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Answer any five of the following. : N coOl;[;ils’l'

I Explain Gradient of a Least Squares Loss in a lincar model. B leai | 2
2 [Explain Gradient of Vectors with respect to Matrices. 19 col.| 12
01| L
3 [Find the Taylor’s series expansion of f (x) = exp(xy) plane up to 3" degree term about] 10 |
the point (1,1). COT -3
4 [Explain Gradients in a deep network. $ 1.2
coz | 14
> a)Consider the function h = fog, f(x, ¥) = exp(xy?), x = tcost,y = tsint Find the] 6+4 | _ ;
gradient b) Find the gradient of f(xy) = xy? + x3y. ' \ ) T
6 la)Define multivariate Taylor’s series. b)Find the derivative of f(x) = (2x + 1)* using3+4+3|CO1.2 o
hain rule. ¢) Find the partial derivative of f(x) = (y + 2x3). ]
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Answer any five of the following. MarksTeo [RBT
1 Explain Gradient of a Least Squares Loss in a linear model. 10 coi| L2
2 [Explain Gradient of Vectors with respect to Matrices. i corl L2
3 [Find the Taylor’s series expansion of f(x) = exp(xy) plane up to 3 degree term| 10 cotl 13
about the point (1,1).
4 [Explain Gradients in a deep network. 10 cor| L2
> @)Consider the function h = fog, f(x,y) = exp(xy?), x = tcost,y = tsint Find 6+ coi| L3
the gradient b) Find the gradient of £ (xy) = xy? + x3y. .
6 la)Define multivariate Taylor’s series. b)Find the derivative of f(x) = (2x + 1)43+4+3 C(z)‘- ke
using chain rule. c) Find the partial derivative of f(x) = (y + 2x3). :
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We will discuss this
model in mych
more detail jn
Chapter 9 i, the
context of linear
Tegression, where
we need derivatives
of the least
loss L with respect

to the parameters 6. d s

least-squares loss

dLdtheta =
np.einsum(
’n,nd’,
dLde,dedtheta)

such that our de51red denvatlve is

Remark We would have obtained the same result without usmg the chain - :

-Squares
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Vector Calculus

Example 5.11 ( ,
Gradle X
et us conmder the hnearllrt r(r)xf)?l:ieaa-squares Loss in a Linear Model)

Y= 'I>0
is a parameter vector, & € RVxD
corresponding observations, We d

; where 0 € RP§
yic RY are the efine the functions
Lie):=lel?, (5.76)
| ’ e(0) =y—d0. (5.77)
’v We seek —, and we will u
. least-squares loss function.
Before we start our calculation, we det

ermine the dimensionality of the
gradlent as j ; : PE
& oL lxD i i
5.78) .
‘ 30 ]R : , ( :7 ) 12
: The cham rule allows us to* compute the gradlent as
e 8L 8L de S
vl - (5.
o - 00 Be 88 : ( .79) :
‘ where the dth element is glven by ; 0 : :
oL, ae Pleaagins L
. .(5.80)
We know that ”e“2 = e e (see SectJon 3 2) and determine -,
| 9L _ g o pinn GO
i de o i &l A
' Furthermore, we obtain Lo b
= —d e R, : 5.82) .
69 : B 82

oL G677
Seeiod G T<1> 24
20 e 2y’

IXN N?<D

o rule by immediately looking at the function

L(0) = ly - BOJ = (y— 30) (y—B6).  (5.84)

: '-Th1s approach is still practical for simple functions like L, but becomes

1 1mpract1cal for deep function composmons gl pin s O

il e S
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(5.75)*

are input features and

se the chain rule for this purpose. L is called a -

e TR

/ N4

Y7

N/

_oTaT). R 58
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;Example 5 12 (Gradlent of Vectors w1th Respect to Matrlces)
r_f_:,Let us con51der the followmg example, where o o i
L f— Az felRM Ae]RM"N . e]RN - A(5'85)_f_,‘-‘

and where we seek the gradlent d f / dA Let us start agam by detenmmng
the dlmensmn of the gradlent as o - 3

df _ omx MxN e
e R ( , ’> i (5 86)"_-_.,‘;
By deﬁmtlon the gradlent is the collectlon of the part1a1 denvatlves
df '6?,.- o of ]Rlx(MxN)
caA T i eam

,[M
0A

To compute the partial denvatlves 1t w111 be helpfuflfto_eXpl_ivcitlly wnte out
the matnx vector multlphcatmn e Sa e

(5 87)

3_1

and the partlal denvatlves are then glven as '

Ofi
Ay,

ThlS allows us to compute the part1a1 denvatlves of fl with respect to a ,';-'_"
row of A, quch is glven as ' . _ S

' Bf o RIX1XN
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5.4 Gradients of Matrices

~ sized tensor as { : ' ,
Gk S the Pal'tlal deriv . ; 3
We stack the p ative of f; with respect to a row of A.

