
USN

Internal Assessment Test III – December 2023

Sub: Analysis & Design of Algorithms Sub
Code: BCS401 Branch: AIDS &

CSE(AIDS)
Date: 5/8/2024 Duration: 90 minutes Max Marks: 50 Sem/Sec: IV -A, B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a

Apply backtracking to solve the following instance of the subset sum problem:
A={1,3,4,5}and d=11

Answer:

The problem is a subset sum problem where you are tasked with finding
subsets of the set whose sum is equal to , using the backtracking algorithm.

Here's the step-by-step solution:

Step 1: Problem Definition

You are given:

A set A = 1, 3, 4, 5

A target sum d = 11

The goal is to find all subsets of that sum to 11, using backtracking

Step 2: Backtracking Algorithm

1. Start with an empty subset and a current sum of 0.

2. Add elements to the subset one by one, recursively checking if the current
sum equals the target sum , exceeds it, or can be extended further.

3. If the current sum exceeds , backtrack by removing the last added element.

4. If the current sum equals , print/store the subset as a solution.

5. Repeat until all possibilities are explored.

8 6 L3



Step 3: Recursive Function for Backtracking

The recursive function works as follows:

Start with the first element of the set.

For each element, decide whether to include it in the subset.

Move to the next element and repeat the process.--

Step 4: Apply Backtracking

Step-by-step Execution:

1. Initial State: Start with an empty subset and sum = 0. Index = 0.

2. Include 1:

Subset: 1, Current Sum: 1.

Move to the next index (Index = 1).

3. Include 3:

Subset:1,3,4 , Current Sum: .4

Move to the next index (Index = 2).

4. Include 4:

Subset: 1,3,4, Current Sum: 8.

Move to the next index (Index = 3).

5. Include 5:

Subset: 1,3,4,5, Current Sum:13 .

Exceeds d =11 . Backtrack.

6. Backtrack



Remove 5.

Current Subset: 1,3,4, Current Sum: 8.

Skip 5. Backtrack.

7. Backtrack:

Remove 4.

Current Subset: 1,3, Current Sum: 4.

8. Include 5:

Subset: 1,3,5, Current Sum: 9.

Backtrack.

9. Backtrack:

Remove 3.

Current Subset: 1, Current Sum: 1.

10. Include 4:

Subset: 1,4, Current Sum: 5.

Move to the next index.

11. Include 5:

Subset: 1, 4,5, Current Sum: 11.

Solution Found: 1 ,4 ,5

12. Backtrack:

Remove 5.

Current Subset: 1,4 Current Sum: 5.



Backtrack.

13. Backtrack:

Remove 4.

Current Subset: 1, Current Sum: 1.

Backtrack.

14. Include 3:

Subset: 3,, Current Sum:3 .

Move to the next index.

15. Include 4:

Subset: 3,4, Current Sum: 7.

Move to the next index.

16. Include 5:

Subset: 3,4,5, Current Sum: 12.

Exceeds .d=11, Backtrack.

17. Backtrack:

Remove 5.

Current Subset:3,4 , Current Sum: 7.

Backtrack.

18. Include 5:

Subset: 3,5, Current Sum: .8



Backtrack.

19. Backtrack:

Remove 3.

Current Subset: 4, Current Sum: 4.

20. Include 5:

Subset:4,5 , Current Sum: 9.

Backtrack.

21. Backtrack:

Remove 4.

Current Subset:5 , Current Sum: 5.

Backtrack.

Step 5: Final Solutions

After exploring all possibilities, the subsets that sum to are: 1,4,5

b

Give an example of an algorithm which is infinite in nature.

Answer:
An example of an infinite algorithm is the "infinite loop" algorithm, often used in
situations where a program needs to run continuously until an external event stops
it. For example:

while True:
print("This is an infinite loop.")

Explanation:

The while True condition always evaluates to True, so the loop never terminates on
its own.

The algorithm will continue printing "This is an infinite loop." until it is externally
interrupted (e.g., by a user or system signal).

Practical Use Cases:

2 5 L2



Operating Systems: Infinite loops are used to keep event listeners or background
processes running.

Server Applications: Web servers continuously listen for incoming requests in an
infinite loop.

Real-Time Systems: Embedded systems or hardware controllers use infinite loops
to monitor and respond to inputs.

While the loop is infinite in principle, it often includes mechanisms to break or
terminate the loop based on specific conditions, such as user input, error handling,
or system shutdown.

2

a

Compare programming paradigms, dynamic programming and greedy techniques
with example.
Answer:

4 3 L3

b

Explain P,NP,NP-complete problem with examples.

P, NP, and NP-Complete Problems

These terms are important concepts in computer science, particularly in

computational complexity theory. Here's a brief explanation of each, along with

examples:

1. P (Polynomial Time)

Definition: The class of problems that can be solved by a deterministic Turing

machine in polynomial time. In simpler terms, these are problems for which an

efficient algorithm exists to find a solution.

6 5 L2



Characteristics:

Easy to solve and verify.

