						CELEBRANCE CELEBRANCE					
			Internal A	Assessment Te	st III -	- December Sub		T	, AID	S &	
Sub:	Analysis &	Design of A	Algorithms			Code:	BCS401	Bran	Noh· I	(AIDS)	
Date:	5/8/2024	Duration:	90 minutes	Max Marks:	50	Sem/Sec:	IV -4	A, B &	& C	OBE	
	-	Ans	wer any FIV	VE FULL Qu	estior	<u>15</u>			MARKS	СО	RBT
1 a	A={1,3,4,5} Answer: The problesubsets of the problesubsets of the subsets of the	and d=11 em is a sul he set whose step-by-step blem Definit en: , 3, 4, 5 m d = 11 to find all s ktracking <i>A</i> h an empty nents to th the target sum ents crent sum ents	bset sum p se sum is eq o solution: ition subsets of th Algorithm subset and e subset and e subset on sum , exceed xceeds , bac quals , print	ollowing inst roblem when ual to , using nat sum to 11, a current sur e by one, rec ls it, or can b ktrack by ren t/store the sul explored.	e you the b , using n of (cursiv e exte novin	ı are tasko acktracking g backtrack). ely checkin nded furth g the last a	ed with fin g algorithm cing ng if the cu er. dded elemo	nding n.	8	6	L3

Step 3: Recursive Function for Backtracking		
The recursive function works as follows:		
Start with the first element of the set.		
For each element, decide whether to include it in the subset.		
Move to the next element and repeat the process		
Step 4: Apply Backtracking		
Step-by-step Execution:		
1. Initial State: Start with an empty subset and sum = 0. Index = 0.		
2. Include 1:		
Subset: 1, Current Sum: 1.		
Move to the next index (Index = 1).		
3. Include 3:		
Subset:1,3,4 , Current Sum: .4		
Move to the next index (Index = 2).		
4. Include 4:		
Subset: 1,3,4, Current Sum: 8.		
Move to the next index (Index = 3).		
5. Include 5:		
Subset: 1,3,4,5, Current Sum:13 .		
Exceeds d =11 . Backtrack.		
6. Backtrack		

Remove 5.		
Current Subset: 1,3,4, Current Sum: 8.		
Skip 5. Backtrack.		
7. Backtrack:		
Remove 4.		
Current Subset: 1,3, Current Sum: 4.		
8. Include 5:		
Subset: 1,3,5, Current Sum: 9.		
Backtrack.		
9. Backtrack:		
Remove 3.		
Current Subset: 1, Current Sum: 1.		
10. Include 4:		
Subset: 1,4, Current Sum: 5.		
Move to the next index.		
11. Include 5:		
Subset: 1, 4,5, Current Sum: 11.		
Solution Found: 1 ,4 ,5		
12. Backtrack:		
Remove 5.		
Current Subset: 1,4 Current Sum: 5.		

Backtrack.		
13. Backtrack:		
Remove 4.		
Current Subset: 1, Current Sum: 1.		
Backtrack.		
14. Include 3:		
Subset: 3,, Current Sum:3 .		
Move to the next index.		
15. Include 4:		
Subset: 3,4, Current Sum: 7.		
Move to the next index.		
16. Include 5:		
Subset: 3,4,5, Current Sum: 12.		
Exceeds .d=11, Backtrack.		
17. Backtrack:		
Remove 5.		
Current Subset:3,4 , Current Sum: 7.		
Backtrack.		
18. Include 5:		
Subset: 3,5, Current Sum: .8		

	Backtrack.			
	19. Backtrack:			
	Remove 3.			
	Current Subset: 4, Current Sum: 4.			
	20. Include 5:			
	Subset:4,5 , Current Sum: 9.			
	Backtrack.			
	21. Backtrack:			
	Remove 4.			
	Current Subset:5 , Current Sum: 5.			
	Backtrack.			
	Step 5: Final Solutions			
	After exploring all possibilities, the subsets that sum to are: 1,4,5			
	Give an example of an algorithm which is infinite in nature.			
	Answer: An example of an infinite algorithm is the "infinite loop" algorithm, often used in situations where a program needs to run continuously until an external event stops it. For example:			
	while True: print("This is an infinite loop.")			
b	Explanation:	2	5	L2
	The while True condition always evaluates to True, so the loop never terminates on its own.			
	The algorithm will continue printing "This is an infinite loop." until it is externally interrupted (e.g., by a user or system signal).			
	Practical Use Cases:			

