Internal Assessment Test II –JULY 2024 Sub Data Science and Its Applications SubCode: 21AD62 Branch: AIML/AINDS Date 97/24 Duration: 90 minutes Max Marks: 50 SC VI-A OBE Scheme and Solutions MARKS CO RBT Internal Assessment Test II –JULY 2024 Mark Science and Solutions SubCode: 21AD62 Branch: AIML/AINDS Date 97/24 Duration: 90 minutes Scheme and Solutions Mark is the need of logistic function in logistic regression and explain the maximum likelihood stimation and goodness fit of it. Answer:- Need for logistic function-2M def logistic(x)\$ (1 - logistic(x)\$) We need the output value as 1 or zero. Maximum Likelihood estimation log $L(\beta \mid x_i, y_i) = y_i \log f(x_i \beta) + (1 - y_i) \log (1 - f(x_i \beta)))$ Because log is strictly increasing function, any beta that maximizes the log likelihood also maximizes the likelihood, and vice versa. def logistic(obt(x_i, y_i, beta									and 25 YEARS	1 .	
Sub Data Science and Its ApplicationsSubCode:21AD62Branch:AIMUL/AINDSDate97/24Duration:90 minutesMax Marks:50SECVI-AOBEScheme and SolutionsMARKSCORBT1a)What is the need of logistic function in logistic regression and explain the maximum likelihood estimation and goodness fit of it. Answer: - Need for logistic function-2MMARKSCORBTImage: Science and SolutionsMARKSCORBTImage: Science and SolutionsMARKSCOImage: Science and SolutionJog $f(x_i\beta) + (1 - y_i)$ Science and SolutionIog $L(\beta) I x_i, y_i) = y_i$ Science and SolutionIog $L(\beta) I$	US	N							CMR INSTITUTE OF TEC		
Date9/7/24Duration:90 minutesMax Marks:50SECVI-AOBEScheme and Solutions1a)What is the need of logistic function in logistic regression and explain the maximum likelihood estimation and goodness fit of it. Answer: - Need for logistic function-2MMARKSCORBT1a)What is the need of logistic function-2M def logistic_prime(x): return logistic(x) * (1 - logistic(x)) $y_i = f(x_i\beta) + \varepsilon_i$ wher /is the meaning meansMARKSCORBT1b) $y_i = f(x_i\beta) + \varepsilon_i$ where /is the meaning means(1 - logistic(x)) $y_i = f(x_i\beta) + \varepsilon_i$ where /is the meaning meansIn a state of the meaning meansIn a state of the meaning means10 $B_i = f(x_i\beta) + \varepsilon_i$ where /is the meaning meansIn a state of the meaning meansIn a state of the meaning meansIn a state of the meaning meansImage: the intermet meaning meansImage: the intermet meaning meansImage: the intermet meaning meansIn a state of the meaning meansIn a state of the meaning meansImage: the intermet meaning meansImage: the intermet meaning meansImage: the intermet meaning meansIn a state of the meaning meansImage: the intermet meaning meaning meansImage: the intermet meaning meansImage: the intermet meaning mean		1	nternal Assessment T	est I							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									-		
1a) What is the need of logistic function in logistic regression and explain the maximum likelihood estimation and goodness fit of it. Answer: - Need for logistic function-2M def logistic_prime(x): return logistic(x) * (1 - logistic(x)) $y_i = f(x_i\beta) + \varepsilon_i$ where the best definition of the computed set	Date			50	SEC		VI-A	MARKS			
true positives += 1	1a)	What is the need of logistic function estimation and goodness fit of it. Answer: - Need for logistic function-2M def logistic_prime(x): return logistic(x) * (1 - $y_i = f(x_i\beta) + \varepsilon_i$ where <i>i</i> is the logistic function. We need the output value as 1 or zero Maximum Likelihood estimation-4M Likelihood calculation, Negative likeli log $L(\beta \mid x_i, y_i) = y_i \log \theta$ Because log is strictly increasing fun maximizes the likelihood, and vice val def logistic_log_likelihood_i(x_i, y_i, if y_i == 1: return math.log(logistic(dot(x, else: return math.log(1 - logistic(dot Goodness of fit-4M Python code to calculate precison, rec true_positives = false_positiv for x_i, y_i in zip(x_test, y, predict = logistic(dot(bet)	in logistic regression logistic(x))	$-y_i$) log (1 iizes the log li false_negat	$-f(x_i\beta)$ ikelihood also ives = 0)				
	2a)	recall = true_positives / (tru Explain SVM and the need of Kernel in Answer: -	ue_positives + fals								
		SVM is a supervised learning algo. It boundary that can segregate n dimens Need of Kernel-2M To map points into high dimensional	sional space.				ecision	4	3	L2	

