USN

Internal Assessment Test 2 — July 2024

EARS u
s NE

. | SOFTWARE ENGINEERING & PROJECT))
Sub: MANAGEMENT SubCode: | 21CS61 Branch: | Al&DS
Date: | 08/07/2024 | Duration: | 90 min’s | MaxMarks: |50 | Sem/Sec: | VI ‘A’ OBE
Answer any FIVE FULL Questions MARKS [CO [RBT

Draw activity diagram and Swimlane diagram for access camera surveillance via

the internet.

Activity diagram: 5 Marks

Swimlane diagram: 5 Marks

(Enter password
__and user ID
Volid p(n)wm:imdm passwords/ID

(* Select major) (‘Prompt for rec-n"9

Other functions function
may olso / |

be selected ¥ » Input Iries remain
(Select surveillonce @ {
No input
Inas remain
p

o

Thumbnail Vie'/vybcl a specilic comera

*;o?fg'ﬁf', mf.iﬁfu,;; Sal«r camera 1@

"’V‘ww camera ou'pu!’ >
_ In lcbeled window)

/" Promptfor
_ another view

Exit this function A See onother comera

Homeowner Camera | Interface

~E d

Volid passwords/ID

' /i
Select major function .
Other functions (Prompt for reentry
may also be
selected — 4 InPul tries
amain

" Select surveiflance <
- - <
No input ™
fries remain

<

Thumbn mlm/\‘*" Select o specific camera

(Soloct)poc_-hc (' Select camera icon
\gamera - thumbnails

—————1/ Generate video
output

i i

funchion

¢ View camera output | . Prompt for g
\Un lobellod window J ancther view
Exit this 1

- ~
| . See

another
camera

10 [(CO1

L3

2a)

'Write a formal use case for surveillance.

Use case activities: 3 Marks

Explanation: 3 Marks

6 Co1

L2

B ___S2r=Ho= 3

3

remote location via the Interner. a

oppropeiote
mresst be obsaned s
Trigger: The homecwner deodes % fake

ey,

@ ook inside the house whils Priority:

Use Case Template for Surveillance
- Use cose: Access
M‘ue‘:g.nﬁ —chixphary camera o o ; o ~
see Use cose D and p- d
reration: 2. bost moddfication: Januory 14 by 2. Surveill fnction not d for this
V. Raenoe ST

A flooe plan i
Ponflimrird e and

see ume cae Configure floor plan.

An clarm condition 3 encountered—ses vie o

Alarm condition encountered.

Modercpe priority, 1o be
b < ober basic

s not areailable or has mot been
.

Scenario: When Third

. The homeowner logs onto the Scfefioms Products
website

y of use: =

frequency.
Channel to actor: Via PC-based browses and
ernet *

i
2. The homeowner enters his or her user 1D cornection.
3. The onlers hvo ds (each o least Secondary actors: Systern odministrotor, commeros.
e.d‘d\cmm‘u\ng‘wl = < to ¥ 2
4. The sysern displays oll major Runction butions. 1. System odmmisrator PC-baed system.
cdzosedinn.es smneiiae £
S. The Ao selects the from the 2. Comnercs: wircless conrectivily.
&. The homeowner selects “pick @ comera Opas fescsta
7. The syscm dizploys the foocr plon of the house 1. Whos mechonisoes prosect ized use of this
8. The homecwner selech o camera won from the foor i e v of Sofe ,
2 s security sufficient? Hocking info this feature would
@ homeowner scloct the “view’ & smolor of
10. The systemn displays o viewing window that i 3 Wil system response via the Infernet be acoeptable
1dentshed by the cameca 1D Given fhe Bandwidih d For et
11, The syssemn dsplays g withan the viewing 4. Will we develop a capability 8o provide video at o

higher fromes-per-second rate when high-
boandwsdth connechons are availoble?

2b)

Use case diagram: 4 Marks

Draw Preliminary use case diagram for Safe Home system.

SafeHome

surveillance via
Internet

Home-
owner

Set alarm

Access camera

Configure SafeHome
system parameters

the Cameras

CO1

L2

as a function of time in development.

Agility: 5 Marks
Change costs: 5 Marks

Ivar Jacobson [Jac02a]:

much about.

Changes to the team members,

A N N

\What is agility in the context of software engineering work? How you define change costs

Cont..

what is agility in the context of software engineering work?

< Agility has become today’s buzzword when describing a
modern software process. Everyone is agile.

< An agile team is a nimble team able to appropriately respond
to changes. Change is what software development is very

Changes in the software being built,
Changes because of new technology,

Changes of all kinds that may have an impact on the product
they build or the project that creates the product.

10

CO2

L2

Cost of change
using conventional
software processes

Cost of change
using agile processes,

Development cost

Idealized cost of change
using agile process

Development schedule progress

Figure: Change costs as a function of time
in development

\What is the difference between requirement modelling and requirement analysis.

\Write more about the requirement analysis with a diagram.

Requirement modeling: 3 Marks
Requirement analysis: 3 Marks
Requirement analysis subtopics & diagram: 4 Marks

< Requirements modelling uses a combination of text and
diagrammatic forms to depict requirements in a way that
is relatively easy to understand, and more important,

straightforward to review for correctness,

completeness, and consistency.