		Operating Systems: Infinite loops are used to keep event listeners or background processes running.			
		Server Applications: Web servers continuously listen for incoming requests in an infinite loop.			
		Real-Time Systems: Embedded systems or hardware controllers use infinite loops to monitor and respond to inputs. While the loop is infinite in principle, it often includes mechanisms to break or			
		terminate the loop based on specific conditions, such as user input, error handling, or system shutdown.			
		Compare programming paradigms, dynamic programming and greedy techniques with example. Answer:			
2	a	Frature Programming Dynamic Grinedy Paradigm Dynamic Grinedy Techni 1. Dit "Genmal style of joptemization approa of Programming The high overlapping" approach of Programming The high overlapping Bubproblems. 2. Key Organize code Solve Subproblem Principle (e.g. prozedunal, and stone results results of) 3. Optime > Not inherently > Gruanantees optemal solution > Now not rateo 4. Key Organize code Solve Subproblem Principle (e.g. prozedunal, and stone results stel. 3. Optime > Not inherently > Gruanantees optemal solution > Nay not problem 4. Example > Greneral 9. Example > Greneral 5. USe > Wrighting > Problem high > problem 5. USe > Wrighting > Problems high > problem 5. USe > Wrighting + Problems high > problem 5. USe + Wrighting + Problems high + Problems high + Problem	4	3	L3
		Explain P,NP,NP-complete problem with examples. P, NP, and NP-Complete Problems These terms are important concepts in computer science, particularly in			
	b	computational complexity theory. Here's a brief explanation of each, along with examples: 1. P (Polynomial Time)	6	5	L2
		Definition: The class of problems that can be solved by a deterministic Turing machine in polynomial time. In simpler terms, these are problems for which an efficient algorithm exists to find a solution.			

Characteristics:

Easy to solve and verify.

Examples of P problems include sorting an array, finding the shortest path in a graph (Dijkstra's Algorithm), and matrix multiplication.

Example:

Problem: Sorting a list of numbers.

Algorithm: Merge Sort or Quick Sort has a time complexity of O(n log n), which is polynomial.

2. NP (Nondeterministic Polynomial Time)

Definition: The class of problems for which a proposed solution can be verified in polynomial time by a deterministic Turing machine.

In other words, while finding the solution might be hard, verifying whether a given solution is correct is efficient.

Characteristics:

May not have efficient algorithms to find solutions.

Examples of NP problems include the Traveling Salesman Problem (TSP) and Subset Sum Problem.

Example:

Problem: Subset Sum Problem.

Description: Given a set of integers, is there a subset whose sum equals a given number?

Verification: If someone provides a subset, we can quickly verify if the sum matches the target.

3. NP-Complete

Definition: NP-complete problems are a subset of NP problems that are as hard as any problem in NP. If a polynomial-time solution is found for one NP-complete problem, it can be used to solve all NP problems in polynomial time.

Characteristics:

Solutions are hard to find, but easy to verify.

Known for their computational difficulty.

Examples include the SAT (Boolean Satisfiability) Problem and the Traveling Salesman Problem (optimization version).

Example:

Problem: Traveling Salesman Problem (Decision Version).

Description: Given a set of cities and distances, is there a route that visits each city exactly once and has a total distance less than or equal to a given value?

Verification: If someone provides a route, checking its distance is polynomial.

