
USN
Internal Assessment Test III – Aug 2024

Sub: Database Management System Sub Code: BCS/BAD
403 Branch: AINDS / CS (DS)

Date: 07/08/2024 Duration: 90 minutes Max Marks: 50 Sem IV OBE

Answer any FIVE Questions MARK
S CO RBT

1
a
Describe the database inconsistency problems: Lost update, dirty read and blind write?

5 CO1 L1

b With a neat diagram, explain the various states of a transaction execution? 5 CO1 L2

2

a Check whether the below schedule is conflict or not.
{b2 , r2(X) , b1 , r1(X) , wl(X), rl(Y), wl(Y), w2(X), el, c1, e2, c2).

5 CO1 L1

b What is 2PL? Explain with an example. 5 CO3 L2

3
How do you detect a deadlock during concurrent transaction execution? Explain Deadlocks and
Starvation in 2PL. 10 CO3 L2

4 Explain the various database recovery techniques, with examples. 10 CO3 L3

5 Explain Binary locks and shared locks with algorithms. 10 CO1 L2

6
What is the CAP Theorem? Which of the three properties (consistency, availability, partition
tolerance) are most important in NOSQL systems? 10 CO6 L3

CI CCI HOD

USN

Internal Assessment Test III – Aug 2024

Sub: Database Management System Sub Code: BCS/BAD
403 Branch: AINDS / CS (DS)

Date: 07/08/2024 Duration: 90 minutes Max Marks: 50 Sem IV OBE

Answer any FIVE Questions MARK
S CO RBT

1
a

Describe the database inconsistency problems: Lost update, dirty read and blind write?
5 CO1 L1

b With a neat diagram, explain the various states of a transaction execution? 5 CO1 L2

2
a

Check whether the below schedule is conflict or not.
{b2 , r2(X) , b1 , r1(X) , wl(X), rl(Y), wl(Y), w2(X), el, c1, e2, c2).

5 CO1 L1

b What is 2PL? Explain with an example. 5 CO3 L2

3
How do you detect a deadlock during concurrent transaction execution? Explain Deadlocks and
Starvation in 2PL. 10 CO3 L2

4 Explain the various database recovery techniques, with examples. 10 CO3 L3

5 Explain Binary locks and shared locks with algorithms. 10 CO1 L2

6
What is the CAP Theorem? Which of the three properties (consistency, availability, partition
tolerance) are most important in NOSQL systems? 10 CO6 L3

CI CCI HOD

USN

Internal Assessment Test III –Aug 2024

Sub: Database Management System Sub Code: BCS/BAD
403 Branch: AINDS / CS (DS)

Date: 11/07/2024 Duration: 90 minutes Max Marks: 50 Sem IV OBE

Answer any FIVE Questions MARK
S CO RBT

1
A

1a.Describe the database inconsistency problems: Lost update, dirty read
and blind write?

5 CO1 L1

B

With a neat diagram, explain the various states of a transaction execution?

5 CO1 L2

2 a,b

Check whether the below schedule is conflict or not.

{b2 , r2(X) , b1 , r1(X) , wl(X), rl(Y), wl(Y), w2(X), el, c1, e2, c2).

What is 2PL? Explain with an example.

5 CO1 L2

Both T1’ and T2’ follow the 2PL protocol

Any schedule including T1’ and T2’ is guaranteed to be serializable

Limits the amount of concurrency

Two-phase locking protocol (2PL)

All lock operations precede the first unlock operation

Expanding phase and shrinking phase

Upgrading of locks must be done in expanding phase and downgrading of locks

must be done in shrinking phase

If every transaction in a schedule follows 2PL protocol then the schedules is guaranteed

to be serializable.

Variants of 2PL

Basic, conservative, strict, and rigorous

How do you detect a deadlock during concurrent transaction execution?
Explain Deadlocks and Starvation in 2PL.

5 CO2 L3

3

c)Explain the various database recovery techniques, with examples.
�

Explain binary locks and shared locks with algorithms?

10 CO2 L4

Binary locks and shared locks are two important concepts in concurrent programming
and database systems. Let's explore each of them:

1. Binary Locks (Exclusive Locks):

Binary locks, also known as exclusive locks or mutex locks, allow only one process or
thread to access a shared resource at a time. When a process acquires a binary lock, it
has exclusive access to the resource, and all other processes must wait until the lock is
released.

Algorithm for Binary Lock:

struct BinaryLock {
bool locked = false;

}

function acquire(BinaryLock lock) {
while (true) {
if (!lock.locked) {
lock.locked = true;
return;

}
// Wait or yield to other processes

}
}

function release(BinaryLock lock) {
lock.locked = false;

}

2. Shared Locks (Read-Write Locks):

Shared locks allow multiple processes to read a shared resource simultaneously, but
ensure exclusive access for writing. This is useful when read operations are more
frequent than write operations.

There are two types of locks in this system:

● Read lock: Multiple processes can hold read locks simultaneously.
● Write lock: Only one process can hold a write lock, and no read locks can be

held simultaneously.

