

USN					

Internal Assessment Test 2 – July 2024

Su	b:	Analysis &	Design of A		al Assessment	1050	Sub Code:	BCS401	Branch	n: AID	S & (AIDS	5)
Dat	e:	08/7/2024	Duration:	90 minutes	Max Marks:	50	Sem/Sec:	IV -2	A, B &	•		BE
	Answer any FIVE FULL Questions		Ν	MARKS	СО	RBT						
1		#define V 4 // Function t void printSc printf("Th for (int i = for (int if (di pr else	1000000 // // Num o print the s	loyd Warsha A very large ber of vertic hortest dista st[V][V]) { istances betv -+) { .; j++) { NF) "INF");	all. e number to re ces in the grap	presei h	nt infinity			<u>4</u>	3	RBT L1
		printf("	'\n");									
		}										

```
// Floyd-Warshall algorithm
void floydWarshall(int graph[V][V]) {
  int dist[V][V];
  // Initialize the solution matrix as a copy of the input graph matrix
  for (int i = 0; i < V; i++) {
     for (int j = 0; j < V; j++) {
       dist[i][j] = graph[i][j];
     }
  }
  // Update dist[][] for each intermediate vertex k
  for (int k = 0; k < V; k++) {
     for (int i = 0; i < V; i++) {
       for (int j = 0; j < V; j++) {
          // If vertex k is on the shortest path from i to j, update dist[i][j]
          if (dist[i][k] != INF && dist[k][j] != INF && dist[i][k] + dist[k][j] <
dist[i][j]) {
             dist[i][j] = dist[i][k] + dist[k][j];
          }
```

```
}
     }
   }
  // Print the shortest distance matrix
  printSolution(dist);
}
int main() {
  /* Example graph with 4 vertices:
    INF means there is no direct edge between two vertices.
  */
  int graph[V][V] = {
     {0, 3, INF, 7},
     {8, 0, 2, INF},
     {5, INF, 0, 1},
     \{2, INF, INF, 0\}
  };
  floydWarshall(graph);
```

return 0;			
Apply Heapsort for the list $[0, 7, 1, 8, 3, 6, 2, 4, 10, 5]$			
• Build a max heap from the input array. • Extract the maximum element (root of the heap) repeatedly and adjust the heap.			
nput Array:			
9, 7, 1, 8, 3, 6, 2, 4, 10, 5]			
tep 1: Build the Max Heap			
tart from the last non-leaf node (index) and heapify each subtree.			
nitial Array:			
9, 7, 1, 8, 3, 6, 2, 4, 10, 5]			
Heapify Process (Bottom-up):			
. Heapify subtree rooted at index 4 (value 3):			
Children: 10 (index 9), 5 (index 10).			
Largest = 10. Swap 3 and 10.	6	3	L2
Result: [9, 7, 1, 8, 10, 6, 2, 4, 3, 5].			
. Heapify subtree rooted at index 3 (value 8):			
Children: 4 (index 7), 3 (index 8).			
argest = 8. No swap needed.			
. Heapify subtree rooted at index 2 (value 1):			
Children: 6 (index 5), 2 (index 6).			
Largest = 6. Swap 1 and 6.			
Result: [9, 7, 6, 8, 10, 1, 2, 4, 3, 5].			
. Heapify subtree rooted at index 1 (value 7):			
Children: 8 (index 3), 10 (index 4).			
	 Extract the maximum element (root of the heap) repeatedly and adjust the heap. nput Array: 9, 7, 1, 8, 3, 6, 2, 4, 10, 5] tep 1: Build the Max Heap tart from the last non-leaf node (index) and heapify each subtree. nitial Array: 0, 7, 1, 8, 3, 6, 2, 4, 10, 5] Ieapify Process (Bottom-up): Heapify subtree rooted at index 4 (value 3): Children: 10 (index 9), 5 (index 10). argest = 10. Swap 3 and 10. tesult: [9, 7, 1, 8, 10, 6, 2, 4, 3, 5]. Heapify subtree rooted at index 3 (value 8): Children: 4 (index 7), 3 (index 8). argest = 8. No swap needed. Heapify subtree rooted at index 2 (value 1): Children: 6 (index 5), 2 (index 6). argest = 6. Swap 1 and 6. tesult: [9, 7, 6, 8, 10, 1, 2, 4, 3, 5]. Heapify subtree rooted at index 1 (value 7): 	 Answer: Build a max heap from the input array. Extract the maximum element (root of the heap) repeatedly and adjust the heap. apput Array: A, 7, 1, 8, 3, 6, 2, 4, 10, 5] tep 1: Build the Max Heap tart from the last non-leaf node (index) and heapify each subtree. antitial Array: A, 7, 1, 8, 3, 6, 2, 4, 10, 5] teapify Process (Bottom-up): Heapify subtree rooted at index 4 (value 3): Children: 10 (index 9), 5 (index 10). argest = 10. Swap 3 and 10. teapify subtree rooted at index 3 (value 8): Children: 4 (index 7), 3 (index 8). argest = 8. No swap needed. Heapify subtree rooted at index 2 (value 1): Children: 6 (index 5), 2 (index 6). argest = 6. Swap 1 and 6. tesult: [9, 7, 6, 8, 10, 1, 2, 4, 3, 5]. Heapify subtree rooted at index 1 (value 7): 	 Answer: Build a max heap from the input array. Extract the maximum element (root of the heap) repeatedly and adjust the heap. apput Array: b, 7, 1, 8, 3, 6, 2, 4, 10, 5] tep 1: Build the Max Heap tart from the last non-leaf node (index) and heapify each subtree. anitial Array: b, 7, 1, 8, 3, 6, 2, 4, 10, 5] teapify Process (Bottom-up): Heapify subtree rooted at index 4 (value 3): children: 10 (index 9), 5 (index 10). argest = 10. Swap 3 and 10. tesult: [9, 7, 1, 8, 10, 6, 2, 4, 3, 5]. Heapify subtree rooted at index 3 (value 8): children: 4 (index 7), 3 (index 8). argest = 8. No swap needed. Heapify subtree rooted at index 2 (value 1): children: 6 (index 5), 2 (index 6). argest = 6. Swap 1 and 6. tesult: [9, 7, 6, 8, 10, 1, 2, 4, 3, 5]. Heapify subtree rooted at index 1 (value 7):