2b) Differentiate Multiple linear regression with simple linear regression. Write a python code to build both models and compute their R-squared value. Answer: - Difference between multiple and simple linear regression-2M In simple linear we will have one independent variable and multiple linear we will have multiple independent variables+ model equations. $y_i = \beta x_i + \alpha + \varepsilon_i$ $y_i = \alpha + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \varepsilon_i$ Building both models-2M Python code to generate models def predict(alpha, beta, x_i): return beta * x_i + alpha def predict(x_i, beta): """assumes that the first element of each x_i is 1""" return dot(x_i, beta) R-squared value-2M Python code to compute R-squared=1-sum of square errors/sum of mean errors. def total_sum_of_squares(y): """the total squared variation of y_i's from their mean""" return sum(v ** 2 for v in de_mean(y)) def r_squared(alpha, beta, x, y): """the fraction of variation in y captured by the model, which equals 1 - the fraction of variation in y not captured by the model, which equals 1 - the fraction of variation in y not captured by the model, which equals 1 - the fraction of variation in y not captured by the model and the model"""	6	3	L2
 3a) List the steps of K-Nearest Neighbors algorithm and write a python code to classify the IRIS dataset using K-Nearest Neighbors. Answer: - Steps of K-Nearest Neighbors-3M Step 1: Selecting the optimal value of K. K represents the number of nearest neighbors that needs to be considered while making prediction. Step 2: Calculating distance. Step 3: Finding Nearest Neighbors. Step 4: Voting for Classification or Taking Average for Regression. IRIS dataset python program-3M 	6	3	L3

Answe Curse The da is redu F1-Sco Its an F1	of Dimensionality- ata set contains manced. ore-1M evaluation metric. Score = $\frac{1}{\frac{1}{\text{Precis}}}$ = $\frac{2 \times 1}{\text{Pr}}$ Regression -1M	$\frac{1}{2}$ It is harmonic me $\frac{2}{\frac{1}{100} + \frac{1}{\text{Recall}}}$ Precision × H ecision + Re	ch may le an of pre Recall call	lead to over	fitting and	classifier	performanc	2 e 4	3	L2
Lasso Bias-1	adds a penalty terr M	n as lambda*slop	e, L1 reg	gularization	ı, can make	e the coeffi	cients as 0.			
4a) Apply iteration	erence between the K-means algorithm	predicted and ex for K=2 where in	pected va itial clust	alue. ter centers a	are (1, 1) an	nd (5, 7). E	xecute for ty	wo		
	teration: - Cluster ation1: Record Number	1 {R1, R2, R3} an		er2 {R4, R5		1	to cluster			
	R1(1.0,1.0)	dist(R1, C1)=		dist(R1, C		-	ster1			
	R2(1.5,2.0)	dist(R2, C1)=1		dist(R2, C		+	ster1			
	R3(3.0,4.0)	dist(R3, C1)=3		dist(R3, C		-	ster1			
	R4(5.0,7.0)	dist(R4, C1)=7		dist(R4,			ster2			
	R5(3.5,5.0)	dist(R5, C1)=4		dist(R5,			ster2			
	R6(4.5,5.0)	dist(R6, C1)= 5		dist(R6, C	-	-	ster2			
	R7(3.5,4.5)	dist(R7,C1)=4		dist(R7, C			ster2			
	Record Number	Close to C1(1.83	, 2.33)	r2 {R3, R4, R5, R6, R7}5M Close to C2(4.12, 5.37) Assign to cluster		10	4	L3		
	R1(1.0,1.0) dist(R1, C1)			dist(R1, C2)=5.37 Cluster1						
	R2(1.5,2.0)	dist(R2, C1)=					uster1			
	R3(3.0,4.0) dist(R3, C1)=2.04 R4(5.0,7.0) dist(R4, C1)=5.64		and the second se	dist(R3, C2)=1.77 Cluster2			The Party name in case of the Party name of the			
	R4(5.0,7.0) R5(3.5,5.0)	dist(R4, C1)= dist(R5, C1)=		dist(R4, C2)=1.85 Cluster2			and the second se			
	R6(4.5,5.0)	dist(R6, C1)=		dist(R5, C2)=0.72 Cluster2 dist(R6, C2)=0.53 Cluster2						
	R7(3.5,4.5)	dist(R7,C1)=			7, C2)=0.53		uster2			
-			0	-			-	_		
X1	1	1.5 3	5		3.5	4.5	3.5	_		
X2	1	2 4	7		5	5	4.5]

5a)	What is the need of calculating entropy and information gain in decision trees? Calculate the entropy value for P(yes) is 6/10 and P(no) is 4/10 given yes, no are class labels. Answer: - Entropy-1.5M Its is the impurity in the dataset. General case of entropy Information gain 1.5M As entropy increases the information gain reduces. So the splitting attribute is selected based on the max info gain. Calculate Entropy-2M (Entropy = -(4/10) * log2(4/10) - (6/10) * log2(6/10 (0.736966 -) * 0.6 - (1.32193 -) * 0.4 - = 0.442179 + 0.52954 = 0.971719	5	4	L3
5b)	Explain how ensemble methods like bagging, random forest help in getting more accurate predictions Answer:- Bagging 2.5M The training set is splitted and given to the same model and it takes the average of all. Random Forest-2M. The training dataset constructs multiple decision trees which are combined, and it takes the average of the predictions + diagrams Test Sample Input Test Sample Input Test Sample Input Test Sample Input Test Office () Prediction 1 Predictions All Predictions Random Forest Predictions Forest Predictions All Predictions	5	4	L2

 6a) How to choose K value in K-means and explain bottom-up hierarchical clustering approach with an example in detail. Answer:- How to choose K value-2M Plotting the sum of squared errors (between each point and the mean of its cluster) as a function of k and looking at where the graph "bends". 			
Bottom-up hierarchical clustering-4M Step 1: Compute the proximity matrix using a particular distance metric. Step 2: Each data point is assigned to a cluster. Step 3: Merge the clusters based on a metric for the similarity between clusters.	10	4	L2
Step 4: Update the distance matrix. Example-4M			