

|--|

Internal Assessment Test 2 – July 2024

Sub):	Analysis &	Design of	Algorithms		1050	Sub Code:	BCS401	Branch:	AID	S & (AIDS	5)
Date:		08/7/2024	Duration:	90 minutes	Max Marks:	50	Sem/Sec:	IV -2	A, B & C		ĺ.	BE
		Ι	Ans	swer any FIV	VE FULL Qu	estio	<u>ns</u>		Μ	ARKS	со	RBT
		Write a C fu	nction for H	Floyd Warsha	all.							
		#define INF	1000000 //	A very large	number to re	presei	nt infinity					
		#define V 4	// Nun	nber of vertic	tes in the grap	h						
		// Function t	o print the s	shortest dista	nce matrix							
		void printSc	olution(int d	ist[V][V]) {								
		printf("Th	ne shortest d	listances betw	ween every pa	ir of v	vertices:\n")	•				
1	a	for (int i =	= 0; i < V; i-	++) {						4	3	L1
		for (int	j = 0; j < V	; j++) {								
		if (di	ist[i][j] == I	NF)								
		pr	intf("%7s",	"INF");								
		else										
		pr	intf("%7d",	dist[i][j]);								
		}										
		printf("	"\n");									
		}										

```
// Floyd-Warshall algorithm
```

void floydWarshall(int graph[V][V]) {

```
int dist[V][V];
```

// Initialize the solution matrix as a copy of the input graph matrix

```
for (int i = 0; i < V; i++) {
```

```
for (int j = 0; j < V; j++) {
```

```
dist[i][j] = graph[i][j];
```

1

}

}

// Update dist[][] for each intermediate vertex \boldsymbol{k}

```
for (int k = 0; k < V; k++) {
```

for (int i = 0; i < V; i++) {

for (int j = 0; j < V; j++) {

// If vertex k is on the shortest path from i to j, update dist[i][j]

```
if (dist[i][k] != INF && dist[k][j] != INF && dist[i][k] + dist[k][j] <
dist[i][j]) {
```

dist[i][j] = dist[i][k] + dist[k][j];

}

```
}
     }
  }
  // Print the shortest distance matrix
  printSolution(dist);
int main() {
  /* Example graph with 4 vertices:
    INF means there is no direct edge between two vertices.
  */
  int graph[V][V] = {
     {0, 3, INF, 7},
     {8, 0, 2, INF},
     {5, INF, 0, 1},
     {2, INF, INF, 0}
  };
  floydWarshall(graph);
```

	return 0;			
	}			
	Apply Heapsort for the list [9,7,1,8,3,6,2,4,10,5]			
	Answer:1. Build a max heap from the input array.2. Extract the maximum element (root of the heap) repeatedly and adjust the heap.			
	Input Array:			
	[9, 7, 1, 8, 3, 6, 2, 4, 10, 5]			
	Step 1: Build the Max Heap			
	Start from the last non-leaf node (index) and heapify each subtree.			
	Initial Array:			
	[9, 7, 1, 8, 3, 6, 2, 4, 10, 5]			
	Heapify Process (Bottom-up):			
	1. Heapify subtree rooted at index 4 (value 3):			
h	Children: 10 (index 9), 5 (index 10).			
U	Largest = 10 . Swap 3 and 10 .	6	3	L2
	Result: [9, 7, 1, 8, 10, 6, 2, 4, 3, 5].			
	2. Heapify subtree rooted at index 3 (value 8):			
	Children: 4 (index 7), 3 (index 8).			
	Largest = 8. No swap needed.			
	3. Heapify subtree rooted at index 2 (value 1):			
	Children: 6 (index 5), 2 (index 6).			
	Largest = 6. Swap 1 and 6.			
	Result: [9, 7, 6, 8, 10, 1, 2, 4, 3, 5].			
	4. Heapify subtree rooted at index 1 (value 7):			
	Children: 8 (index 3), 10 (index 4).			

Largest = 10. Swap 7 and 10.

Result: [9, 10, 6, 8, 7, 1, 2, 4, 3, 5].

Now heapify the subtree rooted at index 4 (value 7):

Children: 5 (index 9), no second child.

Largest = 7. No swap needed.

5. Heapify subtree rooted at index 0 (value 9):

Children: 10 (index 1), 6 (index 2).

Largest = 10. Swap 9 and 10.

Result: [10, 9, 6, 8, 7, 1, 2, 4, 3, 5].