Largest = 10. Swap 7 and 10.

Result: [9, 10, 6, 8, 7, 1, 2, 4, 3, 5].

Now heapify the subtree rooted at index 4 (value 7):

Children: 5 (index 9), no second child.

Largest = 7. No swap needed.

5. Heapify subtree rooted at index 0 (value 9):

Children: 10 (index 1), 6 (index 2).

Largest = 10. Swap 9 and 10.

Result: [10, 9, 6, 8, 7, 1, 2, 4, 3, 5].

Now heapify the subtree rooted at index 1 (value 9):

Children: 8 (index 3), 7 (index 4).

Largest = 9. No swap needed.

Max Heap:

[10, 9, 6, 8, 7, 1, 2, 4, 3, 5]

Repeatedly extract the maximum element (swap root with the last element) and reduce the heap size.

1. Extract max (10):

Swap 10 with 5 (last element).

Result: [5, 9, 6, 8, 7, 1, 2, 4, 3, 10].

Heapify root (index 0):

Children: 9 (index 1), 6 (index 2).

Largest = 9. Swap 5 and 9.

Result: [9, 5, 6, 8, 7, 1, 2, 4, 3, 10].

Now heapify subtree rooted at index 1:

Children: 8 (index 3), 7 (index 4).

Largest = 8. Swap 5 and 8.

Result: [9, 8, 6, 5, 7, 1, 2, 4, 3, 10].

Heap after extraction: [9, 8, 6, 5, 7, 1, 2, 4, 3]

2. Extract max (9):

Swap 9 with 3 (last element).

Result: [3, 8, 6, 5, 7, 1, 2, 4, 9, 10].

Heapify root:

Children: 8 (index 1), 6 (index 2).

Largest = 8. Swap 3 and 8.

Result: [8, 3, 6, 5, 7, 1, 2, 4, 9, 10].

Now heapify subtree rooted at index 1:

Children: 5 (index 3), 7 (index 4).

Largest = 7. Swap 3 and 7.

Result: [8, 7, 6, 5, 3, 1, 2, 4, 9, 10].

Heap after extraction: [8, 7, 6, 5, 3, 1, 2, 4]

3. Extract max (8):

Swap 8 with 4 (last element).

Result: [4, 7, 6, 5, 3, 1, 2, 8, 9, 10].

Heapify root:

Children: 7 (index 1), 6 (index 2).

Largest = 7. Swap 4 and 7.

Result: [7, 4, 6, 5, 3, 1, 2, 8, 9, 10].

Now heapify subtree rooted at index 1:

Children: 5 (index 3), 3 (index 4).

Largest = 5. Swap 4 and 5.

Result: [7, 5, 6, 4, 3, 1, 2, 8, 9, 10].