Algorithm for Shared Lock:

struct SharedLock {
int readers = 0;
bool writer = false;

BinaryLock readLock;
BinaryLock writeLock;

}

function acquireReadLock(SharedLock lock) {
acquire(lock.readLock);
if (lock.readers == 0) {
acquire(lock.writeLock);

}
lock.readers++;
release(lock.readLock);

}

function releaseReadLock(SharedLock lock) {
acquire(lock.readLock);
lock.readers--;
if (lock.readers == 0) {
release(lock.writeLock);

}
release(lock.readLock);

}

function acquireWriteLock(SharedLock lock) {
acquire(lock.writeLock);

}

function releaseWriteLock(SharedLock lock) {
release(lock.writeLock);

}

What is the CAP Theorem? Which of the three properties (consistency, availability,
partition tolerance) are most important in NOSQL systems?

The CAP Theorem, also known as Brewer's Theorem, is a fundamental concept in
distributed computing systems, particularly relevant to distributed databases and
NoSQL systems. It states that in a distributed data store, it is impossible to
simultaneously guarantee all three of the following properties:

1. Consistency (C): All nodes see the same data at the same time. In other words, a
read operation will return the most recent write operation's value, no matter which
node it contacts.

2. Availability (A): Every request receives a response, without guarantee that it
contains the most recent version of the data. The system remains operational and can
respond to requests even if some nodes are down.

3. Partition Tolerance (P): The system continues to operate despite network partitions
or communication breakdowns between nodes.

The theorem asserts that a distributed system can only guarantee two out of these three
properties at any given time.

In NoSQL systems, which are often designed for large-scale, distributed
environments, Partition Tolerance is generally considered non-negotiable. Network
partitions are a reality in distributed systems, and the ability to handle them is crucial.
Therefore, NoSQL databases typically have to choose between Consistency and
Availability when network partitions occur.

Most NoSQL systems prioritize Availability and Partition Tolerance (AP) over strict
Consistency. Here's why:

1. Scale: NoSQL databases are often used in scenarios requiring high scalability.
Prioritizing availability allows the system to continue functioning even when some
nodes are unreachable.

2. Performance: Strict consistency can introduce latency, as the system needs to
synchronize all nodes before responding to requests. Many NoSQL use cases prioritize
low-latency responses over perfect consistency.

3. Use Case Requirements: Many applications using NoSQL can tolerate eventual
consistency, where the system will become consistent over time, rather than requiring
immediate consistency.

4. Geographic Distribution: For globally distributed databases, network partitions are
more common, and maintaining strict consistency across all regions can be
challenging and performance-intensive.

However, it's important to note that this is a generalization. Different NoSQL
databases make different trade-offs:

- Cassandra and DynamoDB, for instance, typically favor Availability and Partition
Tolerance (AP).

- MongoDB and HBase lean more towards Consistency and Partition Tolerance (CP)
in their default configurations.

- Some modern distributed databases like Google's Spanner aim to provide all three
properties most of the time, only sacrificing availability during rare network partitions.

The choice between consistency and availability often depends on the specific use
case. For example, a financial system might prioritize consistency over availability,
while a content delivery system might prioritize availability over strict consistency.

In summary, while Partition Tolerance is crucial for NoSQL systems, the choice
between Consistency and Availability is often application-specific. However, many
NoSQL systems are designed with a bias towards Availability and Partition Tolerance,
with various mechanisms to provide different levels of eventual consistency.

4

Normalize the below relation up to 3NF

● To normalize the given relation up to Third Normal Form (3NF), we'll follow the normalization process:
Step1:-Identify the functional dependencies.
Step2:-Ensure the relation is in First Normal Form (1NF).
Step3:-Transform it to Second Normal Form (2NF).
Step4:-Transform it to Third Normal Form (3NF)

Step 1: Identify Functional Dependencies
● From the given table:
● Module determines Dept and Lecturer.
● Module and Text are combined to determine all attributes uniquely, as each combination ofModule and

Text uniquely identifies a record.
● Therefore, we have the following functional dependencies:

Module → Dept, Lecturer
Module, Text → Dept, Lecturer, Text
Step 3: Second Normal Form (2NF)

● A table is in 2NF if it is in 1NF and all non-key attributes are fully functionally dependent on the primary
key. We need to ensure that there are no partial dependencies on a composite key.

● Current Candidate Key: (Module, Text)
● To move to 2NF, we decompose the table to remove partial dependencies.
● Decomposition into 2NF:

Table 1: Modules Table 2: Module_Text

Step 4: Third Normal Form (3NF)
● A table is in 3NF if it is in 2NF and all the attributes are functionally dependent only on the primary

key and there are no transitive dependencies.
● Table 1: Modules is already in 3NF since all non-key attributes (Dept, Lecturer) depend only on

the primary key (Module).
● Table 2: Module_Text is in 3NF since there are no transitive dependencies.

Final Normalized Tables:
Table 1: Modules Table 2: Module_Text

These two tables are now in 3NF, ensuring no redundancy and eliminating partial and transitive
dependencies.