Now heapify the subtree rooted at index 1 (value 9):

Children: 8 (index 3), 7 (index 4).

Largest = 9. No swap needed.

Max Heap:

[10, 9, 6, 8, 7, 1, 2, 4, 3, 5]

Repeatedly extract the maximum element (swap root with the last element) and reduce the heap size.

1. Extract max (10):

Swap 10 with 5 (last element).

Result: [5, 9, 6, 8, 7, 1, 2, 4, 3, 10].

Heapify root (index 0):

Children: 9 (index 1), 6 (index 2).

Largest = 9. Swap 5 and 9.

Result: [9, 5, 6, 8, 7, 1, 2, 4, 3, 10].

Now heapify subtree rooted at index 1:

Children: 8 (index 3), 7 (index 4).

Largest = 8. Swap 5 and 8.

Result: [9, 8, 6, 5, 7, 1, 2, 4, 3, 10].

Heap after extraction: [9, 8, 6, 5, 7, 1, 2, 4, 3]

2. Extract max (9):

Swap 9 with 3 (last element).

Result: [3, 8, 6, 5, 7, 1, 2, 4, 9, 10].

Heapify root:

Children: 8 (index 1), 6 (index 2).

Largest = 8. Swap 3 and 8.

Result: [8, 3, 6, 5, 7, 1, 2, 4, 9, 10].

Now heapify subtree rooted at index 1:

Children: 5 (index 3), 7 (index 4).

Largest = 7. Swap 3 and 7.

Result: [8, 7, 6, 5, 3, 1, 2, 4, 9, 10].

Heap after extraction: [8, 7, 6, 5, 3, 1, 2, 4]

3. Extract max (8):

Swap 8 with 4 (last element).

Result: [4, 7, 6, 5, 3, 1, 2, 8, 9, 10].

Heapify root:

Children: 7 (index 1), 6 (index 2).

Largest = 7. Swap 4 and 7.

Result: [7, 4, 6, 5, 3, 1, 2, 8, 9, 10].

Now heapify subtree rooted at index 1:

Children: 5 (index 3), 3 (index 4).

Largest = 5. Swap 4 and 5.

Result: [7, 5, 6, 4, 3, 1, 2, 8, 9, 10].

Heap after extraction: [7, 5, 6, 4, 3, 1, 2]

		4. Repeat the p	process ur	ntil the hear	size reduce	s to 1.					
		Final Sorted A	rray:								
		[1, 2, 3, 4, 5, 6	, 7, 8, 9,	10]							
		Explain the ke where it is used Answer:	• •	ot of dynan	nic program	ming and pr	ovide a sim	ple example			
		Key Concept o	of Dynam	ic Program	ming:						
		Dynamic Prog them into sim storing its resu effective for o subproblems a	pler over alt (memo optimizat	rlapping su bization) to ion proble	bproblems, avoid redur ms and pro	solving each idant compu blems that	n subproble tations. It is	m once, and s particularly			
		Overlapping S that are solved	-	-	oblem can l	be divided in	nto smaller	subproblems			
		Optimal Subst solutions of its			on to a pro	blem can b	e construct	ed from the	3	3	L3
		DP is common	ly impler	mented usir	ıg:						
2		1. Top-Down 4	Approach	Recursion	n with memo	ization.					
		2. Bottom-Up	Approach	n: Iterative	method with	a table to st	ore results.				
		Simple Examp The Fibonacci									
		F(n) = \begin{cases} 0 & \text{if} r 1 & \text{if} r F(n-1) + F(n-2 \end{cases}	$n = 1, \parallel$	{if } n > 1.							
		Obtain the Huf	I	1	-	-					
	b	Char Frequency	A 10	B 7	F 4	H 2	I 8	Y 1	7	3	L3
	-	Answer:		<u> </u>			<u> </u>		,	J	25

G4 1 D	•1141 TT 66 7	n
-	ild the Huffman T	
We combin	ne the two smalles	st frequencies iteratively until one root remains.
1. Initial fi	requencies:	
A (10), B (7), F (4), H (2), I ((8), Y (1)
2. Combin	e smallest (H=2, Y	¥=1):
Create a n	ew node with fre	quency.
Remaining	g: A (10), B (7), F	(4), I (8),
3. Combin	e smallest (N1=3,	F=4):
Create a n	ew node with fre	quency.
Remaining	g: A (10), B (7), I ((8),
4. Combin	e smallest (B=7, N	N2=7):
Create a n	ew node with fre	quency.
Remaining	g: A (10), I (8),	
5. Combin	e smallest (I=8, A	=10):
Create a n	ew node with fre	quency.
Remaining	. ,	
6. Combin	e last two (N3=14	, N4=18):
Create the	root node with f	requency.
Step 2: As	sign Huffman Co	des
Traverse t	he tree to assign b	binary codes (0 for left, 1 for right).
Resulting 1	Huffman Codes:	
char	code	
Α	11	
В	000	
F	0011	

F	0011
Н	00100
Ι	10
Y	00101

Final Answer:

Huffman Tree: The tree structure is built as explained in Step 1.