Heap after extraction: [7, 5, 6, 4, 3, 1, 2]

		4. Repeat the process until the	heap size 1	reduces to	01.						
		Final Sorted Array:									
		[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]									
		Explain the key concept of d where it is used. Answer:	ynamic pro	ogrammir	ng and p	rovide a s	simple e	xample			
		Key Concept of Dynamic Prog	gramming:								
		Dynamic Programming (DP) i them into simpler overlappin storing its result (memoization effective for optimization pr subproblems and optimal subs	g subprob n) to avoid oblems an	lems, sol ^s l redunda id proble	ving each	h subprot itations. I	olem on t is parti	ce, and icularly			
		Overlapping Subproblems: The that are solved multiple times.	-	a can be o	divided i	nto small	er subpr	oblems			
		Optimal Substructure: The s solutions of its subproblems.	olution to	a proble	em can l	be constru	ucted fro	om the	3	3	L3
		DP is commonly implemented	l using:								
2		1. Top-Down Approach: Recu	rsion with	memoiza	tion.						
		2. Bottom-Up Approach: Itera	tive metho	d with a t	able to st	ore result	s.				
		Simple Example: Fibonacci So The Fibonacci sequence is def									
		F(n) = \begin{cases} 0 & \text{if } n = 0, \\ 1 & \text{if } n = 1, \\ F(n-1) + F(n-2) & \text{if } n \end{cases}	> 1.								
·		Obtain the Huffman tree and t			-		1				
		Char	A	В	F	Н	I	Y			
	b	Frequency	10	7	4	2	8	1	7	3	L3
		Answer:									

	uild the Huffman	Tree
We comb	ine the two smalle	st frequencies iteratively until one root remains
1. Initial	frequencies:	
A (10), B	(7), F (4), H (2), I	(8), Y (1)
2. Combi	ne smallest (H=2,	Y=1):
Create a	new node with fro	equency.
Remainir	ng: A (10), B (7), F	(4), I (8),
3. Combi	ne smallest (N1=3	, F=4):
Create a	new node with fro	equency.
Remainir	ng: A (10), B (7), I	(8),
4. Combi	ne smallest (B=7,]	N2=7):
Create a	new node with fro	equency.
Remainir	ng: A (10), I (8),	
5. Combi	ne smallest (I=8, A	A=10):
Create a	new node with fro	equency.
Remainir	ng:,	
6. Combi	ne last two (N3=14	4, N4=18):
Create th	e root node with	frequency.
Step 2: A	ssign Huffman Co	odes
Traverse	the tree to assign	binary codes (0 for left, 1 for right).
Resulting	Huffman Codes:	
char	code	
Α	11	
В	000	
F	0011	
Н	00100	
	10	
Ι		

Huffman Tree: The tree structure is built as explained in Step 1.

Huffman Codes:

A = 11

		$\mathbf{B} = 000$			
		$\mathbf{F} = 0011$			
		H = 00100			
		$\mathbf{I} = 10$			
		Y = 00101			
		Write a C function for performing quicksort, apply the same to the following set of numbers 15,5,24,8,1,3,16,10,20			
		numbers 15,5,24,8,1,5,10,10,20			
		Answer:			
		#include <stdio.h></stdio.h>			
		// Function to swap two elements			
		void swap(int *a, int *b) {			
		int temp = $*a$;			
		*a = *b;			
		b = temp;			
		}			
		// Partition function			
		int partition(int arr[], int low, int high) {			
		int pivot = arr[high]; // Choose the last element as pivot			
		int $i = low - 1$; // Index of the smaller element			
		for (int $j = low; j < high; j++$) {			
		if (arr[j] < pivot) {			
		i++;			
		swap(&arr[i], &arr[j]);			
3	a	}	10	3	L3
		}			
		// Swap pivot to the correct position			
		swap(&arr[i + 1], &arr[high]);			
		return i + 1; // Return the partition index			
		}			
		// Quick sort function			
		void quickSort(int arr[], int low, int high) {			
		if (low < high) {			
		int pi = partition(arr, low, high); // Partition index			
		// Recursively sort elements before and after partition			
		quickSort(arr, low, pi - 1);			
		quickSort(arr, pi + 1, high);			
		}			
		}			
		// Function to print an array			
		void printArray(int arr[], int size) {			
		for (int $i = 0$; $i < size$; $i++$) {			
	I				

```
printf("%d ", arr[i]);
  }
  printf("\n");
}
// Main function
int main() {
  int arr[] = {15, 5, 24, 8, 1, 3, 16, 10, 20};
  int n = sizeof(arr) / sizeof(arr[0]);
  printf("Original array:\n");
  printArray(arr, n);
  quickSort(arr, 0, n - 1);
  printf("Sorted array:\n");
  printArray(arr, n);
  return 0;
}
Step-by-Step Execution:
Given array: 15, 5, 24, 8, 1, 3, 16, 10, 20
Step 1: First Partition (Pivot = 20)
Initial array: 15, 5, 24, 8, 1, 3, 16, 10, 20
Elements smaller than 20 are moved to the left.
Partition result: 15, 5, 10, 8, 1, 3, 16, 20, 24
Partition index = 7 (pivot 20 placed in the correct position).
Step 2: Recursively Sort Left Subarray (15, 5, 10, 8, 1, 3, 16)
Pivot = 16.
Partition result: 15, 5, 10, 8, 1, 3, 16, 20, 24
Partition index = 6.
Step 3: Recursively Sort Left Subarray (15, 5, 10, 8, 1, 3)
Pivot = 3.
Partition result: 1, 3, 10, 8, 5, 15, 16, 20, 24
Partition index = 1.
Step 4: Recursively Sort Left Subarray (1)
Single element, no sorting needed.
Step 5: Recursively Sort Right Subarray (10, 8, 5, 15)
Pivot = 15.
Partition result: 10, 8, 5, 15, 16, 20, 24
Partition index = 5.
Step 6: Recursively Sort Left Subarray (10, 8, 5)
Pivot = 5.
Partition result: 5, 8, 10, 15, 16, 20, 24
Partition index = 0.
Final Sorted Array:
1, 3, 5, 8, 10, 15, 16, 20, 24
```

