-25] + 25). 

Result after processing Item 3: 

dp[3][j] = [0, 0, 0, 0, ..., 82 (at j = 25), ..., 82 (for j >= 25)] 

 

4. Item 4 (weight = 35, profit = 12): For j from 1 to 40: 

If j < 35, dp[4][j] = dp[3][j]. 

If j >= 35, dp[4][j] = max(dp[3][j], dp[3][j-35] + 12). 

Result after processing Item 4: 

dp[4][j] = [0, 0, ..., 82 (for j < 35), ..., 82 (for j >= 35)] 

Final Table: 

dp[4][40] = 82 

Step 6: Traceback for Selected Items 

To find which items are included: 

1. Start from dp[4][40] = 82. 

2. Check if dp[4][40] == dp[3][40]. If true, item 4 is not included. 

3. Repeat this process to identify included items: 

Item 3 is not included. 

Item 2 is included (42 profit). 

Item 1 is included (40 profit). 

Final Answer: 



 

Maximum Profit: 82 

selected Items: Item 1 and Item 2 (weights = 5 and 15, profits = 40 and 42). 

6 a 

Explain the Heap Sort technique 

 

Answer: 

Heap Sort is a comparison-based sorting algorithm that uses a binary heap data 

structure to sort elements. It has a time complexity of  and is considered efficient 

and in-place since it requires only a constant amount of extra space. 

 

Steps of Heap Sort: 

 

1. Build a Max-Heap: 

 

A binary heap is a complete binary tree where each parent node is greater than or 

equal to its child nodes (in the case of a Max-Heap). 

 

Convert the given array into a Max-Heap. This ensures the largest element is at the 

root (index 0). 

 

2. Extract Elements: 

 

Swap the root element (largest) with the last element of the heap. 

 

Reduce the size of the heap by one (exclude the last element from the heap). 

 

Restore the Max-Heap property for the remaining heap (heapify). 

 

3. Repeat: 

 

Repeat the extraction process until the heap size is reduced to 1. At this point, the 

array is sorted. 

 

Key Operations: 

 

1. Heapify: 

 

A process to ensure the Max-Heap property is maintained. Starting from a given 

node, compare it with its children, and if needed, swap it with the largest child. 

Repeat this process recursively for the affected child. 

 

2. Building the Heap: 

 

To build the heap, heapify all non-leaf nodes starting from the last non-leaf node 

and moving upward. 

 

Algorithm in Pseudocode: 

 

HeapSort(array): 

    n = length(array) 

 

    # Step 1: Build a Max-Heap 

    for i = n/2 - 1 to 0: 

        Heapify(array, n, i) 

 

    # Step 2: Extract elements from the heap 
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    for i = n-1 to 1: 

        Swap(array[0], array[i])  # Move the largest element to the end 

        Heapify(array, i, 0)      # Restore the Max-Heap property for the reduced heap 

 

Heapify(array, heap_size, root): 

    largest = root 

    left = 2*root + 1 

    right = 2*root + 2 

 

    if left < heap_size and array[left] > array[largest]: 

        largest = left 

 

    if right < heap_size and array[right] > array[largest]: 

        largest = right 

 

    if largest != root: 

        Swap(array[root], array[largest]) 

        Heapify(array, heap_size, largest) 

 

 

 b 

Solve the given graph to Dijistra’s method where Source is A. 

 
 

Answer:  

 

o solve the given graph using Dijkstra's algorithm with A as the source node, follow 

these steps: 

 

Step 1: Initialize distances and visited set 

 

1. Assign an initial distance of 0 to the source node (A) and infinity (∞) to all other 

nodes. 

 

 

2. Mark all nodes as unvisited. 

 

 

3. Set the source node (A) as the current node. 

 

 

 

Step 2: Relax edges from the current node 

 

For the current node, calculate the tentative distance to each neighboring node as: 

Tentative Distance = Distance to Current Node + Edge Weight. 

 

If the tentative distance is smaller than the currently assigned distance for the 

neighbor, update it. 

 

 

Step 3: Mark the current node as visited 
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Once all neighbors of the current node have been processed, mark the current node 

as visited. A visited node will not be revisited. 

 

 

Step 4: Move to the next node 

 

Select the unvisited node with the smallest tentative distance as the next current node. 

 

Repeat steps 2–4 until all nodes have been visited. 

 

Step-by-Step Solution 

 

Let's assume the graph's nodes and edge weights are as follows (based on your 

image): 

 

Nodes: A, B, C, D, E 

Edges with weights: 

A → B: 2,  A → C: 5 

B → C: 3,  B → D: 1 

C → D: 2,  C → E: 3 

D → E: 4 

 

Iteration Table 

 

 

 



 

 

Explanation of Each Step 

 

1. Initialization (Step 1): 

 

Start at A (distance = 0). 

 

Distance to B = 2 (A → B). 

 

Distance to C = 5 (A → C). 

 

Other nodes remain at infinity. 

 

2. Processing B (Step 2): 

 

From B: 

Distance to C = 2 + 3 = 5 (no change, already 5). 

Distance to D = 2 + 1 = 3 (update). 

 

3. Processing D (Step 3): 

 

From D: 

Distance to E = 3 + 4 = 7 (update). 

 

4. Processing C (Step 4): 

 

From C: 

Distance to E = 5 + 3 = 6 (update, smaller than 7). 

 

5. Processing E (Step 5): 

 

E is already at the smallest distance (6), no further updates. 

 

 

 

 

 

--- 

 

Final 

Shortest Distances 



 

 

Let me know if you need further clarification or visualization! 

 

 

CI      CCI      HoD 
 

 