Examples of P problems include sorting an array, finding the shortest path in a

graph (Dijkstra’s Algorithm), and matrix multiplication.

Example:

Problem: Sorting a list of numbers.

Algorithm: Merge Sort or Quick Sort has a time complexity of O(n log n), which is

polynomial.

2. NP (Nondeterministic Polynomial Time)

Definition: The class of problems for which a proposed solution can be verified in

polynomial time by a deterministic Turing machine.

In other words, while finding the solution might be hard, verifying whether a given

solution is correct is efficient.

Characteristics:

May not have efficient algorithms to find solutions.

Examples of NP problems include the Traveling Salesman Problem (TSP) and

Subset Sum Problem.

Example:

Problem: Subset Sum Problem.

Description: Given a set of integers, is there a subset whose sum equals a given

number?

Verification: If someone provides a subset, we can quickly verify if the sum

matches the target.

3. NP-Complete

Definition: NP-complete problems are a subset of NP problems that are as hard as

any problem in NP. If a polynomial-time solution is found for one NP-complete

problem, it can be used to solve all NP problems in polynomial time.

Characteristics:

Solutions are hard to find, but easy to verify.

Known for their computational difficulty.

Examples include the SAT (Boolean Satisfiability) Problem and the Traveling

Salesman Problem (optimization version).

Example:

Problem: Traveling Salesman Problem (Decision Version).

Description: Given a set of cities and distances, is there a route that visits each city

exactly once and has a total distance less than or equal to a given value?

Verification: If someone provides a route, checking its distance is polynomial.



Relationship Between P, NP, and NP-Complete

P ⊆ NP: All problems in P are also in NP because if a problem can be solved

quickly, it can also be verified quickly.

NP-Complete⊆ NP: NP-complete problems are the hardest problems in NP.

It is unknown whether P = NP or P ≠ NP, and this is one of the biggest open

questions in computer science.

Diagram Representation

P⊆ NP⊇ NP-Complete

P problems are inside NP, and NP-Complete problems are the hardest subset of NP.

3 a

What is Backtracking ?How is 4 queens problem solved using Backtracking.
Answer:

10 6 L3

4 a

Apply Horspool’s algorithm and write its c function

Text: JIM_SAW_ME_IN_BARBERSHOP

Pattern : BARBER

Answer:

#include <stdio.h>

#include <string.h>

10 4 L3



#include <stdlib.h>

#define MAX_CHAR 256 // Maximum number of characters in the ASCII set

// Function to create the shift table

void buildShiftTable(char *pattern, int table[], int patternLength) {

for (int i = 0; i < MAX_CHAR; i++) {

table[i] = patternLength; // Default shift for characters not in the pattern

}

for (int i = 0; i < patternLength - 1; i++) {

table[(unsigned char)pattern[i]] = patternLength - 1 - i;

}

}

// Horspool's algorithm function

int horspool(char *text, char *pattern) {

int textLength = strlen(text);

int patternLength = strlen(pattern);

int shiftTable[MAX_CHAR];

// Build the shift table

buildShiftTable(pattern, shiftTable, patternLength);

// Search for the pattern in the text

int i = patternLength - 1; // Start matching from the end of the pattern

while (i < textLength) {

int k = 0;

// Check for a match

while (k < patternLength && pattern[patternLength - 1 - k] == text[i - k]) {

k++;

}

if (k == patternLength) {

return i - patternLength + 1; // Pattern found, return starting index

}

// Shift the pattern

i += shiftTable[(unsigned char)text[i]];

}

return -1; // Pattern not found

}

int main() {

char text[] = "JIM_SAW_ME_IN_BARBERSHOP";



char pattern[] = "BARBER";

int position = horspool(text, pattern);

if (position != -1) {

printf("Pattern found at position: %d\n", position);

} else {

printf("Pattern not found in the text.\n");

}

return 0;

}

5 a

Construct AVL Tree for the following: 21,26,30,9,4,14,28,18,15,10,2,3,7 along

with explaining Rotations used to Balance the AVL Tree.

teps to construct an AVL tree and balance it:

An AVL tree is a self-balancing binary search tree (BST). After each insertion, we

calculate the balance factor (difference in height of left and right subtrees) for each

node. If the balance factor becomes -2 or 2, rotations are performed to restore

balance.

Given Elements:

21, 26, 30, 9, 4, 14, 28, 18, 15, 10, 2, 3, 7

Insert Elements One by One and Balance:

1. Insert

balancing needed.

2. Insert 26:

Tree:

21

\

26

No balancing needed.

3. Insert 30:

Tree:

21

\

26

\

30

Balance Factor of 21 = -2 → Right-Right (RR) imbalance → Perform Left

Rotation on 21.

After rotation:

10 3 L3



26

/ \

21 30

4. Insert 9:

Tree:

26

/ \

21 30 / 9

- No balancing needed.

5. Insert 4:

Tree:

26

/ \

21 30

/

9

/

4

- Balance Factor of 21 = 2 → *Left-Left (LL)* imbalance → Perform *Right

Rotation* on 21.