		Relationship Between P, NP, and NP-Complete			
		$P \subseteq$ NP: All problems in P are also in NP because if a problem can be solved			
		quickly, it can also be verified quickly.			
		NP-Complete \subseteq NP: NP-complete problems are the hardest problems in NP.			
		It is unknown whether $P = NP$ or $P \neq NP$, and this is one of the biggest open			
		questions in computer science.			
		Diagram Representation			
		$P \subseteq NP \supseteq NP$ -Complete			
		P problems are inside NP, and NP-Complete problems are the hardest subset of NP.			
		What is Backtracking ?How is 4 queens problem solved using Backtracking.			
		Answer:			
		AXA A queens.			
		Miel Q			
		men men			
		all a Day			
		de 2 3 m and D and			
3	a		10	6	L3
		B' T MS quig			
		$- \partial \partial \partial \partial u$			
		Ruf ME			
		- Olution: 2413			
		Mirror image			
		Arothur answer 3142			
		10 point and a second sec			
		Apply Horspool's algorithm and write its c function			
		Text: JIM_SAW_ME_IN_BARBERSHOP			
4	a	Pattern : BARBER	10	4	L3
-		Answer:			
		#include <stdio.h></stdio.h>			
		#include <string.h></string.h>			

```
#include <stdlib.h>
#define MAX CHAR 256 // Maximum number of characters in the ASCII set
// Function to create the shift table
void buildShiftTable(char *pattern, int table[], int patternLength) {
  for (int i = 0; i < MAX_CHAR; i++) {
     table[i] = patternLength; // Default shift for characters not in the pattern
  }
  for (int i = 0; i < patternLength - 1; i++) {
     table[(unsigned char)pattern[i]] = patternLength - 1 - i;
  }
// Horspool's algorithm function
int horspool(char *text, char *pattern) {
  int textLength = strlen(text);
  int patternLength = strlen(pattern);
  int shiftTable[MAX_CHAR];
  // Build the shift table
  buildShiftTable(pattern, shiftTable, patternLength);
  // Search for the pattern in the text
  int i = patternLength - 1; // Start matching from the end of the pattern
  while (i < textLength) {
     int k = 0;
     // Check for a match
     while (k < patternLength \&\& pattern[patternLength - 1 - k] == text[i - k]) {
       k++;
     }
     if (k == patternLength) {
       return i - patternLength + 1; // Pattern found, return starting index
     }
     // Shift the pattern
     i += shiftTable[(unsigned char)text[i]];
  }
  return -1; // Pattern not found
int main() {
  char text[] = "JIM_SAW_ME_IN_BARBERSHOP";
```

	char pattern[] = "BARBER";			
	int position = horspool(text, pattern);			
	if (position != -1) {			
	printf("Pattern found at position: %d\n", position);			
	} else {			
	printf("Pattern not found in the text.\n");			
	}			
	return 0;			
	}			
	Construct AVL Tree for the following: 21,26,30,9,4,14,28,18,15,10,2,3,7 along			
	with explaining Rotations used to Balance the AVL Tree.			
	teps to construct an AVL tree and balance it:			
	An AVL tree is a self-balancing binary search tree (BST). After each insertion, we			
	calculate the balance factor (difference in height of left and right subtrees) for each			
	node. If the balance factor becomes -2 or 2, rotations are performed to restore			
	balance.			
	Given Elements:			
	21, 26, 30, 9, 4, 14, 28, 18, 15, 10, 2, 3, 7			
	Insert Elements One by One and Balance:			
	1. Insert			
	balancing needed.			
	2. Insert 26:			
_ a	Tree:		_	
5 ^a	21	10	3	L3
	Λ			
	26			
	No balancing needed.			
	3. Insert 30:			
	Tree:			
	21			
	Λ			
	26			
	λ			
	30			
	Balance Factor of 21 = $-2 \rightarrow$ Right-Right (RR) imbalance \rightarrow Perform Left			
	Rotation on 21.			
	After rotation:			

```
26
/ \
21 30
4. Insert 9:
Tree:
26
/ \
21 30/9
- No balancing needed.
5. Insert 4:
Tree:
26
 / \
 21 30
 /
9
4
- Balance Factor of 21 = 2 \rightarrow \text{*Left-Left (LL)* imbalance} \rightarrow \text{Perform *Right}
Rotation* on 21.
- After rotation:
26
/ \
9 30
/ 
4 21
6. Insert 14:
Tree:
26
 / \
 9 30
 / \setminus
4 21
 \setminus
 14
No balancing needed.
```

```
7. Insert 28:
Tree:
26
  / \
 9 30
 /\ /
4 21 28
 \
 14
No balancing needed.
8. Insert 18:
Tree:
26
 / \
  9 30
 /\ /
4 21 28
 \setminus
  14
   \setminus
   18
Balance Factor of 21 = 2 \rightarrow Left-Right (LR) imbalance \rightarrow Perform Left Rotation
on 14, then Right Rotation on 21.
After rotation:
26
 / \
 9 30
 /\ /
4 18 28
 / \setminus
 14 21
9. Insert 15:
Tree:
```

```
26
 / \
  9 30
 /\ /
4 18 28
 / \setminus
 14 21
 \
  15
No balancing needed.
10. Insert 10:
Tree:
26
 / \
9 30
/\ /
4 18 28
 / \setminus
14 21
 \setminus
 15
 /
10
Balance Factor of 9 = -2 \rightarrow \text{Right-Left} (RL) imbalance \rightarrow \text{Perform Right Rotation}
on 18, then Left Rotation on 9.
After rotation:
26
 / \
14 30
/ \setminus /
9 18 28
/ 
4 10 21/15
11. Insert 2:
Tree:
26
 / \
```

```
14 30
/ \setminus /
9 18 28
/ 
4 10 21/2/15
- No balancing needed.
12. Insert 3:
Tree:
26
 / \
14 30
/ \setminus /
9 18 28
/ 
4 10 21/
2 3/15
- Balance Factor of 4 = 2 \rightarrow \text{*Left-Right (LR)* imbalance} \rightarrow \text{Perform *Left}
Rotation* on 2, then *Right Rotation* on 4.
- After rotation:
26
/ \
14 30
/ \ / 9 18 28 / \
3 10 21 / / 2
                      15
13. Insert 7:
Tree:
26
 / \
14 30
/ \setminus /
9 18 28
/ \setminus
3 10 21 / \ /2 7 15
- No balancing needed.
```