Huffman Codes:

A = 11

		$\mathbf{B} = 000$			
		$\mathbf{F} = 0011$			
		H = 00100			
		$\mathbf{I} = 10$			
		Y = 00101			
		Write a C function for performing quicksort, apply the same to the following set of numbers 15,5,24,8,1,3,16,10,20			
		numbers 15,5,2 4 ,6,1,5,10,10,20			
		Answer:			
		#include <stdio.h></stdio.h>			
		// Function to swap two elements			
		void swap(int *a, int *b) {			
		int temp = $*a$;			
		a = b;			
		b = temp;			
		} // Deutition formation			
		// Partition function			
		int partition(int arr[], int low, int high) {			
		<pre>int pivot = arr[high]; // Choose the last element as pivot int i = low - 1; // Index of the smaller element</pre>			
		Int I – Iow - 1, // Index of the smaller element			
		for (int $j = low; j < high; j++$) {			
		if (arr[j] < pivot) {			
		i++;			
		swap(&arr[i], &arr[j]);			
3	а	}	10	3	L3
		}			
		// Swap pivot to the correct position			
		<pre>swap(&arr[i + 1], &arr[high]);</pre>			
		return i + 1; // Return the partition index			
		}			
		// Owiely sort function			
		// Quick sort function			
		void quickSort(int arr[], int low, int high) {			
		<pre>if (low < high) { int pi = partition(arr, low, high); // Partition index</pre>			
		$\lim_{n \to \infty} p_n = p_n (n) (n) (n) (n) (n) (n) (n) (n) (n) (n$			
		// Recursively sort elements before and after partition			
		quickSort(arr, low, pi - 1);			
		quickSort(arr, pi + 1, high);			
		}			
		}			
		// Exaction to print on one			
		// Function to print an array			
		<pre>void printArray(int arr[], int size) { for (int i = 0; i < size; i++) {</pre>			
		$101 (111 - 0, 1 \le 512c, 1^{++}) $			

```
printf("%d ", arr[i]);
   }
  printf("\n");
// Main function
int main() {
  int arr[] = {15, 5, 24, 8, 1, 3, 16, 10, 20};
  int n = sizeof(arr) / sizeof(arr[0]);
  printf("Original array:\n");
  printArray(arr, n);
  quickSort(arr, 0, n - 1);
  printf("Sorted array:\n");
  printArray(arr, n);
  return 0;
Step-by-Step Execution:
Given array: 15, 5, 24, 8, 1, 3, 16, 10, 20
Step 1: First Partition (Pivot = 20)
Initial array: 15, 5, 24, 8, 1, 3, 16, 10, 20
Elements smaller than 20 are moved to the left.
Partition result: 15, 5, 10, 8, 1, 3, 16, 20, 24
Partition index = 7 (pivot 20 placed in the correct position).
Step 2: Recursively Sort Left Subarray (15, 5, 10, 8, 1, 3, 16)
Pivot = 16.
Partition result: 15, 5, 10, 8, 1, 3, 16, 20, 24
Partition index = 6.
Step 3: Recursively Sort Left Subarray (15, 5, 10, 8, 1, 3)
Pivot = 3.
Partition result: 1, 3, 10, 8, 5, 15, 16, 20, 24
Partition index = 1.
Step 4: Recursively Sort Left Subarray (1)
Single element, no sorting needed.
Step 5: Recursively Sort Right Subarray (10, 8, 5, 15)
Pivot = 15.
Partition result: 10, 8, 5, 15, 16, 20, 24
Partition index = 5.
Step 6: Recursively Sort Left Subarray (10, 8, 5)
Pivot = 5.
Partition result: 5, 8, 10, 15, 16, 20, 24
Partition index = 0.
Final Sorted Array:
1, 3, 5, 8, 10, 15, 16, 20, 24
```