+ Requirements analysis results in the specification of software’s

R —_

operational characteristics, indicates software’s interface with

other system elements, and establishes constraints that
software must meet.
v Objectives .~
y 5
v" Analysis Rules of Thumb
v Domain Analysis ./
v

Requirements Modeling Approaches

The requirements model must achieve three primary
objectives:

1. To describe what the customer requires

2. To establish a basis for the creation of a software design,

and

3. To defin& a set of requirements that can be validated once
i el o

the software is built.

10

Co1

L2

Analysis rules of thumb

1. The model should focus on requirements that are visible within

the problem or busimess domain. The level of abstraction should
be relatively high.
2. Each element of the requirements model should add to an overall

understanding of software requirements and provide insight into
the information domain, function, and behavior of the system.

3. Delay consideration of infrastructure and other nonfunctional

models until @esign.) :
4. Minimize coup@ throughout the system.

5. Be certain that the requirements model provides value to all

stakeholders.
6. Keep the modef as simple as it can be.

Tachnical literature

Class taxonomies
Existing applications / /\ : = >
euse slanaards y
Sources‘ of Cusomer surveys / Domain Domalp
domain : Functional models analysis
knowledge Expert advice \ analysu : model
Domain languages
Current/future requirements &
r———] —

Figure. Input and output for/domain analysis

——

Scenario-based Class

models models

eg., eg.,

use cases class diagrams

user stories collaboration diagrams

Software

Requirements

Behavioral
models
eg.,

state diagrams
sequence diagrams

data models

Software engineering knowledge: 5 Marks
Core principles: 5 Marks

Explain about the software engineering knowledge and core principles.

10

CO2

L1

In an editorial in IEEE Software, Steve McConnell commented:

Many software practitioners think of software engineering knowledge almost exclusively as knowledge of specific

technologies: Jg/a, Perl, html, C++, Linux, Windows NT, and so on. Software development knowledge has a 3-year
- -

half-life: Y,

But knowledge of “software engineering principles” will serve a professional programmer throughout his cafeer.

McConnell says software engineering knowledge had evolved to a “stable core” is “75 percent aé i&e

knowledge needed to develop a complex system.”

The following set of core principyles can be applied to the framework, 'and to every software progess.

Principle 1. Be aﬂe.

Whether the process model you choose is prescriptive or agile, keep your technical approach as simple as possible,
work products as concise as possible, and make decisionsEglly whenever possible. T

Principle 2. Focus on quality at every step. The exit condition for every process activity, action, and task should focus
on the quality of the wor;_product produced. -

Principle 3. Be ready to Process is not religion experience, so, adapt your approach to constraints imposed by
the problem, the people, and the project itself.

Principle 4. Build an effective team. Bottom line is people. Build a(self-organizing)team that has mutual tru®=mmmi

respect.

Principle 5. Establish mechanisms for communication and coordination.

Projects fail because important information falls into the(Crackg and/or stakeholders fail to coordinate their efforts to

create a successful end product.

Principle 6. Manage change. Either formal or informal approach, but mechanisms m“ist beﬂestablished to manage the
L, A

u ‘/

Principle 7. Assess _’13‘ Lots of things can go wrong as software is developed. Establish contingency plans.

way changes are requested, assessed, approved, and implemented. a,’."_)

Principle 8. Create work products that provide value for others. Be sure that the work product imparts the necessary
information without amuity or om_'gsion.
A list of required ftﬂcations and features will be passed along to the person (people) who will develop a desig™ il

design will be passed along to those who generate code, and so on.

Explain about the Principles that guide each framework activity in detail.

10 Principles: Each 1 Mark

10

CO2

L1

Principle 1. Listen.
Focus on the speaker’'s words, rather than formulating your response.
Ask for clarification, but avoid constant interruptions.
Never become argumentative (e.g., rolling your eyes or shaking your head).
Principle 2. Prepare before you communicate. @‘

, : . L HwY)
Do some research to understand business domain terminology.

Principle 3. Someone should facilitate the activity.

Every communication meeting should have a |eader (a fa_cilitator) to keep conversation in a productive direction, and to
mediate for any conflict.

Principle 4. Facezface communication is best.

Usually works better when some other representation is present.

For example, create a drawing or a “strawman” document that serves as a focus for discussion.
Principle 5. Take notes and document decisions. @

Someone should serve as a “recorder” and note all important points and decisions.

Principle 6. Strive for collaboration.

Each small collaboration serves to build trust among team members and creates a common
Principle 7. Stay focused; modularize your discussion.

The facilitator should keep the conversation modular, leaving one topic only after it has been resolved.

Principle 8. If something is unclear, draw a picture.

A sketch or drawing often provide clarity when words fail to do the job.

Principle 9.

(a) Once you gg_rfe to something, move on.

(b) If you can't agree to something, move on.

(c) If a feature or function is LLngear and cannot be clarified at the moment, move on.

Many topics require iterative discussion and that "Mg on” is sometimes the best way to achieve communication
agility.

Principle 10. Negotiation iy:ot a co[)jrst ora gy;e. It works Lb;st when both parties win.

When we negotiate functions and features, priorities, and delivery, it demands compromise from