r	1				
4	a	Discuss Strassen's matrix multiplication with an example. and derive its time complexity. Answer: Strassen's algorithm is a divide-and-conquer algorithm that improves the efficiency of matrix multiplication compared to the conventional algorithm. It was introduced by Volker Strassen in 1969 and reduces the number of multiplications required to compute the product of two matrices. Key Idea Strassen's algorithm reduces the number of scalar multiplications required to compute the product of two matrices. The standard approach uses 8 scalar multiplications and 4 additions/subtractions for matrices, whereas Strassen's algorithm uses only 7 scalar multiplications but increases the number of additions/subtractions to 18. For large matrices, this reduction in multiplications leads to faster computations.	5	3	L1
	b	Obtain the topological sort for the graph by using source removal method and DFS method	5	3	L2
5	a	Write a algorithm and solve the following instance of dynamic knapsack problem where $n=4$, $m=40$, $p = (40, 42, 25, 12)$ and $w = (5, 15, 25, 35)$ Answer:	10	3	L3
6	a	Explain the Heap Sort technique Answer: Heap Sort is a comparison-based sorting algorithm that uses a binary heap data structure to sort elements. It has a time complexity of and is considered efficient and in-place since it requires only a constant amount of extra space. Steps of Heap Sort: 1. Build a Max-Heap:	3	3	L2

A binary heap is a complete binary tree where each parent node is greater than or equal to its child nodes (in the case of a Max-Heap). Convert the given array into a Max-Heap. This ensures the largest element is at the root (index 0). 2. Extract Elements: Swap the root element (largest) with the last element of the heap. Reduce the size of the heap by one (exclude the last element from the heap). Restore the Max-Heap property for the remaining heap (heapify). 3. Repeat: Repeat the extraction process until the heap size is reduced to 1. At this point, the array is sorted. Key Operations: 1. Heapify: A process to ensure the Max-Heap property is maintained. Starting from a given node, compare it with its children, and if needed, swap it with the largest child. Repeat this process recursively for the affected child. 2. Building the Heap: To build the heap, heapify all non-leaf nodes starting from the last non-leaf node and moving upward. Algorithm in Pseudocode: HeapSort(array): n = length(array)# Step 1: Build a Max-Heap for i = n/2 - 1 to 0: Heapify(array, n, i) # Step 2: Extract elements from the heap for i = n-1 to 1: Swap(array[0], array[i]) # Move the largest element to the end Heapify(array, i, 0) # Restore the Max-Heap property for the reduced heap Heapify(array, heap_size, root): largest = rootleft = 2*root + 1right = 2*root + 2if left < heap_size and array[left] > array[largest]: largest = leftif right < heap_size and array[right] > array[largest]:

largest = right			
if largest != root:			
Swap(array[root], array[largest])			
Heapify(array, heap_size, largest)			
Solve the given graph to Dijistra's method where Source is A.			
	7	3	L3

CI

CCI

HoD