4	a	Discuss Strassen's matrix multiplication with an example. and derive its time complexity. Answer: Strassen's algorithm is a divide-and-conquer algorithm that improves the efficiency of matrix multiplication compared to the conventional algorithm. It was introduced by Volker Strassen in 1969 and reduces the number of multiplications required to compute the product of two matrices. Key Idea Strassen's algorithm reduces the number of scalar multiplications required to compute the product of two matrices. The standard approach uses 8 scalar multiplications and 4 additions/subtractions for matrices, whereas Strassen's algorithm uses only 7 scalar multiplications but increases the number of additions/subtractions to 18. For large matrices, this reduction in multiplications leads to faster computations.	5	3	L1
	b	Obtain the topological sort for the graph by using source removal method and DFS method Answer:	5	3	L2

he 0/1 Knapsack Problem involves maximizing the total profit of selected items such that their total weight does not exceed a given capacity. We solve it using a dynamic programming approach. Here's the solution step by step: Given: n = 4 (number of items) m = 40 (capacity of the knapsack) $P = \{40, 42, 25, 12\}$ (profits of items) $w = \{5, 15, 25, 35\}$ (weights of items) Step 1: Define the DP Table We define a 2D table dp[i][j], where: i represents the items (1 to n). j represents the knapsack capacity (0 to m). dp[i][j] stores the maximum profit we can achieve with the first i items and a knapsack capacity of j. **Step 2: Initialization** When the capacity j = 0, the profit is 0 for all items: dp[i][0] = 0. When there are no items (i = 0), the profit is 0 for all capacities: dp[0][j] = 0. **Step 3: Transition Formula** For each item i and capacity j: If the item's weight w[i-1] > j (doesn't fit in the knapsack), exclude the item: dp[i][j] = dp[i-1][j]Otherwise, consider the maximum of including or excluding the item: dp[i][j] = max(dp[i-1][j], dp[i-1][j - w[i-1]] + P[i-1])Step 4: Fill the DP Table We'll iteratively compute the values for all i and j using the transition formula. **Step 5: Extract the Result** The maximum profit will be stored in dp[n][m]. Solution: Step-by-Step Table Filling Initialization n = 4, m = 40 $\mathbf{P} = \{40, 42, 25, 12\}$

 $w = \{5, 15, 25, 35\}$ The dp table starts as: dp[i][j] = 0 for all i and j Fill the Table Now, iterate through items and capacities: 1. Item 1 (weight = 5, profit = 40): For j from 1 to 40: If j < 5, dp[1][j] = dp[0][j] = 0. If $j \ge 5$, dp[1][j] = max(dp[0][j], dp[0][j-5] + 40). **Result after processing Item 1:** dp[1][j] = [0, 0, 0, 0, 0, 40, 40, 40, ..., 40] (for j >= 5) 2. Item 2 (weight = 15, profit = 42): For j from 1 to 40: If j < 15, dp[2][j] = dp[1][j]. If $j \ge 15$, dp[2][j] = max(dp[1][j], dp[1][j-15] + 42). **Result after processing Item 2:** dp[2][j] = [0, 0, 0, 0, 0, 40, 40, ..., 82 (at j = 20), ..., 82 (for j >= 15)]3. Item 3 (weight = 25, profit = 25): For j from 1 to 40: If j < 25, dp[3][j] = dp[2][j]. If $j \ge 25$, dp[3][j] = max(dp[2][j], dp[2][j-25] + 25). **Result after processing Item 3:** dp[3][j] = [0, 0, 0, 0, ..., 82 (at j = 25), ..., 82 (for j >= 25)]4. Item 4 (weight = 35, profit = 12): For j from 1 to 40: If j < 35, dp[4][j] = dp[3][j]. If $j \ge 35$, dp[4][j] = max(dp[3][j], dp[3][j-35] + 12). **Result after processing Item 4:** dp[4][j] = [0, 0, ..., 82 (for j < 35), ..., 82 (for j >= 35)] Final Table: dp[4][40] = 82Step 6: Traceback for Selected Items To find which items are included: 1. Start from dp[4][40] = 82. 2. Check if dp[4][40] == dp[3][40]. If true, item 4 is not included. **3. Repeat this process to identify included items:** Item 3 is not included. Item 2 is included (42 profit). Item 1 is included (40 profit). Final Answer:

		Maximum Profit: 82			
		selected Items: Item 1 and Item 2 (weights = 5 and 15, profits = 40 and 42).			
		Explain the Heap Sort technique			
		Answer: Heap Sort is a comparison-based sorting algorithm that uses a binary heap data structure to sort elements. It has a time complexity of and is considered efficient and in-place since it requires only a constant amount of extra space.			
		Steps of Heap Sort:			
		1. Build a Max-Heap:			
		A binary heap is a complete binary tree where each parent node is greater than or equal to its child nodes (in the case of a Max-Heap).			
		Convert the given array into a Max-Heap. This ensures the largest element is at the root (index 0).			
		2. Extract Elements:			
		Swap the root element (largest) with the last element of the heap.			
		Reduce the size of the heap by one (exclude the last element from the heap).			
		Restore the Max-Heap property for the remaining heap (heapify).			
		3. Repeat:	2	2	
6	а	Repeat the extraction process until the heap size is reduced to 1. At this point, the array is sorted.	3	3	L2
		Key Operations:			
		1. Heapify:			
		A process to ensure the Max-Heap property is maintained. Starting from a given node, compare it with its children, and if needed, swap it with the largest child. Repeat this process recursively for the affected child.			
		2. Building the Heap:			
		To build the heap, heapify all non-leaf nodes starting from the last non-leaf node and moving upward.			
		Algorithm in Pseudocode:			
		HeapSort(array): n = length(array)			
		# Step 1: Build a Max-Heap			
		for $i = n/2 - 1$ to 0: Heapify(array, n, i)			
		# Step 2: Extract elements from the heap			

for i = n-1 to 1: Swap(array[0], array[i]) # Move the largest element to the end Heapify(array, i, 0) # Restore the Max-Heap property for the reduced heap			
Heapify(array, heap_size, root): largest = root left = 2*root + 1 right = 2*root + 2			
if left < heap_size and array[left] > array[largest]: largest = left			
<pre>if right < heap_size and array[right] > array[largest]: largest = right</pre>			
<pre>if largest != root: Swap(array[root], array[largest]) Heapify(array, heap_size, largest)</pre>			
Calcada a incorrection of the Dillicensis and the Landscore Connection A			
Solve the given graph to Dijistra's method where Source is A.			
o solve the given graph using Dijkstra's algorithm with A as the source node, follow these steps:			
Step 1: Initialize distances and visited set			
1. Assign an initial distance of 0 to the source node (A) and infinity (∞) to all other nodes.			
^b 2. Mark all nodes as unvisited.	7	3	L3
3. Set the source node (A) as the current node.			
Step 2: Relax edges from the current node			
For the current node, calculate the tentative distance to each neighboring node as: Tentative Distance = Distance to Current Node + Edge Weight.			
If the tentative distance is smaller than the currently assigned distance for the neighbor, update it.			
Step 3: Mark the current node as visited			

Step 4	: Move to	the next node			
-			smallest tentative distance a	s the next current node	
Repea	t steps 2–4	until all nodes h	ave been visited.		
_	y-Step Sol				
Let's a		e graph's nodes a	and edge weights are as fo	ollows (based on your	
Edges A \rightarrow H B \rightarrow C	: A, B, C, with weig B: 2, $A \rightarrow$ C: 3, $B \rightarrow$ D: 2, $C \rightarrow$ E: 4	hts: C: 5 D: 1			
Iteratio	on Table				
	14	eration	Fable:	2 2 L	
	step	Current	Tentative Distantes	Visited	
	1	A	A: 0, B: 2, C: 5 D: 0, E: 60	A.	
	2	B	A:0, B:2, C:5, D:3, E:00	A.B	
	3	D	A:0, B:2. C: 5, D:3, E:7	A, B, D	
<u>د</u>	ч	С	A:0, B:2 C:5, D:3 E:6	ABID	>
<	5	E	A:0, B:2 C:5, D:3 E:6	A_1B_1D C_1E	

Explanation of Each Step 1. Initialization (Step 1): Start at A (distance = 0). Distance to $B = 2 (A \rightarrow B)$. Distance to $C = 5 (A \rightarrow C)$. Other nodes remain at infinity. 2. Processing B (Step 2): From B: Distance to C = 2 + 3 = 5 (no change, already 5). Distance to D = 2 + 1 = 3 (update). 3. Processing D (Step 3): From D: Distance to E = 3 + 4 = 7 (update). 4. Processing C (Step 4): From C: Distance to E = 5 + 3 = 6 (update, smaller than 7). 5. Processing E (Step 5): E is already at the smallest distance (6), no further updates. shortest sistances: Final shartest bistance Node Final 0 A 2 B C 5 3 D d E Shortest Distances