a . » . :
rtial derivatives (5.91) and get the desired gradient

in (5.87) via
, e
.‘r
af 5|2 T
a_A = :(1;:; = RlX(MXN) g0 i (5.92) ,
0.T

Exémple 5.13 (Gradient of Matrices vnthRespecttoMatnces) i
_ Consider a matrix R € RM*" and f : RM*N _y RV*V with S

f(R)=R'R=: K¢ ]RN*N_? | ' (5.93)

where we seek the gradient dK /dR. ’ : : :
To solve this hard problem, let us first write down what we already

~ know: The gradient has the dimensions
' dK ' ‘

s R(NxN)x(MxN), X i : _

L dRe | . (5.94)

 which is a tensor. Moreover,

: dR i |

forp,q = 1,...,N, where Kp, is the (p, q)th entry of K = f(R). De- '

. noting the ith column of R by 7, every entry of K is given by the dot

- product of two columns of R, i.e.,

deq = ]R.I:XMXN ; » ; gt ; (5’95)

M ; N
Kpy=1371g= ) RmpRmq. (5.96)
| £ _ _

" When we now compute the partial derivative %%’_’—;1 we obtain

Lre M5 ; eh ‘ 2 |

m=1

©2024 M. P. Deisenroth, A. A. Faisal, C. S. Ong. Published by Cambridge University Press (2020).



5.6.1 Gradients in a Deep Network

An area where the chain rule is used to an extreme is deep learning, where
the function value vy is computed as a many-level function composition

y=(fxofx_10--0fi)(x) = fx(fx-1(-- (fi(z))---)), (6.111)

where z are the inputs (e.g., images), y are the observations (e.g., class
labels), and every function f;, i = 1, ..., K, possesses its own parameters.

©2024 M. P. Deisenroth, A. A. Faisal, C. S. Ong. Pub]jshed by Cambridge University Press (2020).



Figure 5.8 Forward
passina multi-layer
neural network to
compute the loss
as a function of the
inputs z and the
parameters A;, b;.

We discuss the case,
where the activation
functions are
identical in each
layer to unclutter
notation.

A more in-depth
discussion about
gradients of neural
networks can be
found in Justin
Domke’s lecture
notes
https://tinyurl.
com/yalcxgtv.

Vector Calculus
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Ao, by Ak_2,bx_2 Ag_1,bx

In neural networks with multiple layers, we have functions f;(x;_;) =
o(A;_1x;_; + b;_;) in the ith layer. Here x;_, is the output of layer i — 1
and o an activation function, such as the logistic sigmoid 12, tanh or a
rectified linear unit (ReLU). In order to train these models, we require the
gradient of a loss function L with respect to all model parameters A;, b;
for j = 1,..., K. This also requires us to compute the gradient of L with
respect to the inputs of each layer. For example, if we have inputs = and
observations y and a network structure defined by

(5.112)
(5.113)

Jor==
fi=o0i(Aisafio, +biy),

see also Figure 5.8 for a visualization, we may be interested in finding
Aj,b; forj =0,..., K — 1, such that the squared loss

L(0) = ly — fx(0,z)|* .

is minimized, where 8 = {Ay, by, ..., Ag_1,bx_1}.

To obtain the gradients with respect to the parameter set 6, we require
the partial derivatives of L with respect to the parameters 0; = {A;,b;}
of each layer j = 0,..., K — 1. The chain rule allows us to determine the
partial derivatives as P

i=1,.. K.

(5.114)

oL OL Of
L ; 5.115
k-1 Of 00k o Hpac
oL OL| 0fx 0fk_,
= 5.11
391{—2 6f1( af}\'-1 80K_2 ( )
O () »
aL e aL afK afl(—] afK—2 (5 117)
80x_s  Of 0F k1| 0F s 00k s '
O
oL o oL 3f1c 0 i+2 afi+1 (5.118)
00; afK 3f1<—1 ‘ afz'+1 00; :

The orange terms are partial derivatives of the output of a layer with
respect to its inputs, whereas the blue terms are partial derivatives of
the output of a layer with respect to its parameters. Assuming, we have
already computed the partial derivatives OL/80;,, ,, then most of the com-
putation can be reused to compute 9L/86;. The additional terms that we

Draft (2024-01-15) of “Mathematics for Machine Learning”. Feedback: https://mml-book.com.



5.6 Backpropagation and Automatic Differentiation

Ay, bo Anby Ag g,bg Ag_1,bx_,

need to compute are indicated by th
y the boxes. Figure 5.9 visualizes that
gradients are passed backward through the net%vuork R o

Figure 5.9
Backward pass in a
multi-layer neural
network to compute
the gradients of the
loss function.

Figure 5.10, Simple
graph illustrating
the flow of data
from z to y via
some intermediate
variables a, b.