	Final AVL Tree:			
	26			
	/ \			
	14 30			
	9 18 28			
	$/ \setminus \setminus$			
	3 10 21			
	2 7 15			
	Rotations Used:			
	1. Left Rotation: After inserting 30 (RR imbalance)			
	2. Right Rotation: After inserting 4 (LL imbalance).			
	3. Left-Right Rotation: After inserting 18 (LR imbalance).			
	4. Right-Left Rotation: After inserting 10 (RL imbalance).			
	5. Left-Right Rotation: After inserting 3 (LR imbalance).			
	Sort the given array using Counting sort: [45,2,19,10,33,2,2,1,23]. Answer:			
	Counting Sort works by counting the occurrences of each element in the input array and then using those counts to place elements in their correct positions. Here's how to sort the array [45, 2, 19, 10, 33, 2, 2, 1, 23] step-by-step:			
	Steps:			
	1. Find the range of the array: Identify the minimum and maximum values.			
	Minimum = 1, Maximum = 45.			
	2. Initialize the counting array:			
6 a	Create a counting array of size max - min + 1 to store the frequency of each element.	7	3	L3
	3. Count the occurrences:			
	Populate the counting array with the frequency of each element in the input array.			
	4. Compute cumulative counts: Update the counting array to reflect the positions of elements.			
	5. Place elements in the sorted array: Use the cumulative counts to place elements in their correct positions in the output array.			
	6. Return the sorted array.			
	#include <stdio.h></stdio.h>			
	#include <stdlib.h></stdlib.h>			

```
void counting sort(int arr[], int n) {
  // Find the minimum and maximum values in the array
  int min = arr[0], max = arr[0];
  for (int i = 1; i < n; i++) {
     if (arr[i] < min)
       min = arr[i];
     if (arr[i] > max)
       max = arr[i];
  }
  int range = max - min + 1;
  // Create and initialize the count array
  int *count = (int *)calloc(range, sizeof(int));
  // Count the occurrences of each element
  for (int i = 0; i < n; i++) {
     count[arr[i] - min]++;
  }
  // Compute cumulative counts
  for (int i = 1; i < range; i++) {
     count[i] += count[i - 1];
  }
  // Create a sorted array
  int *sorted arr = (int *)malloc(n * sizeof(int));
  for (int i = n - 1; i \ge 0; i - 0)
     sorted arr[count[arr[i] - min] - 1] = arr[i];
     count[arr[i] - min]--;
  }
  // Copy the sorted array back into the original array
  for (int i = 0; i < n; i++) {
     arr[i] = sorted arr[i];
  }
  // Free dynamically allocated memory
  free(count);
  free(sorted arr);
int main() {
  int arr[] = \{45, 2, 19, 10, 33, 2, 2, 1, 23\};
  int n = sizeof(arr) / sizeof(arr[0]);
  printf("Original array:\n");
  for (int i = 0; i < n; i++) {
     printf("%d ", arr[i]);
  }
  printf("\n");
  counting sort(arr, n);
  printf("Sorted array:\n");
  for (int i = 0; i < n; i++) {
```

printf("%d ", arr[i]); } printf("\n"); return 0; **Output:** The sorted array is: [1, 2, 2, 2, 10, 19, 23, 33, 45] Write a Short note on Branch and Bound. Answer: Breanth and Bound: BRANCHing is the Process of generating Subpr - Bounding referes to ignoring partial counting that cannot be better than the rustrent Solution. + is a search pascedure to find the 3 L2 b 6 Johntion. It eliminates those part of a search se Which does not contain better colutio (pouning). Jo this method the basically enter cheapest partial path. 5

CI

CCI

HoD