
USN

Internal Assessment Test 1 – December 2023

Sub: Analysis & Design of Algorithms Answer Key Sub
Code: BCS401 Branch: AIDS &

CSE(AIDS)
Date: 5/6/2024 Duration: 90 minutes Max Marks: 50 Sem/Sec: IV -A, B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a

What is an algorithm? What are the properties of an algorithm?

Answer:

Difinition:Step by step procedure for solving a computational problem.A finite set of statements
that guarantee an optimal solution in finite interval of time. (1 Mark)

Properties:

Input- should have 0 or more input values.

Output – Must generate some result. Function must do something, maybe just return void.

Definiteness – Every statement should be clear and unambiguous.

Finiteness – Should have limited steps. Must terminate at some point. Example: web server has to
stop service at some point. Can’t just keep providing service endlessly.

Effectiveness – It should reach a solution.

4 1 L1

b

Define asymptotic notations for worst case, best case and average case time
complexities with example.

Answer:
Big-Oh(O):
Definition: f(n) is in O(g(n)), denoted f(n) ∈ O(g(n)), if order of growth of f(n) ≤
order of growth of g(n) (within constant multiple), i.e., there exist positive
constant c and non-negative integer n0 such that f(n) ≤ c g(n) for every
n ≥ n0

6 1 L2

(2 Mark)

Big-Omega(Ω):
A function t(n) is said to be in Ω(g(n)), denoted t(n)∈ Ω(g(n)), if t(n) is bounded
below by some constant multiple of g(n) for all large n, i.e., if there exist some
positive constant c and some non-negative integer n0 such that
t(n) ≥ cg(n) for all n ≥ n0

(2 Marks)

Theta(θ):
A function t(n) is said to be in Θ(g(n)), denoted t(n) ∈ Θ(g(n)), if t(n) is bounded
both above and below by some positive constant multiples of g(n) for all large n,
i.e., if there exist some positive constant c1 and c2 and some nonnegative integer
n0 such that
c2 g(n) ≤ t(n) ≤ c1 g(n) for all n ≥ n0

(2 Marks)

2 a Use a recursion tree method to determine a good asymptotic upper bound
on the following recurrence:

5 1 L3

T(n) = 4T(n/2)+n for n>1, T(1) =1 for n=1.

Answer:

(3 Marks)

(2 Marks)

b

Write a recursive algorithm to search for a key element in an array of size n. Derive

an equation for the best-case and worst-case complexity of your algorithm.

Answer:

Pseudocode:
BinarySearch(A[0…n-1], key, start, end)
// Input: An integer sorted array A[0…n-1].
// Output: returns mid (if key found) or -1 (key not found)
if start >end

return -1
else
mid (start+end)/2
if key = A[mid]

return mid
if key < A[mid]

return BinarySearch (A, n, key, start, mid-1)
else

return BinarySearch (A, n, key, mid+1, end) (2.5 Marks)

Analysis:

Best-Case: When the array is divided into half if key happens to be A[mid],
then no recursive calls are needed. Hence, the running time is,

T(n) = O(1)

Worst-Case:
After first iteration, the length of array = n
After second iteration, the length of array = n/2
After third iteration, the length of array = n/4

.

.

.

.

.

5 1 L3

After k iterations, the length of array = n/(2k)

Let the length of array become 1 after k iterations

So, n/(2k) = 1
n = 2k

put log on both side of equation, we get

log n = log 2k

log n = klog2
log n = k.1 as log2 base 2=1

log n = k
due k iterations happened, the time complexity is

T(K) = O(k)
Put k= logn

T(n) = O(logn)
Average-Case:

T(n) = O(logn) (2.5 Marks)

3 a

Explain the general plan for analysing the efficiency of a non-recursive algorithm
with example.
Answer:

5 1 L2

b
5

(2+3)Mar
ks

1 L2

I) Prove that 100n+5 ≠ Ω(n2)
Answer:

(2.5 Marks)

.
i. (ii)Consider the following algorithm

Algorithm Guess (A[][])
For i<-0 to n-1
for j<-0 to i
a[i][j]<-0

● What does the algorithm compute?
● What is basic operation?
● What is the efficiency of the algorithm?

Answer:
This algorithm computes the Lower Triangular Matrix.
Here bsic operation are multiplication and addition.
The time complexity is O(n2). (2.5 Marks)

4

a

What is a “Brute force “method? Under what condition does the method become

desirable?

Answer:

Brute Force Method:

A brute force method is an approach to problem-solving that involves

straightforward, exhaustive search through all possible solutions and picking the

best one. It typically involves checking all possibilities without any optimizations

or heuristics, relying instead on sheer computational power and thoroughness.

Conditions When Brute Force is Desirable:

1. Small Problem Size: When the problem size (such as the number of elements

to consider or the range of values) is small enough that checking all possible

solutions is feasible within a reasonable time frame. For example, checking all

permutations of a set of 8 elements (8!) is manageable.

2. No Efficient Algorithm Known: Sometimes, for certain types of problems, no

efficient algorithm with better time complexity than brute force is known or

feasible. In such cases, using brute force might be the only practical option.

3. Verification or Testing: Brute force is often used as a baseline or verification

method to test more complex algorithms. It ensures correctness by comparing

results and can be invaluable in validating the outputs of more optimized

approaches.

4.Educational Purposes: Brute force methods are also valuable in educational

contexts to illustrate basic principles of algorithm design, complexity analysis,

and problem-solving strategies.

5(1+4
Marks) 1 L1

b
Find the optimal tour of the following given graph using travelling salesman
problem(using exhaustive search method):

Answer:

5
(5Marks) 1 L2

5 a
Write a C/C++ code for implementing Insertion Sort With time complexity.

Answer: 5 1 L2

k=a[j];
for(i=j-1;(i>=0 && k<a[i]);i--)
a[i+1] = a[i];
a[i+1] = k;

}
}

b

Write a Algorithm for Pattern Matching by using Brute force technique?
Answer:
pattern: a string of m characters to search for
text: a (longer) string of n characters to search in
problem: find a substring in the text that matches the pattern
Brute-force algorithm
Step 1 Align pattern at beginning of text
Step 2 Moving from left to right, compare each character of pattern to the
corresponding character in text until

• all characters are found to match (successful search);
or • a mismatch is detected

Step 3 While pattern is not found and the text is not yet exhausted, realign pattern
one position to the right and repeat Step 2

(2.5 Marks)
Example:
Pattern: 001011

Text: 10010101101001100101111010
(2.5 Marks)

Pseudocode:

Time complexity: O(mn)

5 1 L2

6 a

For the below given Knapsack problem instance, find the solution using exhaustive search
method:
Where, n=5,
 [w1,w2,w3,w4,w5] = [10,20,30,40,50]
 [p1,p2,p3,p4,p5] = [20,30,66,40,60]
M=100

Answer:

5 1 L2

b

Write a recurrence relation for Fibonacci series and solve it.

Answer:

The Fibonacci algorithm (recursive) Fib(n) { If n<=1 return n Else Return F(n-1) +
F(n-2) 65 Department of ISE BMS Institute of Technology and Mgmt BMS
Institute of Technology and Mgmt • The recurrence equation for this problem is:
T(n) = T(n-1) + T(n-2) for n>1 and the initial conditions are T(0) =0, T(1) = 1
Solution to recurrence relation: T(n) = T(n-1) + T(n-2) T(n) –T(n-1) –T(n-2) = 0
This is of the form ax(n) +bx(n-1) +cx(n-2) =0 Which is a homogeneous second
order linear relation with constant co-efficients

5 1 L2

CI CCI HoD