- After rotation:

26

/ \

9 30

/ \

4 21

6. Insert 14:

Tree:

26

/ \

9 30

/ \

4 21

\

14

No balancing needed.



7. Insert 28:

Tree:

26

/ \

9 30

/ \ /

4 21 28

\

14

No balancing needed.

8. Insert 18:

Tree:

26

/ \

9 30

/ \ /

4 21 28

\

14

\

18

Balance Factor of 21 = 2 → Left-Right (LR) imbalance → Perform Left Rotation

on 14, then Right Rotation on 21.

After rotation:

26

/ \

9 30

/ \ /

4 18 28

/ \

14 21

9. Insert 15:

Tree:



26

/ \

9 30

/ \ /

4 18 28

/ \

14 21

\

15

No balancing needed.

10. Insert 10:

Tree:

26

/ \

9 30

/ \ /

4 18 28

/ \

14 21

\

15

/

10

Balance Factor of 9 = -2 → Right-Left (RL) imbalance → Perform Right Rotation

on 18, then Left Rotation on 9.

After rotation:

26

/ \

14 30

/ \ /

9 18 28

/ \

4 10 21 / 15

11. Insert 2:

Tree:

26

/ \



14 30

/ \ /

9 18 28

/ \

4 10 21 / 2 / 15

- No balancing needed.

12. Insert 3:

Tree:

26

/ \

14 30

/ \ /

9 18 28

/ \

4 10 21 /

2 3 / 15

- Balance Factor of 4 = 2 → *Left-Right (LR)* imbalance → Perform *Left

Rotation* on 2, then *Right Rotation* on 4.

- After rotation:

26

/ \

14 30

/ \ / 9 18 28 / \

3 10 21 / / 2 15

13. Insert 7:

Tree:

26

/ \

14 30

/ \ /

9 18 28

/ \

3 10 21 / \ / 2 7 15

- No balancing needed.



Final AVL Tree:

26

/ \

14 30

/ \ /

9 18 28

/ \ \

3 10 21

/ \ /

2 7 15

Rotations Used:

1. Left Rotation: After inserting 30 (RR imbalance)

2. Right Rotation: After inserting 4 (LL imbalance).

3. Left-Right Rotation: After inserting 18 (LR imbalance).

4. Right-Left Rotation: After inserting 10 (RL imbalance).

5. Left-Right Rotation: After inserting 3 (LR imbalance).

6 a

Sort the given array using Counting sort: [45,2,19,10,33,2,2,1,23].
Answer:
Counting Sort works by counting the occurrences of each element in the input
array and then using those counts to place elements in their correct positions.
Here's how to sort the array [45, 2, 19, 10, 33, 2, 2, 1, 23] step-by-step:

Steps:

1. Find the range of the array:
Identify the minimum and maximum values.

Minimum = 1, Maximum = 45.

2. Initialize the counting array:
Create a counting array of size max - min + 1 to store the frequency of each
element.

3. Count the occurrences:
Populate the counting array with the frequency of each element in the input
array.

4. Compute cumulative counts:
Update the counting array to reflect the positions of elements.

5. Place elements in the sorted array:
Use the cumulative counts to place elements in their correct positions in the
output array.

6. Return the sorted array.
#include <stdio.h>
#include <stdlib.h>

7 3 L3



void counting_sort(int arr[], int n) {
// Find the minimum and maximum values in the array
int min = arr[0], max = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] < min)
min = arr[i];

if (arr[i] > max)
max = arr[i];

}

int range = max - min + 1;

// Create and initialize the count array
int *count = (int *)calloc(range, sizeof(int));

// Count the occurrences of each element
for (int i = 0; i < n; i++) {
count[arr[i] - min]++;

}

// Compute cumulative counts
for (int i = 1; i < range; i++) {
count[i] += count[i - 1];

}

// Create a sorted array
int *sorted_arr = (int *)malloc(n * sizeof(int));
for (int i = n - 1; i >= 0; i--) {
sorted_arr[count[arr[i] - min] - 1] = arr[i];
count[arr[i] - min]--;

}

// Copy the sorted array back into the original array
for (int i = 0; i < n; i++) {
arr[i] = sorted_arr[i];

}

// Free dynamically allocated memory
free(count);
free(sorted_arr);

}

int main() {
int arr[] = {45, 2, 19, 10, 33, 2, 2, 1, 23};
int n = sizeof(arr) / sizeof(arr[0]);

printf("Original array:\n");
for (int i = 0; i < n; i++) {
printf("%d ", arr[i]);

}
printf("\n");

counting_sort(arr, n);

printf("Sorted array:\n");
for (int i = 0; i < n; i++) {



printf("%d ", arr[i]);
}
printf("\n");

return 0;
}

Output:

The sorted array is:

[1, 2, 2, 2, 10, 19, 23, 33, 45]

b

Write a Short note on Branch and Bound.
Answer:

3 6 L2

CI CCI HoD