10 CO1 L2

5

Demonstrate the following constraints in SQL with suitable example:
i) NOT NULL ii) Primary key iii) Foreign key iv) Default v)Unique

i) NOT NULL :- Ensures that a column cannot have a NULL value

ii) Primary key :- A combination of a NOT NULL and UNIQUE. Uniquely identifies each row in a table.
● The PRIMARY KEY constraint uniquely identifies each record in a table.
● Primary keys must contain UNIQUE values, and cannot contain NULL values.
● A table can have only ONE primary key; and in the table, this primary key can consist of single or multiple columns.

SQL PRIMARY KEY on CREATE TABLE
● The following SQL creates a PRIMARY KEY on the "ID" column when the "Persons" table is created:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 PRIMARY KEY (ID));
SQL PRIMARY KEY on ALTER TABLE

To create a PRIMARY KEY constraint on the "ID" column when the table is already created, use the following SQL:
ALTER TABLE Persons

ADD PRIMARY KEY (ID);
DROP a PRIMARY KEY Constraint

To drop a PRIMARY KEY constraint, use the following SQL:
ALTER TABLE Persons
DROP PRIMARY KEY;

iii) Foreign key:- Prevents actions that would destroy links between tables.
● The FOREIGN KEY constraint is used to prevent actions that would destroy links between tables.
● A FOREIGN KEY is a field in one table, that refers to the PRIMARY KEY in another table.
● The following SQL creates a FOREIGN KEY on the "PersonID" column when the "Orders" table is created:

CREATE TABLE Orders (
 OrderID int NOT NULL,

 OrderNumber int NOT NULL,
 PersonID int,
 PRIMARY KEY (OrderID),
 FOREIGN KEY (PersonID) REFERENCES Persons(PersonID));

SQL FOREIGN KEY on ALTER TABLE
To create a FOREIGN KEY constraint on the "PersonID" column when the "Orders" table is already created, use the following
SQL:

ALTER TABLE Orders
ADD FOREIGN KEY (PersonID) REFERENCES Persons(PersonID);

DROP a FOREIGN KEY Constraint
To drop a FOREIGN KEY constraint, use the following SQL:

ALTER TABLE Orders
DROP FOREIGN KEY FK_PersonOrder;

iv) Default:- Sets a default value for a column if no value is specified.
• The DEFAULT keyword is used to set a default value for a column. When no value is specified for the column during an INSERT

operation, the default value is automatically assigned.
SQL DEFAULT on CREATE TABLE
The following SQL sets a DEFAULT value for the "City" column when the "Persons" table is created:

CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 City varchar(255) DEFAULT 'Sandnes');
SQL DEFAULT on ALTER TABLE

● To create a DEFAULT constraint on the "City" column when the table is already created, use the following SQL:
ALTER TABLE Persons

ALTER City SET DEFAULT 'Sandnes';
DROP a DEFAULT Constraint

● To drop a DEFAULT constraint, use the following SQL:
ALTER TABLE Persons
ALTER City DROP DEFAULT;

v)Unique:- Ensures that all values in a column are different.
● The UNIQUE constraint ensures that all values in a column are different.
● Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for uniqueness for a column or set of columns.
● A PRIMARY KEY constraint automatically has a UNIQUE constraint.
● However, many UNIQUE constraints per table, but only one PRIMARY KEY constraint per table.

The following SQL creates a UNIQUE constraint on the "ID" column when the "Persons" table is created:
CREATE TABLE Persons (
 ID int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255),
 Age int,
 UNIQUE (ID));
SQL UNIQUE Constraint on ALTER TABLE

● To create a UNIQUE constraint on the "ID" column when the table is already created, use the following SQL:
ALTER TABLE Persons
ADD UNIQUE (ID);

DROP a UNIQUE Constraint
To drop a UNIQUE constraint, use the following SQL:

10 CO3 L2

https://www.w3schools.com/sql/sql_primarykey.asp

CI CCI HOD

ALTER TABLE Persons
DROP INDEX UC_Person;

6

i) List the names of the people who work for the company 'Wipro' along with
the cities they live in.

SELECT w.Pname, l.City FROM works w JOIN lives l ON w.Pname = l.Pname
WHERE w.Cname = 'Wipro';

ii) Find the names of the persons who do not work for 'Infosys'.

SELECT l.Pname FROM lives l WHERE l.Pname NOT IN (SELECT
w.Pname FROM works w WHERE w.Cname = 'Infosys');

iii) Find the people whose salaries are more than that of all of the 'Oracle'
employees.

SELECT w1.Pname FROM works w1 WHERE w1.Salary > ALL (SELECT
w2.Salary FROM works w2 WHERE w2.Cname = 'Oracle');

iv) Find the persons who work and live in the same city.

SELECT l.Pname FROM lives l JOIN located_In li ON l.City = li.City JOIN
works w ON l.Pname = w.Pname AND w.Cname = li.Cname;

10 CO3 L3

